首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Carcass characteristics, meat quality traits, and sensory attributes were evaluated in late-finishing barrows and gilts, weighing between 100 to 130 kg of BW, fed 0, 5, or 7.4 mg/kg of ractopamine hydrochloride (RAC) for the final 21 to 28 d before slaughter. Carcass data were collected from carcasses from barrows and gilts (n = 168), and all primal cuts from the right sides of these carcasses were fabricated to calculate primal yields as a percentage of the HCW. Subjective (National Pork Producers Council and Japanese) color, firmness, and marbling scores were determined on the LM of each loin and the semimembranosus muscle (SM) of the ham, whereas the moisture, extractable lipid, Warner-Bratzler shear force (WBSF), and trained sensory evaluations (juiciness, tenderness, and pork flavor) were measured on the LM samples only. Gilts produced heavier (P < 0.05) HCW than barrows, whereas feeding RAC increased (P < 0.05) HCW over pigs fed diets devoid of RAC. Carcasses from gilts also had greater (P < 0.02) primal cut and lean cut (P < 0.01) yields than barrows, and dietary inclusion of 5 mg/kg of RAC increased (P < 0.05) total boneless cut and lean cut yields when compared with carcass from pigs fed 0 or 7.4 mg/kg of RAC. Warner-Bratzler shear forces values were greater (P < 0.05) in the LM of gilts than barrows, but only juiciness scores were greater (P < 0.03) in LM chops from barrows than gilts. The LM from barrows had greater intramuscular lipid (P < 0.001) than the LM from gilts, and even though the LM from pigs fed 5 mg/kg of RAC had greater (P < 0.04) WBSF values than the LM from pigs fed 0 or 7.4 mg/kg of RAC, including RAC in the late-finishing diets for 21 or 28 d did not affect sensory panel rating or percentages of moisture and intramuscular lipid. In summary, addition of RAC in the late-finishing diet improved carcass and primal cut yields when it was fed at 5 and 7.4 mg/kg without altering pork quality traits regardless of whether RAC was fed for 21 or 28 d.  相似文献   

2.
The objective of this experiment was to determine if increased space and exercise for finisher pigs (0.90 vs 9.45 m2/pig) affects performance, meat quality, or muscle fiber characteristics. Newsham barrows (n = 32, 4 pens/treatment) were placed in one of two space allocations: control space allowance (CONT) or in a long pen with increased space allowance (10x). Pigs were weighed every 28 d and feed intake/pen was calculated. Pigs were filmed for behavioral analysis on d 70 and 100 using video recorders to determine walking distances over a 24-h period. After a 5-h transport and 2-h rest period, pigs (approximately 115 kg) were slaughtered on the same day at a commercial facility. Muscle samples were obtained from the longissimus lumborum (LL) and semimembranosus (SM) muscles within 1 h postmortem for muscle fiber typing. Backfat thickness and pH decline were measured on the left side of each carcass. After 24-h chilling, a boneless loin was collected from each pig and stored at 2 degrees C until analyzed. On d 14 postmortem, loins were cut at the 10th rib for color evaluations, and chops were cut for Warner-Bratzler shear (WBS) force and sensory analysis. Histochemical staining methods were used for the detection of type I, IIA, and IIB/X muscle fiber types. There were no significant differences (P > 0.10) in live weight, ADG, ADFI, or G:F ratio of the two experimental groups evaluated. Pigs finished in 10x pens walked a greater (P < 0.01) distance over a 24-h period than pigs finished in the CONT pens. Pigs finished in the lOx pens were fatter (P < 0.05) at the last lumbar vertebra than pigs finished in the CONT pens, but no significant differences were found in loineye area, loin color, marbling scores, WBS, sensory panel scores, retail display measures, or muscle fiber type percentages. Expanded space allowance to increase exercise resulted in no improvements in pig performance, pork loin measures, or muscle characteristics.  相似文献   

3.
Crossbred barrows and gilts (n = 168) were used to test the effects of supplemental Mn during the growing-finishing period on performance, pork carcass characteristics, and pork quality during 7 d of retail display. Pigs were blocked by BW and allotted within blocks to pens (5 pigs/pen in blocks 1, 2, 5, and 6, and 4 pigs/pen in blocks 3 and 4). A total of 36 pens was randomly assigned to 1 of 6 dietary treatments, where the basal diets were formulated with (PC) or without (NC) Mn in the mineral premix, and supplemented with 0 or 350 ppm (as-fed basis) of Mn from MnSO4 or a Mn-AA complex (AvMn). Pigs were slaughtered at a commercial pork packing plant when the lightest block of pigs averaged 113.6 kg. During fabrication, boneless pork loins were collected and transported to Oklahoma State University, where 2.5-cm-thick LM chops were packaged in a modified atmosphere (80% O2 and 20% CO2) and subsequently placed in display cases (2 to 4 degrees C) under continuous fluorescent lighting (1,600 lx) for 7 d. Pig performance was not (P > or = 0.44) affected by supplemental Mn; however, during the grower-II phase, pigs fed the basal diets including Mn consumed less (P < 0.02) feed and tended to be more efficient (P < 0.09) than pigs fed the basal diets devoid of Mn. Throughout the entire feeding trial, neither dietary nor supplemental Mn altered (P > or = 0.22) ADG, ADFI, or G:F. Chops from pigs fed the diets supplemented with MnSO4 received greater (P < or = 0.05) lean color scores and had a redder (greater a* and hue angle values), more vivid color than chops from pigs fed the diets supplemented with AvMn. Additionally, LM chops from pigs fed the PC diets supplemented with MnSO4 were darker (lower L* values; P < 0.05) than chops from pigs fed the NC diets or PC diets supplemented with 0 or 350 ppm of AvMn. Even though discoloration scores were similar during the first 4 d of display, chops from pigs fed the PC diets supplemented with MnSO4 were less (P < 0.05) discolored on d 6 and 7 of retail display than chops from pigs fed the PC or NC diets and diets supplemented with AvMn (dietary treatment x display time, P = 0.04). Results of this study indicate that feeding an additional 350 ppm of Mn from MnSO4 above the maintenance requirements of growing-finishing pigs does not beneficially affect live pig performance but may improve pork color and delay discoloration of pork during retail display.  相似文献   

