首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two studies were conducted to evaluate the availability of dietary Cu offered to growing beef cattle consuming molasses-based supplements. In Exp. 1, 24 Braford heifers were assigned randomly to bahiagrass (Paspalum notatum) pastures (two heifers/pasture). Heifers were provided 1.5 kg of TDN and 0.3 kg of supplemental CP/heifer daily using a molasses-cottonseed meal slurry. Three treatments were randomly assigned to pastures (four pastures/treatment), providing 100 mg of supplemental Cu daily in the form of either CuSO4 (inorganic Cu) or organic-Cu. A third treatment offered no supplemental Cu (negative control). Heifer BW was collected at the start and end of the study. Jugular blood and liver samples were collected on d 0, 29, 56, and 84. In Exp. 2, 24 Brahman-crossbred steers were fed the same molasses-cottonseed meal supplement at the same rates used in Exp. 1. Steers were housed in individual pens (15 m2) with free-choice access to stargrass (Cynodon spp.) hay. Four Cu treatments were assigned to individual steers (six pens/treatment) providing 1) 10 ppm of Cu from an organic source; 2) 10 ppm Cu from Tri-basic Cu chloride (TBCC); 3) 30 ppm of Cu from TBCC; or 4) 30 ppm of Cu, a 50:50 ratio of TBCC and organic Cu. Body weights and jugular blood and liver samples were collected on d 0, 24, 48, and 72. In Exp. 1, liver Cu concentrations did not differ between heifers supplemented with inorganic and organic Cu. Each source resulted in increased (P < 0.05) liver Cu concentrations compared with the unsupplemented control. Plasma ceruloplasmin concentrations were higher (P < 0.05) for Cu-supplemented heifers, independent of Cu source. Heifer ADG tended (P = 0.11) to increase with Cu supplementation compared with the unsupplemented control. In Exp. 2, liver Cu was greater (P < 0.05) on d 24, 48, and 72 for steers consuming 30 vs. 10 ppm of Cu. Steers supplemented with organic Cu had lower DMI than steers supplemented with 10 or 30 ppm of TBCC. These data suggest that the inorganic and organic Cu sources evaluated in these studies were of similar availability when offered in molasses supplements. A dietary Cu concentration greater than 10 ppm might be necessary to ensure absorption in beef cattle fed molasses-based supplements.  相似文献   

2.
The objective of this study was to investigate the effect of supplemental tribasic copper chloride (Cu(2)(OH(3))Cl; TBCC) vs. Cu sulfate (CuSO(4)) on Cu status and voluntary forage DMI in growing heifers. Two 90-d experiments were conducted using 48 non-pregnant, crossbred heifers (24 heifers/experiment; 355 +/- 10.7 and 309 +/- 9.9 kg for Exp. 1 and 2, respectively). In each experiment, 3 supplemental Cu treatments were randomly allocated to heifers in individual pens consisting of (1) 100 mg of Cu/d from CuSO(4), (2) 100 mg of Cu/d from TBCC, or (3) 0 mg of Cu/d. The 2 experiments differed by the form of supplement used to deliver the Cu treatments (corn- vs. molasses-based supplements for Exp. 1 and 2, respectively). Supplements were formulated and fed to provide equivalent amounts of CP and TDN daily but differed in their concentration of the Cu antagonists, Mo (0.70 vs. 1.44 mg/kg), Fe (113 vs. 189 mg/kg), and S (0.18 vs. 0.37%) for corn- and molasses-based supplements, respectively. All heifers were provided free-choice access to ground stargrass (Cynodon spp.) hay. Jugular blood and liver biopsy samples were collected on d 0, 30, 60, and 90 of each experiment. Heifer BW was collected on d 0 and 90. Heifer ADG was not affected by Cu treatment (average = 0.22 +/- 0.11 and 0.44 +/- 0.05 kg for Exp. 1 and 2, respectively; P > 0.20). In Exp. 1, heifers provided supplemental Cu, independent of source, had greater (P < 0.05) liver Cu concentrations on d 60 and 90 compared with heifers provided no supplemental Cu. In Exp. 2, average liver Cu concentrations were greater (P = 0.04) for heifers receiving supplemental Cu compared with heifers receiving no Cu; however, all treatments experienced a decrease in liver Cu concentration over the 90-d treatment period. Plasma ceruloplasmin concentrations did not differ in Exp. 1 (P = 0.83) but were greater (P = 0.04) in Exp. 2 for heifers receiving supplemental Cu compared with heifers receiving no Cu. In Exp. 1, voluntary forage DMI was greater (P < 0.05) for heifers provided supplemental Cu, independent of source, compared with heifers provided no Cu. In contrast, voluntary forage DMI was not affected (P > 0.10) by Cu supplementation in Exp. 2. These data imply that CuSO(4) and TBCC are of similar availability when offered to growing beef heifers in both corn- and molasses-based supplements. However, corn- and molasses-based supplements appear to affect Cu metabolism differently. These impacts may affect voluntary forage DMI in growing beef heifers.  相似文献   

