首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that changes in net ecosystem productivity (NEP) during aging of coastal Douglas-fir (Pseudotsuga menziesii Mirb. Franco) stands could be explained by (1) changing nutrient uptake caused by different time scales for decomposition of fine, non-woody and coarse woody litter left after harvesting, (2) declines in canopy water status with lengthening of the water uptake pathway during bole and branch growth, and (3) increases in the ratio of autotrophic respiration (R (a)) to gross primary productivity (GPP) with phytomass accumulation. These hypotheses were implemented and tested in the mathematical model ecosys against eddy covariance (EC) measurements of forest CO(2) and energy exchange in a post-clearcut Douglas-fir chronosequence. Hypothesis 1 explained how (a) an initial rise in GPP observed during the first 3 years after clearcutting could be caused by nutrient mineralization from rapid decomposition of fine, non-woody litter with lower C:N ratios (assart effect), (b) a slower rise in GPP during the next 20 years could be caused by immobilization during later decomposition of coarse woody litter, and (c) a rapid rise in GPP between 20 and 40 years after clearcutting could be caused by nutrient mineralization with further decomposition of coarse woody litter and of its decomposition products. During periods (a) and (b), heterotrophic respiration (R (h)) from decomposition of fine and coarse litter greatly exceeded net primary productivity (NPP = GPP - R (a)) so that Douglas-fir stands were large sources of CO(2). During period (c), NPP exceeded R (h) so that these stands became large sinks for CO(2). Hypothesis 2 explained how declines in NPP during later growth in period (c) could be caused by lower hydraulic conductances in taller trees that would force lower canopy water potentials and hence greater sensitivity of stomatal conductances and CO(2) uptake to vapor pressure deficits. Enhanced sensitivity to vapor pressure deficits was also apparent in the EC measurements over the post-clearcut chronosequence. Hypothesis 3 did not contribute to the explanation of forest age effects on NEP.  相似文献   

2.
Flux data are noisy, and this uncertainty is largely due to random measurement error. Knowledge of uncertainty is essential for the statistical evaluation of modeled and measured fluxes, for comparison of parameters derived by fitting models to measured fluxes and in formal data-assimilation efforts. We used the difference between simultaneous measurements from two towers located less than 1 km apart to quantify the distributional characteristics of the measurement error in fluxes of carbon dioxide (CO2) and sensible and latent heat (H and LE, respectively). Flux measurement error more closely follows a double exponential than a normal distribution. The CO2 flux uncertainty is negatively correlated with mean wind speed, whereas uncertainty in H and LE is positively correlated with net radiation flux. Measurements from a single tower made 24 h apart under similar environmental conditions can also be used to characterize flux uncertainty. Uncertainty calculated by this method is somewhat higher than that derived from the two-tower approach. We demonstrate the use of flux uncertainty in maximum likelihood parameter estimates for simple physiological models of daytime net carbon exchange. We show that inferred model parameters are highly correlated, and that hypothesis testing is therefore possible only when the joint distribution of the model parameters is taken into account.  相似文献   

3.
We used a combination of eddy flux, canopy, soil and environmental measurements with an integrated biophysical model to analyze the seasonality of component carbon (C) fluxes and their contribution to ecosystem C exchange in a 50-year-old Scots pine forest (Pinus sylvestris L.) in eastern Finland (62 degrees 47' N, 30 degrees 58' E) over three climatically contrasting years (2000-2002). Eddy flux measurements showed that the growing Scots pine forest was a sink for CO2, with annual net C uptakes of 131, 210 and 258 g C m-2> year-1 in 2000, 2001 and 2002, respectively. The integrated process model reproduced the annual course of daily C flux above the forest canopy as measured by the eddy covariance method once the site-specific component parameters were estimated. The model explained 72, 66 and 68% of the variation in daily net C flux in 2000, 2001 and 2002, respectively. Modeled annual C loss by respiration was 565, 629 and 640 g C m-2 year-1, accounting for 77, 77 and 65% of annual gross C uptake, respectively. Carbon fluxes from the forest floor were the dominant contributors to forest ecosystem respiration, with the fractions of annual respiration from the forest floor, foliage and wood being 46-62, 27-44 and 9-10%, respectively. The wide range in daily net C uptake during the growing season was largely attributable to day-to-day fluctuations in incident quantum irradiance. During just a few days in early spring and late autumn, ecosystem net C exchange varied between source and sink as a result of large daily changes in temperature. The forest showed a greater reduction in gross C uptake by photosynthesis than in C loss by respiration during the dry summer of 2000, indicating that interannual variability in ecosystem net C uptake at this site was modified mostly by summer rainfall and vapor pressure deficit.  相似文献   