4.
Barrows and gilts (n = 100 per gender) were used to determine the effects of an increasing, decreasing, or constant ractopamine (RAC) dietary concentration on growth performance and carcass characteristics. Pigs, within a gender, were assigned randomly to pens (five pigs per pen and 10 pens per treatment). Pens were assigned randomly to one of four dietary treatments at a starting weight of 71.2 kg, to target an average ending weight of 109 kg. The four dietary treatments (as-fed basis) were 1) control = 0 ppm RAC, wk 0 to 6; 2) RAC step-up = 5.0 ppm, wk 1 to 2; 10.0 ppm, wk 3 to 4; and 20.0 ppm, wk 5 to 6; 3) RAC step-down = 20.0 ppm, wk 1 to 2; 10.0 ppm, wk 3 to 4; and 5.0 ppm, wk 5 to 6; and 4) RAC constant = 11.7 ppm, wk 0 to 6. Feed allocation was recorded daily, and pigs were weighed and feed was weighed back every 2 wk. Jugular blood samples were obtained from two randomly selected pigs per pen on d -3, 7, 21, 35, and 41 for determination of plasma urea nitrogen (PUN) concentrations. Two pigs were selected randomly per pen and sent to a commercial slaughter facility at the end of the 6-wk experimental period. Carcass data were evaluated on an equal time basis and on an equal weight basis by using hot carcass weight (HCW) as a covariate. Overall, ADG and G:F were improved (P < 0.05) for pigs fed RAC compared with control, with no differences among RAC feeding programs. In wk 3 and 4, improvements (P < 0.05) in ADG and G:F were realized with the implementation of a RAC step-up program compared with control pigs. The concentrations of PUN were decreased (P < 0.05) at d 7 and 21 with RAC feeding, and a RAC step-up program maintained the decrease (P < 0.05) in PUN through d 35 and 41. A RAC step-up and constant program increased (P < 0.05) HCW and percent yield. Loin muscle area and percentage of fat-free lean increased (P < 0.05) and backfat thickness decreased (P < 0.05) in pigs fed RAC. If pigs were considered to be on feed for an equal time period, advantages (P < 0.05) were observed for weight of boneless trimmed ham, shoulder and loin for the step-up and constant RAC treatments compared with the controls. Feeding a RAC step-up or constant feeding program resulted in favorable responses in growth performance and yielded more lean pork.  相似文献   