3.
Three experiments were conducted to evaluate effects of supplemental protein vs energy level on dormant forage intake and utilization. In Exp. 1, 16 ruminally cannulated steers were blocked by weight (avg wt = 242 kg) and assigned randomly to a negative control or to one of three isocaloric supplement treatments fed at .4% BW: 1) control, no supplement (NS); 2) 12% CP, low protein (LP); 3) 28% CP, moderate protein (MP); 4) 41% CP, high protein (HP). In Exp. 2 and 3, 16 ruminally cannulated steers were blocked by weight (avg wt = 332 kg, Exp. 2; 401 kg, Exp. 3) and assigned randomly to a 2 x 2 factorial arrangement of treatments. The treatments contrasted low (LP) and high (HP) levels of supplemental protein (.66 g CP/kg BW vs 1.32 g CP/kg BW) with low (LE) and high (HE) levels of supplemental ME (9.2 kcal/kg BW vs 18.4 kcal/kg BW). In Exp. 1, forage DMI as well as ruminal DM and indigestible ADF fill at 4 h postfeeding were greater (P less than .10) with the MP and HP steers than with control and LP steers. Total DM digestibility increased (P less than .10) for supplemented steers (35.5% for control vs 47.3 for supplemented steers); however, LP depressed (P less than .10) NDF digestibility. In Exp. 2, forage DMI, indigestible ADF flow and liquid flow were depressed (P less than .10) in LP-HE supplemented steers. In Exp. 3, HP steers had greater (P less than .10) forage DMI, indigestible ADF fill values (4 h postfeeding), liquid volume and tended (P = .11) to have greater ruminal DM fill (4 h postfeeding). In summary, increased levels of supplemental protein increased intake and utilization of dormant tallgrass-prairie forage (less than 3% CP). Increasing supplemental energy without adequate protein availability was associated with depressed intake and digestibility.  相似文献   

4.
Four multicannulated Holstein steers (initial BW 424 +/- 16 kg) were used in a 4 x 4 Latin square to determine the influence of protein supplementation on forage intake, site and extent of digestion, and nutrient flow in steers consuming dormant bluestem-range forage (2.3% CP). Treatments were 1) control, no supplement; 2) 1.8 kg of low-protein supplement, 12.8% CP (Low-CP); 3) 1.8 kg of moderate-protein supplement, 27.1% CP (Mod-CP); and 4) 2.7 kg of dehydrated alfalfa pellets, 17.5% CP (Dehy). The Dehy supplement was fed to provide the same amount of CP/d as Mod-CP, and all supplements provided similar amounts of ME/d. Forage DMI was increased (P less than .05) by feeding Mod-CP and Dehy. Ruminal OM digestibility was 39% greater (P less than .05) for the Mod-CP and Dehy supplementations than for the Low-CP supplementation and control. Ruminal CP digestibility was negative for all treatments, and control (-326%) was less (P less than .05) than supplemented treatments (average -27%). Total tract OM digestibility was greatest (P less than .10) for steers fed Mod-CP and least for control steers; Low-CP and Dehy steers were intermediate. Total tract NDF digestibility tended (P = .15) to be less with Low-CP than with Mod-CP and Dehy. Duodenal N flow was greater (P less than .05) with Mod-CP and Dehy than with Low-CP and control. In summary, supplementation with Mod-CP increased forage intake, digestion, and duodenal N flow compared with Low-CP or control; however, the response was similar when Mod-CP and Dehy supplements were fed to provide equivalent amounts of CP and ME daily.  相似文献   