4.
ABSTRACT

Boreal and temperate forests cover a large part of the Earth. Forest ecosystems are a key focus for research because of their role in the carbon (C) balance and cycle. Increasing atmospheric temperatures, different disturbances (fire, storm and insects) and forest management (clear-cutting) will change considerably the C status of forest ecosystems. Using the eddy covariance (EC) method, we can define interactions among environmental factors that influence the C-balance and whether a forest ecosystem is functioning as a C-sink or C-source or possibly is C-neutral. In our review of published studies of different disturbances, we found that most of the post-disturbance studies based on EC method focused on the effects of forest fire and clear-cutting, only a few studies studies focused on the effects of storms and insects. Generally a forest is a C-source until several years after disturbance and then a forest is able to absorb C and become a C-sink. Recovery to C-sink status required up to 20 years in clear-cut areas. Recovery following wildfire disturbance was much longer, possibly more than 50 years. Recovery to C-sink status required approximately 5 years after storm and insect outbreak, however we can not predict overall recovery period because of the missing data.  相似文献   

5.
Zhao  Min; Zhou  Guang-Sheng 《Forestry》2006,79(2):231-239
Forest inventory data (FID) include forest resources informationat large spatial scale and long temporal scale. They are importantdata sources for estimating forest net primary productivity(NPP) and carbon budget at landscape and regional scales. Inthis study, more than 100 datasets of biomass, volume, NPP andstand age for Chinese pine forests (Pinus tabulaeformis) fromthe literature were synthesized to develop regression equationsbetween biomass and volume, and between NPP and biomass as wellas stand age. Using these regression equations and the fourthFID surveyed by the Forestry Ministry China from 1989 to 1993,NPP values of Chinese pine forests were estimated. The meanNPP of Chinese pine forests was 4.35 Mg ha–1 yr–1.NPP varied widely among provinces, ranging from 1.5 (Neimenggu)to 13.73 Mg ha–1 yr–1 (Guizhou). Total NPP of Chinesepine was 10.87 Tg yr–1 (1 Tg = 1012 g). NPP values ofChinese pine forests were not distributed evenly across differentprovinces in China. This study may be useful not only for estimatingforest carbon of other forest types but also for evaluatingterrestrial carbon balance at regional and global levels.  相似文献   

6.
We selected four sites of ChinaFLUX representing four major ecosystem types in China—Changbaishan temperate broad-leaved Korean pine mixed forest (CBS), Dinghushan subtropical evergreen broadleaved forest (DHS), Inner Mongolia temperate steppe (NM), and Haibei alpine shrub-meadow (HBGC)—to study the seasonal dynamics of ecosystem water use efficiency (WUE = GPP/ET, where GPP is gross primary productivity and ET is evapotranspiration) and factors affecting it. Our seasonal dynamics results indicated single-peak variation of WUE in CBS, NM, and HBGC, which were affected by air temperature (Ta) and leaf area index (LAI), through their effects on the partitioning of evapotranspiration (ET) into transpiration (T) (i.e., T/ET). In DHS, WUE was higher at the beginning and the end of the year, and minimum in summer. Ta and soil water content affected the seasonal dynamics of WUE through their effects on GPP/T. Our results indicate that seasonal dynamics of WUE were different because factors affecting the seasonal dynamics and their mechanism were different among the key ecosystems.  相似文献   

7.
研究了江苏省云台山地区赤松林分状况与土壤属性的关系。回归分析结果表明影响林木生长的主导因子是土层总厚度,其偏相关系数为0.97,达到P0.01(P0.01=0.735)的极显著水平,依据这一主导因子,将研究区内各亚类土壤划分为9个土型,按土壤生产力分级指标,对云台山的森林土壤生产力进行综合评价,可分为四级,云台山属土壤生产力中等的山体。  相似文献   