5.
This study was designed to evaluate growth performance, carcass cutting yield, and processing characteristics of boneless hams and bellies from finishing pigs fed diets containing 0, 5, 10, or 20 ppm of the phenethanolamine ractopamine hydrochloride (RAC). Sixty pigs were blocked by starting weight and randomly assigned to pens (four pigs/pen) within each of three blocks. Treatments were then randomly assigned to the pens to total six pens of the 0-ppm level and three pens each at the 5-, 10-, and 20-ppm RAC levels. Weight gain and feed consumption were monitored and animals were slaughtered by weight block after approximately 48 d on trial. Slaughter weight, ADG, and feed/gain were improved (P less than .05) for RAC treatments. Dressing percentage was higher and increased linearly (P less than .05) for RAC treatments. Carcass weight, length, leaf fat weight, backfat thickness, loin eye area, and color, marbling, and firmness of the longissimus were evaluated. The RAC-treated carcasses were heavier (P less than .05) and loin eye area increased linearly (P less than .05). One side of each carcass was fabricated using National Association of Meat Purveyors specifications. Trimmed hams and loins from the RAC treatments were heavier (P less than .05) than those from control animals. No differences (P greater than .05) in carcass cutting yield (percentage of trimmed primal cuts) were observed between treatments. However, trimmed hams and loins from the 20-ppm RAC treatment represented a greater (P less than .05) percentage of carcass weight than did those from control animals. Ractopamine did not affect raw belly or bacon characteristics (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Forty-eight barrows and forty-eight gilts (PIC 337 sires x PIC C22 dams) were evaluated to determine the effects of feeding ractopamine hydrochloride (RAC) and different cereal grains on the carcass and fat quality in late finishing pigs. The study was carried out using four replicates with 24 animals in each replicate (four pigs per pen, six pens per replicate, two replicates per slaughter date, 12 pens per slaughter date). Treatments for the experiment included corn, wheat, and barley (early finisher period); and corn, corn + RAC, wheat, wheat + RAC, barley, and barley + RAC for the late finisher period. Ractopamine was fed at the level of 10 mg/kg (as-fed basis) of feed. Pigs were allotted to early finisher period treatments at approximately 45 kg BW. Pigs were then given late finisher period treatments at approximately 80 kg BW and fed for 28 d. The dietary digestible lysine level for all diets was maintained at 2.7 g/Mcal of ME. Pigs fed the wheat and corn diets during the late finisher period had a greater (P <0.05) G:F than those fed the barley diets. Pigs fed diets with RAC had lower (P <0.05) leaf fat weights, 10th-rib fat, last-rib fat, and belly firmness and had improved (P <0.05) dressing percents and loin muscle areas compared with those not receiving RAC. Pigs fed the wheat diets had a greater (P <0.05) dressing percent than those receiving the barley diets, but pigs fed the barley diets had a higher (P <0.05) Minolta L* for fat color than pigs fed wheat. Pigs fed diets containing RAC produced pork that was less tender (P <0.05) compared with pigs that did not receive RAC. Linoleic acid percent values were higher (P <0.05) for pigs fed diets with RAC than in those that did not. Feeding RAC improved G:F and lowered feed intake of pigs during the late finisher period (P <0.05). Feeding diets equal in lysine (2.7 g/Mcal of ME) but varying in ME, whether based on corn, wheat, or barley with or without RAC, had little to no effect on carcass, meat, or fat quality attributes.  相似文献   

7.
The present experiment utilized Berkshire (n = 76), Duroc (n = 81), and high-lean commercial crossbred (n = 75) barrows and gilts with an initial BW of approximately 85.1 kg. Pigs were fed a standard commercial diet (17.6% CP, 1.02% lysine) supplemented with ractopamine hydrochloride at a level of 0 or 10 ppm for 28 d. The experiment was conducted in a randomized complete block design, with animals blocked within genetic line according to litter, gender, and weight, for a total of four blocks per genetic line for each treatment. Pigs were harvested at a commercial abattoir and chilled for 24 h at 1 to 4 degrees C. At 24 h postmortem, wetness and firmness scores and ultimate muscle pH were measured in the center of the longissimus muscle (LM) at the 10th to 11th rib interface. Visual and instrumental color and marbling score were measured at 48 h postmortem on a fresh cut LM surface. Percentage of chemically extracted intramuscular fat (IMF) was measured, and a trained sensory panel evaluated cooked LM chops for juiciness, tenderness, and chewiness. Cooking loss (%) and instrumental measurement of tenderness also were measured on cooked LM chops. Ractopamine treatment increased ADG (P < 0.01) and LM area (P < 0.05), but had no effect (P > 0.05) on LM quality, sensory attributes, or instrumental measures of palatability. Berkshire LM received higher tenderness and juiciness (P < 0.05) scores and had lower cooking losses (P < 0.05) and instrumental tenderness (P < 0.05) than LM from the Duroc and high-lean lines. Loins from barrows were firmer (P < 0.05), had lower drip loss percentages (P < 0.05), and received greater tenderness scores (P < 0.05) than the LM from gilts. Genetic line x treatment and gender x treatment interactions were detected for IMF. The LM of Berkshire pigs fed ractopamine had lower (P < 0.05) IMF than Berkshires fed the control diet, with no interaction in the other lines. Purebred barrows (Berkshire and Duroc) had greater (P < 0.001 and P < 0.05, respectively) IMF than their respective purebred gilts, with no gender difference in IMF in the high-lean line. Results from the present study indicate that feeding ractopamine does not affect most muscle quality and palatability characteristics. However, the genetic line x treatment interaction for loin IMF suggests that feeding ractopamine might reduce IMF within the loin muscle of genetic lines that have a propensity to produce greater levels of IMF.  相似文献   

8.
Birth and rearing conditions were evaluated for their effects on pig growth, body composition, and pork quality using 48 barrows during the spring and summer months. Pigs were either farrowed in indoor crates or outdoor huts. At weaning, indoor-born and outdoor-born pigs were randomly allotted to indoor or outdoor treatments for growing/finishing. Body weight data were collected. Pigs were transported 5 h to a commercial processing plant, allowed 2 h of rest, and then processed as a group under commercial conditions. Boneless loins were collected from the left side of each carcass and aged for 14 d. Objective and subjective color measurements were taken on the longissimus muscle at the 10th rib on d 14 postmortem. Loin chops were evaluated for sensory attributes, shear force, and retail display features. Pigs born outdoors were heavier and had greater ADG at all growth intervals after weaning (d 28, 56, 112, and final weight, P < 0. 05) than pigs born indoors. Outdoor-born pigs had heavier carcass weights (91.2 vs 81.3+/-3.4 kg, P < 0.001), larger loineye areas (54.6 vs 49.7+/-0.2 cm , P < 0.05), and higher pork flavor intensity scores (6.5 vs 6.1+/-0.10, P < 0.01) than indoor-born pigs. Birth x rearing environment interactions were not significant for most measures. Backfat measurements at the last rib were greater (3.2 vs 2.8+/-0.05 cm, P < 0.05) for the pigs reared outdoors than for the pigs reared indoors. Pigs finished outdoors had more reddish pink color scores, lower shear force values, and lower L* values, indicating darker-colored pork, compared with pigs finished indoors (P < 0.05). Pig birth environment played a significant role in improving growth rates of outdoor-born pigs and increasing pork flavor intensity scores of loin chops from pigs born outdoors. Finishing pigs outdoors may improve pork color and tenderness but also may increase backfat thickness when they are fed conventional diets.  相似文献   