5.
Two experiments were conducted to evaluate wheat middlings as a supplement for cattle consuming dormant bluestem-range forage. Effects of supplement type and amount were evaluated in Exp. 1, which consisted of feeding supplements of soybean meal:grain sorghum (22:78) or two different amounts of wheat middlings. Sixteen ruminally fistulated steers were blocked by weight (BW = 374 +/- 8.3 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) soybean meal:grain sorghum (SBM/GS) formulated to contain the same CP concentration (21%) and fed to provide a similar energy level (3.5 Mcal of ME/d); 3) a supplement of 100% wheat middlings fed at a low level (LWM); and 4) 100% wheat middlings fed at twice the amount of LWM (7 Mcal of ME/d; HWM). The influence of different supplemental CP concentrations in a wheat middlings-based supplement was evaluated in Exp. 2. Sixteen ruminally fistulated steers were blocked by weight (BW = 422 +/- 8.1 kg) and assigned randomly to the following treatments: 1) control, no supplement (NS); 2) 15% CP; 3) 20% CP; and 4) 25% CP supplements. These supplements consisted of 60% wheat middlings and various ratios of soybean meal and grain sorghum to achieve the desired CP concentration. In Exp. 1, SBM/GS and HWM supplements increased (P less than .10) and LWM tended to increase (P = .16) forage DMI compared with NS. All supplements in Exp. 1 increased (P less than .10) DM digestibility, ruminal DM fill, and ruminal indigestible ADF (IADF) passage rate compared with NS, although the greatest response in fill and passage was observed with HWM. In Exp. 2, forage DMI, DM digestibility, NDF digestibility, ruminal DM and IADF fill, IADF passage rate, and fluid dilution rate were increased (P less than .01) by supplementation. Forage DMI, ruminal IADF passage rate, and fluid dilution rate increased quadratically (P less than .10), and NDF digestibility, ruminal DM and IADF fill increased linearly (P less than .10) with increased supplemental CP concentration. These experiments indicate that wheat middlings performed similarly to a SBM/GS supplement of equal CP concentration, when both were fed to provide a similar amount of energy daily. Additionally, use of poor-quality range forage was enhanced when wheat middlings-based supplements were formulated to contain a CP concentration of 20% or greater.  相似文献   

6.
Five ruminally, duodenally, and ileally cannulated steers (376 +/- 8.1 kg of initial BW) were used in a 5 x 5 Latin square to evaluate effects of cooked molasses block supplementation and inclusion of fermentation extract (Aspergillus oryzae) or brown seaweed meal (Ascophyllum nodosum) on intake, site of digestion, and microbial efficiency. Diets consisted of switchgrass hay (6.0% CP; DM basis) offered ad libitum, free access to water, and one of three molasses blocks (0.341 kg of DM/d; one-half at 0600 and one-half at 1800). Treatments were no block (control), block with no additive (40.5% CP; POS), block plus fermentation extract bolused directly into the rumen via gelatin capsules (2.0 g/d; FS), fermentation extract included in the block (2.0 g/d; FB), and seaweed meal included in the block (10 g/d; SB). Steers were adapted to diets for 14 d followed by a 7-d collection period. Overall treatment effect on hay OM intake tended (8.1 vs. 7.6 +/- 0.5 kg/d; P = 0.14) to increase with block supplementation. Total OM intake (8.4 vs. 7.6 +/- 0.5 kg/d; P = 0.01) increased in steers consuming block compared with control. Apparent and true ruminal OM digestibility increased (P = 0.05) with block consumption. Steers fed SB had greater (P = 0.10) true ruminal OM digestibility compared with steers fed POS (61.0 vs. 57.9 +/- 1.6%). True ruminal CP digestibility increased (P = 0.01) with block supplementation compared with control (37.5 vs. 23.6 +/- 3.7%). Addition of fermentation extract did not affect intake or digestion. Treatments did not alter ruminal pH, total VFA, or individual VFA proportions; however, ruminal ammonia increased (P = 0.01) with block supplementation. In situ disappearance rates of hay DM (3.14 +/- 0.44 %/h), NDF (3.18 +/- 0.47 %/h), and ADF (3.02 +/- 0.57 %/h) were not altered by treatment. Seaweed block increased (P = 0.01) slowly degraded CP fraction compared with POS (39.5 vs. 34.0 +/- 2.07%). Similarly, SB increased (P = 0.01) the extent of CP degradability (74.2 vs. 68.9 +/- 1.81%). No treatment effects (P = 0.24) were observed for microbial efficiency. Block supplementation increased intake, and use of brown seaweed meal seemed to have beneficial effects on forage digestibility in low-quality forage diets.  相似文献   