8.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

9.
从汪清林业局大荒沟林场、大柞树林场等11个林场的森林资源二类调查数据中选取优势树种为蒙古栎、阔叶混交林及针阔混交林的小班。以海拔、土层厚度、坡位、坡向、腐殖质层厚度、坡度6个立地因子以及年平均气温、月平均气温差等19个气候因子为输入变量,以树种年平均蓄积生长量为输出变量,应用随机森林回归算法分别建立蒙古栎、阔叶混交林及针阔混交林的立地质量评价模型,对不同立地条件下的造林地进行生产潜力预测。同时,分析了各环境因子对树种生长的影响权重。结果表明:1)所建立的3种回归模型的RMSE的值分别为:0.22、0.54、0.52,R^2值分别为:0.79、0.79、0.72,模型的拟合效果较为理想。2)研究区域内,对蒙古栎生长影响较大的因子依次为月平均气温差、温度季节性变化、坡度、年降水量、年平均气温差;对针阔混交林生长影响较大的因子依次为:坡度、腐殖质层厚度、月平均气温差、最湿季度降水量、最暖季度降水量;对阔叶混交林生长影响较大的因子依次为:坡度、坡位、坡向、温度季节性变化、最干旱季平均气温。3)通过对比同一立地3种类型的生产力,针阔混交林、阔叶混交林的年平均蓄积生长量均高于蒙古栎纯林,针阔混交林略高于阔叶混交林。4)因此,应客观考虑环境因子对于林木的影响程度,使其生长环境条件尽可能地处于最佳组合状态。  相似文献   

10.
Tamarix chinensis Lour., which is common throughout the southwestern USA, is a phreatophytic riparian tree capable of high water use. We investigated temporal congruence between daily total evapotranspiration (E) estimated from stem sap flux (J(s)) measurements (E(sf)) and eddy covariance (E(cv)), both seasonally and immediately following rain events, and used measurements of leaf-level gas exchange, stem water content and diurnal changes in leaf water potential to track drivers of transpiration. In one study, conducted near the end of the growing season in a pure T. chinensis stand adjacent to the Rio Grande River in central New Mexico, nighttime E(sf) as a proportion of daily E(sf) increased with water availability to a peak of 36.6%. High nighttime E(sf) was associated with underestimates of nighttime E(cv). A second study, conducted in west Texas, beside the Pecos River, investigated the relationships between nighttime J(s) and stem tissue rehydration, on the one hand, and nighttime E, on the other hand. Leaf gas exchange measurements and stomatal impressions suggested that nighttime J(s) was primarily attributed to concurrent transpiration, although there were small overnight changes in stem water content. Both vapor pressure deficit and soil water availability were positively related to nighttime J(s), especially following rainfall events. Thus, both studies indicate that T. chinensis can transpire large amounts at night, a fact that must be considered when attempting to quantify E either by eddy covariance or sap flux methods.  相似文献   

11.
12.
With the widespread application of eddy covariance technology, long-term records of hourly ecosystem mass and energy exchange are becoming available for forests around the world. These data sets hold great promise for testing and validation of models of forest function. However, model validation is not a straightforward task. The goals of this paper were to: (1) review some of the problems inherent in model validation; and (2) survey the tools available to modelers to improve validation procedures, with particular reference to eddy covariance data. A simple set of models applied to a data set of ecosystem CO2 exchange is used to illustrate our points. The major problems discussed are equifinality, insensitivity and uncertainty. Equifinality is the problem that different models, or different parameterizations of the same model, may yield similar results, making it difficult to distinguish which is correct. Insensitivity arises because the major sources of variation in eddy covariance data are the annual and diurnal cycles, which are represented by even the most basic models, and the size of the response to these cycles can mask effects of other driving variables. Uncertainty arises from three main sources: parameters, model structure and data, each of which is discussed in turn. Uncertainty is a particular issue with eddy covariance data because of the lack of replicated measurements and the potential for unquantified systematic errors such as flux loss due to advection. We surveyed several tools that improve model validation, including sensitivity analysis, uncertainty analysis, residual analysis and model comparison. Illustrative examples are used to demonstrate the use of each tool. We show that simplistic comparisons of model outputs with eddy covariance data are problematic, but use of these tools can greatly improve our confidence in model predictions.  相似文献   

13.
以山东省森林为研究对象,利用MODIS的大气水汽产品、山东森林分布图等对大气水汽与森林植被的关系进行了研究,结果表明:水汽的变化很快,有明显的运动、传输过程;水汽含量的分布与当时的风速、风向、天气状况、地形等有着密切的联系;下午各地水汽含量差异不明显,夜间各地水汽含量比白天低;林区分布的对大气水汽含量的日变化影响不显著,下午森林对大气水汽的调节作用比较强。  相似文献   