9.
The objective was to investigate the effect of various doses and durations of ractopamine hydrochloride (RAC) on pig HCW, cutting yields, and meat quality. Late-finishing pigs (approximately 93 kg) were allotted to 12 treatments 35 d before slaughter. Treatments consisted of negative control (NEG; 13.1% CP, 0.64 TID Lys), positive control (POS; 17.8% CP, 0.94 TID Lys), and 2 RAC doses (5 and 7.4 mg/kg) with 5 different feeding durations for each dose (7, 14, 21, 28, or 35 d). Pigs on ractopamine-duration diets were fed NEG until incorporation of RAC, and then the diet was switched to POS to comply with label requirements. A subset of 240 pigs was utilized to determine the effects of RAC on carcass cutting yields. This subset was selected by taking the 5 pigs closest to the average pen weight from 4 complete replicates. Differences in response to RAC between 5 and 7.4 mg/kg were not significant. Therefore, RAC dosages were pooled, resulting in an average dose of 6.2 mg/kg, which was then compared with NEG and POS diets. Ractopamine increased (P < 0.05) HCW by 2.5 and 2.3 kg compared with the NEG and POS diets, respectively. Hot carcass weight also increased linearly (P=0.003) as RAC duration increased. Indicators of carcass leanness increased with RAC compared with NEG. Estimated carcass lean percentage increased (P=0.010) 1 percentage unit from 54.79 to 55.79%, carcass cut yield increased (P<0.001) 1.23 percentage units from 50.61 to 51.84%, and (P=0.006) boneless lean cut yield increased 1.27 percentage units from 36.71 to 37.98%. Ractopamine decreased (P=0.002) subjective marbling scores 0.49 units from the NEG value of 3.0, but RAC did not differ (P=0.203) from POS. Subjective color values and shear force aging curves for RAC were not significantly different from NEG or POS. Overall, RAC had greater responses in carcass weight and cut yield than NEG, and had minimal effects on meat quality.  相似文献   

10.
The objective of this experiment was to determine the effect of diverse production systems on pig performance, muscle characteristics, and their relation to pork quality measures. Birth and rearing conditions were evaluated using 48 barrows during the fall/winter months. Pigs were farrowed in either indoor crates or outdoor huts. At weaning, indoor- and outdoor-born pigs were allotted randomly to treatments arranged in a 2 x 2 factorial design with two birth (indoor vs. outdoor) and rearing (indoor vs. outdoor) environments. Pigs housed indoors were on concrete-slatted flooring (1.2 m2/pig), and pigs housed outdoors were on an alfalfa pasture (212 m2/pig). Body weight data were collected. Muscle samples were removed within 1 h postmortem from the longissimus (LM) and semimembranosus (SM) muscles. Muscle samples were stained histochemically to identify type I, IIA, and IIB/X muscle fibers. Boneless loins were collected from the left side of each carcass and aged for 14 d. Objective and subjective color measurements were taken on the longissimus muscle at the 10th rib on d 14 postmortem. Loin chops were evaluated for sensory attributes, shear force, and retail display features. Pigs born outdoors were heavier and had a greater ADG at most growth intervals postweaning (d 28, 56, and 112; P < 0.05) than pigs born indoors. Pigs reared outdoors were heavier (P = 0.02) at d 140 (120.1 vs. 112.9 +/- 4.9 kg), and had higher (P = 0.01) ADG (2.2 vs. 1.9 kg/d) and gain:feed ratios (0.41 vs. 0.37) than did pigs reared indoors. Birth x rearing environment interactions were not significant (P > 0.10) for most measures. Carcass and meat quality measures did not differ (P > 0.05) among treatment groups, but loin chops from outdoor born or reared pigs had higher (P < 0.05) a* values than chops from pigs born or reared indoors. The LM muscle of pigs born outdoors had a higher (P < 0.01) percentage of type I, and a lower (P < 0.05) percentage of type IIA fibers than did pigs born indoors. Pigs reared outdoors had a higher (P < 0.01) percentage of IIA fibers and a lower (P < 0.05) percentage of IIB/X fibers than did pigs reared indoors for the LM and SM muscles. Outdoor production systems may influence growth, pork color, and muscle fiber types.  相似文献   