7.
Two experiments were conducted to determine the effects of supplement type on the rate of gain by heifers grazing bermudagrass and on the intake, apparent total-tract OM digestibility, ruminal fermentation, digesta kinetics, in situ DM digestibility, and forage protein degradation by steers fed prairie hay. In Exp. 1, 45 heifers (284+/-24 kg) grazed a bermudagrass pasture for 91 d in the late summer to determine the effects of no supplement (CON), or one of four individually fed monensin-containing (150 mg/[heifer x d]) supplements (MINCS; 0.1 kg of mineral mix with 0.2 kg [DM] of cottonseed hulls as a carrier/[heifer x d]), a pelleted protein supplement (PROT; 1 kg of DM, 242 g of degradable intake protein [DIP]/[heifer x d]), or high-fiber (HF) and high-grain (HG) (2 kg of DM, 243 and 257 g of DIP, respectively/[heifer x d]) pelleted energy supplements. In Exp. 2, four ruminally cannulated steers (311+/-22 kg) with ad libitum access to low-quality (4% DIP, 73% NDF, 40% ADF) prairie hay were individually fed monensin-containing (200 mg/[steer x d]) treatments consisting of 1) mineral mix + corn (MINCR; 0.1 kg of mineral and 0.4 kg of cracked corn [DM] as a carrier, 19 g of DIP/[steer x d]), 2) PROT (1.4 kg of DM, 335 g of DIP/[steer x d]), 3) HF, or 4) HG (2.9 kg of DM, 340 and 360 g of DIP, respectively/[steer x d]) in a 4 x 4 Latin square with 14-d adaptation and 6-d sampling periods. In Exp. 1, the HF-, HG-, and PROT-supplemented heifers had greater (P < 0.01) rates of gain than CON heifers, and the HF- and HG-supplemented heifers tended (P < 0.11) to gain more weight than those fed PROT. In Exp. 2, steers fed PROT consumed more (P < 0.05) hay OM than HF and HG, or MINCR. Total OM intake was greater (P < 0.01) by supplemented steers than MINCR-fed cattle. Hay OM digestibility was not affected (P = 0.19) by treatment, but total diet OM digestibility was greater (P < 0.01) for HF- and HG- than for MINCR- or PROT-fed steers. The rate of in situ DM digestibility was greater (P < 0.01) for HF, HG, and PROT than for MINCR. Results from these studies indicate that feeding milo- vs fiber-based energy supplements formulated to provide adequate DIP did not result in different forage intake, OM digestibility, or in situ DM digestibility, whereas both increased ADG in heifers consuming low-quality forages compared with unsupplemented or mineral- or protein-supplemented cattle. An adequate DIP:TDN balance decreased the negative associative effects often observed when large quantities of high-starch supplements are fed with low-quality hay.  相似文献   

8.
The objectives of this study were to evaluate the influence of supplemental whole flaxseed level on intake and site and extent of digestion in beef cattle consuming native grass hay. Nine Angus heifers (303 +/- 6.7 kg of BW) fitted with ruminal and duodenal cannulas were used in a triplicated 3 x 3 Latin square. Cattle were given ad libitum access to chopped native grass hay (9.6% CP and 77.5% NDF, OM basis). All animals were randomly allotted to 1 of 3 experimental treatments of hay plus no supplement (control); 0.91 kg/d whole flaxseed (23.0% CP, 36.3% NDF, and 25.5% total fatty acid, OM basis); or 1.82 kg/d whole flaxseed on a DM basis. Supplemental flaxseed tended to decrease (linear, P = 0.06) forage OM intake. However, total OM intake did not differ (P = 0.29) with increasing levels of flaxseed. Total duodenal OM flow increased (linear, P = 0.05) with additional flaxseed in the diet, and no differences (P = 0.29) were observed for microbial OM flow. True ruminal OM disappearance was not affected (P = 0.14) by supplemental flaxseed. Apparent lower tract OM digestibility increased (linear, P = 0.01) with level of whole flaxseed. Apparent total tract OM digestibility was not different (P = 0.41) among treatments. Nitrogen intake increased (linear, P < 0.001) with supplemental flaxseed. In addition, total duodenal N flow tended (P = 0.08) to increase with additional dietary flaxseed. However, true ruminal N digestibility did not differ (P = 0.11) across treatment. Supplemental whole flaxseed did not influence ruminal (P = 0.13) or total tract (P = 0.23) NDF digestibility. Ruminal molar proportion of propionate responded quadratically (P < 0.001) with increasing levels of whole flaxseed. An increase in the duodenal supply of 18:3n-3 (P < 0.001), total unsaturated fatty acids (P < 0.001), and total fatty acids (P < 0.001) was observed with additional dietary whole flaxseed. Apparent postruminal 18:3n-3 disappearance tended to decrease (P = 0.07) as intake of flaxseed increased. Overall, the inclusion of 1.82 kg/d of flaxseed does not appear to negatively influence nutrient digestibility of a forage-based diet and therefore can be used as an effective supplement to increase intestinal supply of key fatty acids important to human health.  相似文献   