14.
The forest estate in south-west Zabaikalia, a territory included in the Lake Baikal catchment area, has been investigated. For this purpose we have used both data of our own studies and monitoring data of environmental protection bodies. It shows that in our study area, fires, fellings, entomo-parasites and air pollution are the major negative factors affecting the state of the forest. In the period from 2003 to 2008 fires were registered in the area of over 500 thousand ha, pest foci in the forests covering an area of over 330 thousand ha, where almost 5 million m3 wood was cut in an area of about 43 thousand ha. The total area of forests in our study affected by air pollution amounts to about 700 thousand ha. According to the results, forest pollution in the territory is concentrated in the vicinity of large-scale industrial complexes, for distances up to about 40 km. The total area of forests weakened by air pollution amounts to about 2 million ha.  相似文献   

15.
Currently, information about the effect of forest management on biodiversity of subtropical plantation forests in Asia is quite limited. In this study, we compared the spider community structures and guild compositions of subtropical Cryptomeria japonica plantation forests receiving different degree of thinning (0, 25 and 50 %) in central Taiwan. The ground spider diversities and environmental variables were sampled/measured once every 3 months for 1 year before thinning and 2 years after thinning. Results showed that before thinning spider compositions did not differ significantly among three plantation forest types. Two years after thinning, spider species and family compositions of three plantation forest types differed significantly. In all three plantation forest types, the spider composition differed from year to year, indicating existence of temporal variations in spider diversity. Ground hunters (increased 200–600 % in thinned forests), sheet web weavers (increased 50–300 % in thinned forests) and space web weavers (decreased 30–50 % in thinned forests) were the major contributors of the observed spider composition differences among plantation forests receiving different treatments. The stands receiving thinning treatments also had higher illumination, litter decomposition rate, temperature and understory vegetation density. Thinning treatments might have changed the structures of understory vegetation and canopy cover and consequently resulted in abundance and diversity changes of these guilds. Moreover, the heterogeneity in understory vegetation recovery rate and temporal variation of spider composition might further generate spider diversity variations in subtropical forests receiving different degree of thinning.  相似文献   

16.
This study quantifies biomass, aboveground and belowground net productivity, along with additional environmental factors over a 2-3 year period in Barnawapara Sanctuary of Chhattisgarh, India through satellite remotesensing and GIS techniques. Ten sampling quadrates20×20, 5×5 and 1×1 m were randomly laid for overstorey (OS), understorey (US) and ground vegetation(GS), respectively. Girth of trees was measured at breast height and collar diameters of shrubs and herbs at 0.1 m height. Biomass was estimated using allometric regression equations and herb biomass by harvesting. Net primary productivity (NPP) was determined by Ssumming biomass increment and litter crop values. Aspect and slope influenced the vegetation types, biomass and NPP in different forests. Standing biomass and NPP varied from 18.6 to101.5 Mg ha-1 and 5.3 to 12.7 Mg ha-1 a-1, respectively,in different forest types. The highest biomass was found in dense mixed forest, while net production recoded in Teak forests. Both were lowest in degraded mixed forests of different forest types. OS, US and GS contributed 90.4, 8.7and 0.7%, respectively, for the total mean standing biomass in different forests. This study developed spectral models for the estimation of biomass and NPP using Normalized Difference Vegetation Index and other vegetation indices.The study demonstrated the potential of geospatial tools for estimation of biomass and net productivity of dry tropical forest ecosystem.  相似文献   