11.
Effects of pig birth (first 3-wk period) and rearing environments on growth and muscle quality characteristics of loins were evaluated in three experiments over seasons in west Texas and central Missouri. Housing systems included indoor slatted-floor buildings, indoor deep-bedded buildings, outdoor housing on dirt, and outdoor housing on alfalfa pasture. Experiments were conducted during the growing/finishing phases and pigs were slaughtered at the same age. Loins were collected, vacuum-packaged, and stored for 14 d at 2 degrees C. Pigs born and finished in an outdoor environment during the summer months (Exp. 1) had a greater ADG (0.92 vs 0.82+/-0.06 kg/d, P < 0.05) and had heavier carcass weights (87.9 vs 78.4+/-2.4 kg, P < 0.05) than pigs born and finished in an indoor environment with a slatted-floor finishing building. Carcasses from the outdoor-reared group measured a larger (P < 0.05) loineye area and were fatter (P < 0.01) at the first rib, last rib, and last lumbar vertebra measurements than carcasses from the indoor-reared group. Loin chops from outdoor-reared pigs had darker color scores in the retail display case throughout the 4-d period, measured lower L* values on d 1, and had more discoloration and browning on d 4 than loin chops from the indoor-reared group. During the winter months (Exp. 2), no difference was detected in ADG, carcass measurements, sensory characteristics, or shear force values from indoor-born pigs placed in either an outdoor or indoor finishing environment. Pigs finished on deep bedding (Exp. 3) had heavier carcass weights and more backfat (P < 0.01) than pigs finished on slats, but no differences were detected in sensory panel or shear force results. Overall, carcass measurements, pH, drip loss, sensory panel, and shear force values were similar among the groups finished in different housing systems. Outdoor or deep-bedded systems may increase growth rates of pigs if suitable land area and resources are available, but pork quality of loins will be similar for pigs finished in either conventional or alternative systems.  相似文献   

12.
Crossbred pigs (n = 185) were used to test the effects of dietary Fe supplementation on performance and carcass characteristics of growing-finishing swine. Pigs were blocked by BW, allotted to pens (5 to 6 pigs/pen), and pens (5 pens/block) were allotted randomly to either negative control (NC) corn-soybean meal grower and finisher diets devoid of Fe in the mineral premix, positive control (PC) corn-soybean meal grower and finisher diets with Fe included in the mineral premix, or the PC diets supplemented with 50, 100, or 150 ppm Fe from Availa-Fe (an Fe-AA complex). When the lightest block averaged 118.2 kg, the pigs were slaughtered, and bone-in pork loins were collected during fabrication for pork quality data. During the grower-I phase, there was a tendency for supplemental Fe to reduce ADG linearly (P = 0.10), whereas in the grower-II phase, supplemental Fe tended to increase ADG linearly (P = 0.10). Even though pigs fed NC had greater G:F during the finisher-I phase (P < 0.05) and across the entire trial (P = 0.07), live performance did not (P > or = 0.13) differ among dietary treatments. There were linear increases in 10th-rib fat depth (P = 0.08) and calculated fat-free lean yield (P = 0.06); otherwise, dietary Fe did not (P > 0.19) affect pork carcass muscling or fatness. Moreover, LM concentrations of total, heme, and nonheme Fe were similar (P > 0.23) among treatments. A randomly selected subset of loins from each treatment was further fabricated into 2.5-cm-thick LM chops, placed on styrofoam trays, overwrapped with polyvinyl chloride film, and placed in coffin-chest display cases (2.6 degrees C) under continuous fluorescent lighting (1,600 lx) for 7 d. During display, chops from NC-fed pigs and pigs fed the diets supplemented with 100 ppm Fe tended to have a more vivid (higher chroma value; P = 0.07), redder (higher a* value; P = 0.09) color than LM chops of pigs fed 50 ppm of supplemental Fe. Moreover, greater (P < 0.01) redness:yellowness ratios in chops from pigs supplemented with 100 ppm Fe indicated a more red color than chops from PC-fed pigs or pigs fed diets supplemented with 50 ppm Fe. In conclusion, however, increasing dietary Fe had no appreciable effects on performance, carcass, or LM characteristics, suggesting that current dietary Fe recommendations are sufficient for optimal growth performance, pork carcass composition, and pork quality.  相似文献   

13.
Forty-eight pigs of three known stress classifications were injected daily with porcine somatotropin (pST; 4 mg/d) or placebo. The effects of pST and stress classification on the sensory, physical and chemical characteristics of loin chops were observed. Chops from pST-treated animals were less tender and juicy than chops from control animals. Positive stress classification also significantly decreased juiciness but had no effect on tenderness and flavor. A significant interaction was observed for initial juiciness and sustained juiciness between chops from pST and stress-positive pigs. Whereas chops from carriers and normal pigs showed a reduction in juiciness traits with the pST treatment, among stress-positive animals both initial and sustained juiciness were increased with pST treatment. Treatment with pST had no effect on the fat, protein, and moisture content of the longissimus muscle. Furthermore, stress classification had no effect on the fat and moisture content of the longissimus muscle, but protein content was significantly higher in loin chops from stress-positive animals. Chops from pST-treated animals had significantly higher maximum shear force values, required more energy to break the sample, and had higher yield point values than chops from control animals, but stress classification did not affect the shear force values significantly. Treatment of stress-susceptible animals with pST does not lead to an increased incidence of pale, soft, exudative meat and may improve juiciness attributes of chops from stress-positive animals. However, pST treatment of animals, in this trial, led to a reduction of juiciness and tenderness of pork loin chops.  相似文献   