9.
Seven cannulated (rumen and duodenal) Angus x Hereford steers (264 +/- 8 kg BW) consuming low-quality forage (5% CP; 61% NDF; 31% ADF) were used to determine the influence of CP degradability and supplementation frequency (SF) on DMI and nutrient digestion. Treatments included an unsupplemented control and degradable intake protein (DIP) or undegradable intake protein (UIP) provided daily, every 3 d, or every 6 d. The DIP treatments (18% UIP) were calculated to provide 100% of the DIP requirement, while the UIP treatments (60% UIP) were provided on an isonitrogenous basis compared with DIP. Forage DMI was not affected by treatment. Total DM and N intake, duodenal N flow, and intestinal N disappearance increased (P < 0.01) with supplementation. Dry matter intake and duodenal N flow responded quadratically (P < 0.04; greatest values on the every-third-day treatments) as SF decreased. However, no differences in N intake or intestinal N disappearance were observed because of CP degradability or SF. Duodenal bacterial N flow and true bacterial N synthesis (g bacterial N/kg of OM truly digested in the rumen) were increased (P < 0.05) with supplementation. Also, duodenal bacterial N flow was greater (P < 0.05) for DIP compared with UIP. Duodenal nonbacterial N flow was increased (P = 0.02) with CP supplementation and for UIP compared with DIP (P < 0.01). Supplemental CP increased (P < 0.01) total tract DM and N digestibility with no difference due to CP degradability or SF. Results suggest CP supplements consisting of 20 to 60% UIP can be effectively used by steers consuming low-quality forage without adversely affecting DMI, nutrient digestibility, or bacterial CP synthesis, even when provided as infrequently as once every 6 d.  相似文献   

10.
A digestion study with 28 yearling heifers (428 +/- 9.9 kg; Exp. 1) and a 2-yr winter grazing trial with 60 crossbred cows (552 +/- 6.9 kg; Exp. 2) were used to determine the effects of level of nonstructural carbohydrate (NSC) supplementation on intake and digestibility of low-quality forage. Treatments were as follows: 1) control, no supplement; 2) 0.32 kg of NSC (1.8 kg/d of soybean hulls and soybean meal; DM basis); 3) 0.64 kg of NSC (1.7 kg/d of wheat middlings; DM basis); and 4) 0.96 kg of NSC (1.7 kg/d of barley and soybean meal; DM basis). Supplements provided 0.34 kg of CP/d and 5.1 Mcal of ME/d. In Exp. 1, heifers were individually fed hay (5.5% CP, DM basis) and their respective supplements in Calan gates for 28 d. Data were analyzed as a completely randomized design. In Exp. 2, cows were individually fed supplement on alternate days, and grazed a single rangeland pasture stocked at 1.8 ha/ animal unit month. Two ruminally cannulated cows were used per treatment to obtain forage extrusa and to measure in situ DM disappearance (DMD) and carboxymethylcellulase (CMCase) activity of particle-associated ruminal microbes. Data were analyzed as a completely randomized design with the effects of treatment, year, and their interaction. In both experiments, Cr2O3 boluses were used to determine fecal output, individual animal was the experimental unit, and contrasts were used to test linear and quadratic effects of NSC level and control vs. supplemented treatments. In Exp. 1, hay and diet DM, NDF, and CP intakes and digestibilities were increased (P < 0.01) by NSC supplementation compared with the control. In Exp. 2, 72-h in situ DMD and CMCase were decreased linearly (P < 0.08) with increasing NSC supplementation. Intake of forage DM, NDF, and CP was decreased linearly (P < 0.01) with increasing NSC supplementation during both years. Supplementation with NSC decreased (P = 0.01) cow BW loss compared with the control in yr 1, whereas in yr 2, cow BW loss was linearly increased (P = 0.03) by increasing NSC supplementation. Supplements containing NSC improved forage digestion and intake when heifers consumed forage deficient in CP relative to energy (digestible OM:CP > 7), but decreased forage digestion and intake when cows grazed forage with adequate CP relative to energy (digestible OM:CP < 7). Forage and supplement digestible OM:CP seemed to be superior predictors of response to supplementation with NSC compared with forage CP levels alone.  相似文献   