17.
We compared N fluxes in a 150-year-old Fagus sylvatica coppice and five adjacent 25-year-old plantations of Fagus sylvatica, Picea abies, Quercus petraea, Pinus laricio and Pseudotsuga menziesii. We measured net N mineralization fluxes in the upper mineral horizon (A1, 0–5 cm) for 4 weeks and gross N mineralization fluxes for two days. Gross rates were measured during the 48-h period after addition of 15NH4 and 15NO3. Mineralization was measured by the 15NH4 dilution technique and gross nitrification by 15NO3 production from the addition of 15NH4, and by 15NO3 dilution. Net and gross N mineralization was lower in the soil of the old coppice, than in the plantations, both on a soil weight and organic nitrogen basis. Gross nitrification was also very low. Gross nitrification measured by NO3 dilution was slightly higher than measured by 15NO3 production from the addition of 15NH4. In the plantations, gross and net mineralization and nitrification from pool dilution were lowest in the spruce stand and highest in the beech and Corsican pine stands. We concluded that: (1) the low net mineralization in the soil of the old coppice was related to low gross rate of mineralization rather than to the concurrent effect of microbial immobilisation of mineral N; (2) the absence of nitrate in the old coppice was not related to the low rate of mineralization nor to the absence of nitrifyers, but most probably to the inhibition of nitrifyers in the moder humus; (3) substituting the old coppice by young stands favours nitrifyer communities; and (4) heterotrophic nitrifyers may bypass the ammonification step in these acid soils, but further research is needed to check this process and to characterize the microbial communities.  相似文献   

18.
The utilization and changes of forest resources were studied in the Lishuihe Forest Bureau. Based on remote sensing images in 1985 and 1999, changes of major forest resources were analyzed by statistical and overlap method and classified quantitatively. The results showed that in recent 15 years, logging spots and man-made young forest changed violently, which was due to human activities. Different forest management manners and harvesting intensity played an important role in forest resources change. Dongsheng and Xilinhe tree farms were typical cases of different forest status and management for the Bureau, where forest succession was intervened by either human or natural disturbance. Dongsheng Tree Farm underwent a lighth arvest intensity and maintained a unit stock volume of 536.27 m^3. hm^-2, as much as that of broadleaf/Korean pine forest of Changbai Mountain Natural Reserve; Xilinhe Tree Farm underwent an intense harvest and was composed of secondary forests,where mature forests just had a small percentage and the unit stock volume was low. The study was useful to guide future forest management. What‘s more, problems found in the research were also analyzed and reasonable advice was given to the local forest management.  相似文献   

19.
长白山典型林区森林资源变化及目前质量分析   总被引:4,自引:0,他引:4  
利用研究区1985年和1999年两期遥感数据,将两期图像的矢量化图像中变动幅度较大的主要类别进行叠加,通过图像单元统计及图像叠加分析,得知各类地物在十五年间的变化情况及相应类别变化的量化归属。研究表明,十五年间采伐迹地、人工幼林变化剧烈,人类活动是造成研究区地物剧烈变化的最主要原因。选择研究区中二个干扰与经营状况不同的林场进行重点剖析,结果表明经营强度及方式的不同,对森林资源质量有较大的影响。东升林场采伐利用强度相对较小,目前仍保存有面积约占该林场1/3左右的地带性植被,过熟林面积比例较高,成熟针叶林单位面积蓄积量高达536.27m3hm-2,与长白山自然保护区的阔叶红松林单位面积蓄积量大体相当;西林河林场因采伐强度较大,目前林分多为原始林被破坏后形成的次生林,成过熟林比例相对较低,单位面积蓄积量也较小。二个林场森林状况以及营林措施方面具有一定代表性,其森林演替具有天然、人为干预两个方面的性质,作为重点剖析对象对研究区未来森林资源经营具有一定的指导意义。本文还就研究中发现的问题进行了剖析,并对当地的营林策略提出了可行性建议。图6表4参13。  相似文献   

20.
Data have been compiled from published sources on nitrogen (N) fluxes in precipitation, throughfall, and leaching from 69 forest ecosystems at 50 sites throughout China, to examine at a national level: (1) N input in precipitation and throughfall, (2) how precipitation N changes after the interaction with canopy, and (3) whether N leaching increases with increasing N deposition and, if so, to what extent. The deposition of dissolved inorganic N (DIN) in precipitation ranged from 2.6 to 48.2 kg N ha−1 year−1, with an average of 16.6 kg N ha−1 year−1. Ammonium was the dominant form of N at most sites, accounting for, on average, 63% of total inorganic N deposition. Nitrate accounted for the remaining 37%. On average, DIN fluxes increased through forest canopies, by 40% and 34% in broad-leaved and coniferous forests, respectively. No significant difference in throughfall DIN inputs was found between the two forest types. Overall, 22% of the throughfall DIN input was leached from forest ecosystems in China, which is lower than the 50–59% observed for European forests. Simple calculations indicate that Chinese forests have great potential to absorb carbon dioxide from the atmosphere, because of the large forest area and high N deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号