14.
Crossbred pigs (n = 216) were used to test the interactive effect, if any, of ractopamine (RAC) and dietary fat source on the performance of finishing pigs, pork carcass characteristics, and quality of LM chops during 5 d of simulated retail display (2.6 degrees C and 1,600 lx warm-white fluorescent lighting). Pigs were blocked by BW and allotted randomly to pens (6 pigs/pen), and, after receiving a common diet devoid of RAC for 2 wk, pens within blocks were assigned randomly to 1 of 4 diets in a 2 x 2 factorial arrangement, with 5% fat [beef tallow (BT) vs. soybean oil (SBO)] and RAC (0 vs. 10 mg/kg). Diets were formulated to contain 3.1 g of lysine/Mcal of ME and 3.48 Mcal/kg of ME. Across the entire 35-d trial, pigs fed RAC had greater (P < 0.01) ADG and G:F, but RAC did not affect (P = 0.09) ADFI; however, performance was not affected (P >or= 0.07) by dietary fat source. Carcass weight, LM depth, and lean muscle yield were increased (P < 0.01), whereas fat depth was decreased (P = 0.01), in carcasses from RAC-fed pigs; however, carcass composition measures were similar (P >or= 0.27) between fat sources. Feeding 10 mg/kg of RAC reduced (P 相似文献   

15.
Crossbred barrows (n = 72) were used to evaluate effects of diet supplementation with modified tall oil (MTO; 0.0 or 0.50%) and vitamin E (0, 22, or 110 IU/kg) on growth performance, carcass traits, and longissimus muscle (LM) quality traits of finishing pigs. Pigs were blocked by ancestry and initial BW and allotted randomly to treatments in a 2 x 3 factorial. Corn-soybean meal-based diets were fed in two phases: 45.5 to 81.6 (1.00% lysine) and 81.6 to 114.6 (0.75% lysine) kg BW with no added fat. From 45.5 to 81.6 kg, pigs fed MTO had greater ADG (P = 0.03) regardless of added vitamin E; otherwise, treatment did not affect growth performance. Carcasses from pigs fed MTO had reduced (P < 0.05) average backfat (2.76 vs 2.92 cm) and firmer bellies compared to those fed no MTO. Boneless loins were cut into 2.54-cm chops at 7 d postmortem and evaluated for display color, thiobarbituric acid-reactive substance (TBARS), Warner-Bratzler shear force (WBSF), and sensory panel ratings. Visual color was similar (P > 0.05) among treatments at 0 and 1 d of display. At 4 and 6 d of display chops from pigs fed MTO with 110 IU vitamin E/kg had less deterioration (P < 0.05) than chops from pigs fed MTO with 0 IU vitamin E/kg and 0.0% MTO with 22 or 110 IU vitamin E/kg. The CIE L*, a*, b* and spectral values also suggested a delay in color deterioration for chops from pigs fed MTO with 110 IU vitamin E/kg. At 6 and 8 d of display, chops from pigs fed 110 IU vitamin E/kg had lower (P < 0.05) L* values than those from pigs fed 0 or 22 IU vitamin E/kg, and higher (P < 0.05) a* values than those from pigs fed 0 IU vitamin E/kg feed. A higher (P < 0.05) %R630/%R580 (indicator of more oxymyoglobin) was observed for chops from pigs fed MTO with 110 IU vitamin E/kg than those from pigs fed 0.0% MTO with 22 or 110 IU vitamin E/kg and MTO with 0 IU vitamin E/kg. Chops from pigs fed MTO with 110 IU vitamin E/kg had lower (P < 0.05) TBARS values than those from pigs fed MTO with 0 IU vitamin E/kg. No differences (P > 0.05) were detected among treatments for WBSF or sensory evaluations. The addition of MTO in swine diets improved belly firmness and reduced backfat, and feeding MTO with high levels of vitamin E extended display life without affecting palatability of LM chops.  相似文献   

16.
Crossbred barrows (n = 144; 80 kg) from four farrowing groups were phenotypically selected into fat (FAT) and lean (LEAN) pens using ultrasound. The difference in 10th-rib fat depth between the LEAN and FAT groups was > or =0.5 cm. Within a farrowing group, pigs were assigned to pens (five pigs per pen and eight pens per phenotype) to equalize pen weight and fat depth. Pigs were fed a corn-soybean meal diet containing 19% CP, 1.0% added animal/vegetable fat, and 1.1% lysine (as-fed basis). Half the pens received 10 ppm (as-fed basis) of ractopamine (RAC) during the 28-d finishing phase. At 7-d intervals, live weight and feed disappearance were recorded to calculate ADG, ADFI, and G:F, and 10th-rib fat depth and LM area were ultrasonically measured to calculate fat-free lean and fat and muscle accretion rates. During the first 7 d on feed, LEAN pigs fed RAC gained less (P < 0.05) than FAT pigs fed RAC or LEAN and FAT pigs fed the control diet (RAC x phenotype; P = 0.02); however, RAC did not (P > 0.25) affect ADG after the second, third, and fourth weeks, or over the entire 28-d feeding period. Although wk-2 and -3 ADG were higher (P < or = 0.03) in LEAN than in FAT pigs, phenotype did not (P = 0.08) affect overall ADG. Dietary RAC decreased (P < or = 0.05) ADFI over the 28-d feeding trial, as well as in wk 2, 3, and 4, but intake was not (P > 0.20) affected by phenotype. Neither RAC nor phenotype affected (P > 0.10) G:F after 7 d on trial; however, RAC improved (P < or = 0.04) wk-3, wk-4, and overall G:F. Lean pigs were more efficient (P < or = 0.05) in wk 2 and 3 and over the duration of the trial than FAT pigs. Ultrasound LM accretion (ULA) was not (P > or = 0.10) affected by RAC; however, LEAN pigs had greater (P < or = 0.02) ULA in wk 2 and 4 than FAT pigs. Although fat depth was lower (P < 0.01) in RAC-fed pigs than pigs fed the control diet, ultrasound fat accretion rate indicated that RAC-pigs deposited less (P = 0.04) fat only during wk 4. In addition, calculated fat-free lean (using ultrasound body fat, ULA, and BW) was increased (P < 0.05) in RAC pigs after 3 and 4 wk of supplementation. In conclusion, RAC enhanced the performance of finishing swine through decreased ADFI and increased G:F, whereas carcass lean was enhanced through decreases in carcass fat and increases in carcass muscling.  相似文献   

17.
Pea chips are produced as a by-product when field peas are processed to produce split peas for human consumption. The objective of this experiment was to test the hypothesis that inclusion of pea chips in diets fed to finishing pigs does not negatively influence pig growth performance, carcass composition, and the palatability of pork. A total of 24 barrows (initial BW: 58.0 ± 6.6 kg) were allotted to 1 of 4 treatments and fed early finishing diets for 35 d and late finishing diets for 35 d. A corn-soybean meal (SBM) control diet and 3 diets containing pea chips were formulated for each phase. Pea chips replaced 33.3, 66.6, or 100% of the SBM in the control diet. Pigs were housed individually, and all pigs were slaughtered at the conclusion of the experiment. Overall, there were no differences (P > 0.11) in final BW, ADFI, and G:F of pigs among treatments, but there was a quadratic response in ADG (P = 0.04), with the smallest value observed in pigs fed the control diet. Dressing percentage linearly decreased (P = 0.04) as pea chips replaced SBM in diets, but there were no differences (P > 0.20) among treatments in HCW, LM area, 10th-rib backfat, lean meat percentage, and marbling. Likewise, pH in loin and ham, drip loss, and purge loss were not influenced (P > 0.13) by treatment. However, there was a quadratic response (P = 0.08) in 24-h pH in the shoulder, with the smallest value present in pigs fed the diet, in which 66.6% of the SBM was replaced by pea chips. Subjective LM color and Japanese color score standard were reduced (quadratic, P = 0.03 and 0.05, respectively) and LM b* values and hue angle were increased (quadratic, P = 0.09 and 0.10, respectively) when pea chips replaced SBM in the diets. Ham L* (quadratic, P = 0.04), a* (linear, P = 0.02), b* (quadratic, P = 0.07), color saturation (linear, P = 0.02), and hue angle (quadratic, P = 0.05) were increased when pea chips replaced SBM. However, there were no differences (P > 0.16) in shoulder and fat color. Moreover, cook loss percentage, shear force, juiciness, and pork flavor of pork chops were not different (P > 0.10) among treatments, but tenderness of pork chops linearly decreased (P = 0.04) as SBM replaced pea chips. It is concluded that all the SBM in diets fed to growing-finishing pigs may be replaced by pea chips without negatively influencing growth performance or carcass composition. However, pigs fed pea chips will have pork chops and hams that are lighter, and chops may be less tender if pigs are fed pea chips rather than corn and SBM.  相似文献   

18.
A total of 400 barrows from Dekalb EB and 83 terminal sires mated to 43 and 45 maternal lines were used to evaluate the effects of dietary ractopamine (RAC; Paylean, Elanco Animal Health, Greenfield, IN) concentrations (0, 5, 10, or 20 ppm; as-fed basis) and feeding durations (6 to 34 d) on growth, efficiency, carcass, and meat quality characteristics of finishing pigs. Barrows were weighed and sorted into five weight blocks, each block consisting of 16 pens (five pigs per pen). Weight blocks were allocated to feeding duration treatments and assigned consecutively by weight from lightest to heaviest to represent 34, 27, 20, 13, and 6 d on test, respectively. The lightest and heaviest blocks averaged 79.8 and 103.8 kg, respectively, at the start of the test. Within a weight block, pens (four per treatment) were randomly assigned to one of four dietary concentrations of RAC in a basal diet containing 18.5% CP and 1.13% lysine. The experiment-wide target slaughter weight was 109 kg, and pigs and feeders were weighed weekly. Weight blocks (80 barrows per block) were slaughtered at a commercial packing plant after 6, 13, 20, 27, or 34 d on test. Overall, RAC supplementation improved (P < 0.05) ADG; however, ADG was not different (P > 0.08) from controls for pigs fed 5, 10, and 20 ppm RAC for 27, 34, and 6 d, respectively. During each feeding period, RAC-fed pigs had improved (P < 0.05) G:F, and, after 20, 27, and 34 d on test, pigs fed 20 ppm RAC had greater (P < 0.05) G:F compared with those fed 0 or 5 ppm RAC. Hot carcass weight was increased (P < 0.05) by RAC feeding after 13 and 27 d of feeding, and by feeding 10 and 20 ppm RAC after 20 d of feeding. After 34 d, pigs fed 20 ppm RAC had heavier (P < 0.05) hot carcass weight than pigs fed 10 ppm RAC. Fat-free lean estimates and the 10th-rib LM area were increased (P < 0.05) by feeding 10 and 20 ppm RAC after 27 d, and by feeding 20 ppm RAC after 34 d compared with controls. Japanese and American color scores, as well as L*, a*, and b* values of the LM, were not affected (P > 0.11) by 5 and 10 ppm RAC compared with controls during each feeding period. Visual marbling score for the LM was decreased (P < 0.05) when RAC was fed at 10 and 20 ppm compared with 0 ppm RAC when fed for 34 d. Dietary RAC improved growth performance at all feeding durations, whereas carcass composition was improved at longer feeding durations. In addition, 5 and 10 ppm RAC did not affect objective and subjective measures of pork quality.  相似文献   

19.
The objectives of this study were to examine the effects of ractopamine (RAC) on the behavior and physiology of pigs during handling and transport. Twenty-four groups of three gilts were randomly assigned to one of two treatments 4 wk before slaughter: finishing feed plus RAC (10 ppm) or finishing feed alone. Pigs were housed in the same building in adjacent pens with fully slatted floors and ad libitum access to feed and water. Behavioral time budgets were determined in six pens per treatment over a single 24-h period during each week. Behavioral responses of these pigs to routine handling and weighing were determined at the start of the trial and at the end of each week. Heart-rate responses to unfamiliar human presence were measured in all pigs and blood samples were taken from a single pig in each pen on different days during wk 4. At the end of wk 4, all pigs were transported for 22 min to processing. Heart rate was recorded from at least one pig per pen during transport and a postmortem blood sample was taken from those pigs that were previously sampled. During wk 1 and 2, RAC pigs spent more time active (P < 0.05), more time alert (P < 0.05), and less time lying in lateral recumbency (P < 0.05). They also spent more time at the feeder in wk 1 (P < 0.05). At the start of the trial, there were no differences in behavioral responses to handling. However, over each of the next 4 wk, fewer RAC pigs exited the home pen voluntarily, they took longer to remove from the home pen, longer to handle into the weighing scale and needed more pats, slaps, and pushes from the handler to enter the scales. At the end of wk 4, RAC pigs had higher heart rates in the presence of an unfamiliar human (P < 0.05) and during transport (P < 0.05), but not during loading and unloading. Also at the end of wk 4, RAC pigs had higher circulating catecholamine concentrations (P < 0.05) than control pigs. Circulating cortisol concentrations and cortisol responses to transport did not differ between treatments. The results show that ractopamine affected behavior, heart rate, and catecholamine profile of finishing pigs and made them more difficult to handle and potentially more susceptible to handling and transport stress.  相似文献   

20.
The objective of this study was to determine effects of electrical stimulation (ES) on muscle quality and sensory traits of 12 Hampshire x Rambouillet callipyge lambs. One side of each carcass was randomly assigned to an ES treatment of 550 V and 60 Hz of electricity for 2 s on and 2 s off 15 times. The other side was a nonstimulated control (NES). Heated calpastatin, sarcomere length, myofibrillar fragmentation index (MFI), Warner-Bratzler shear (WBS), and trained sensory panel values were measured on the semitendinosus (ST), semimembranosus (SM), longissimus (ML), supraspinatus (SP), and triceps brachii (TB) muscles. Electrically stimulating the carcass sides induced a more rapid (P = .001) pH decline in the longissimus muscle, and ES sides had a brighter (P = .001) red color of loineye than nonstimulated sides. At d 14 of storage (2 degrees C), the TB had the highest (P < .05) MFI value, indicating more protein degradation, and the ST and ML muscles had the lowest MFI (P = .008). Regardless of ES treatment, SM and ML had the highest (P < .05) WBS values. The ST muscle had higher (P < .05) WBS values than the SP but did not differ (P > .05) from the TB muscle. Electrical stimulation had no effect on WBS or any trained sensory panel values (P > .05). The percentage of loin chops rated slightly tender or better was improved 30 to 34% by electrical stimulation (P < .05). The ML muscle was scored lower (P < .05) in sustained juiciness compared with the SM, SP, and TB but did not differ (P > .05) from the ST muscle. The SM and ML muscles were rated lower (P < .05) in initial and sustained tenderness scores than other muscles. Tenderness scores were higher (P < .05) for the TB than for the SP but did not differ (P > .05) from the ST muscle. Electrically stimulating callipyge carcasses improves the tenderness of loin chops by increasing the percentage of chops rated from slightly tough to slightly tender.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号