11.
Objectives of this research were to evaluate effects of increasing level of barley supplementation on forage intake, digestibility, and ruminal fermentation in beef steers fed medium-quality forage. Four crossbred ruminally cannulated steers (average initial BW = 200 +/- 10 kg) were used in a 4 x 4 Latin square design. Chopped (5 cm) grass hay (10% CP) was offered ad libitum with one of four supplements. Supplements included 0, 0.8, 1.6, or 2.4 kg of barley (DM basis) and were fed in two equal portions at 0700 and 1600. Supplements were fed at levels to provide for equal intake of supplemental protein with the addition of soybean meal. Forage intake (kg and g/kg BW) decreased linearly (P < 0.01), and total intake increased linearly (P < 0.03) with increasing level of barley supplementation. Digestible OM intake (g/kg BW) increased linearly (P < 0.01) with increasing level of barley supplementation; however, the majority of this response was observed with 0.8 kg of barley supplementation. Treatments had only minor effects on ruminal pH, with decreases occurring at 15 h after feeding in steers receiving 2.4 kg of barley supplementation. Total-tract digestibility of DM, OM, NDF, and CP were increased (P < 0.04) with barley supplementation; however, ADF digestibility was decreased by 1.6 and 2.4 kg of barley supplementation compared with controls. Ruminal ammonia concentrations decreased linearly (P < 0.01) at 1 through 15 h after feeding. Total ruminal VFA concentrations were not altered by dietary treatments. Ruminal proportions of acetate and butyrate decreased (P < 0.10) in response to supplementation. Rate, lag, and extent (72 h) of in situ forage degradability were unaffected by treatment. Generally, these data are interpreted to indicate that increasing levels of barley supplementation decrease forage intake, increase DM, OM, and NDF digestibility, and indicate alteration of the ruminal environment and fermentation patterns.  相似文献   

12.
Five steers (491 +/- 21 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental non-protein N (NPN) source and supplementation frequency (SF) on nutrient intake and site of digestion in steers consuming low-quality grass straw (4% CP). Treatments (TRT) included an unsupplemented control and a urea- or biuret-containing supplement placed directly into the rumen daily (D) or every other day (2D) at 0700. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. Daily TRT were supplemented CP at 0.04% of BW/d, whereas the 2D TRT were supplemented at 0.08% of BW every other day. Therefore, all supplemented TRT received the same quantity of supplemental CP over a 2-d period. Forage OM intake was not affected (P > 0.05) by NPN supplementation, NPN source, or SF; however, total OM and N intake were increased (P < 0.01) with CP supplementation. Duodenal flow of N was greater (P = 0.04) with CP supplementation compared with the control. In addition, duodenal bacterial N flow was increased with CP supplementation (P = 0.04) and for biuret compared with urea (P < 0.01). Bacterial efficiency (g bacterial N/kg OM truly digested in the rumen) was greater (P = 0.05) for biuret than for urea. Apparent total-tract N digestibility was increased with NPN supplementation (P < 0.01) but not affected by NPN source or SF. These results suggest that urea or biuret can be used effectively as a supplemental N source by steers consuming low-quality forage.  相似文献   

13.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

14.
Experiments were conducted to determine the effects of increasing supplement protein concentration on performance and forage intake of beef cows and forage utilization of steers consuming stockpiled bermudagrass forage. Bermudagrass pastures were fertilized with 56 kg of N/ha in late August. Grazing was initiated during early November and continued through the end of January each year. Treatments for the cow performance trials were: no supplement or daily equivalents of 0.2, 0.4, and 0.6 g of supplemental protein per kilogram of BW. Supplements were formulated to be isocaloric, fed at the equivalent of 0.91 kg/d, and prorated for 4 d/wk feeding. Varying the concentration of soybean hulls and soybean meal in the supplements created incremental increases in protein. During yr 1, supplemented cows lost less weight and condition compared to unsupplemented animals (P < 0.05). During yr 2, supplemented cows gained more weight (P = 0.06) and lost less condition (P < 0.05) compared to unsupplemented cows. Increasing supplement protein concentration had no affect on cumulative cow weight change or cumulative body condition score change. Forage intake tended to increase (P = 0.13, yr 1 and P = 0.07, yr 2) in supplemented cows. Supplement protein concentration did not alter forage intake. In a digestion trial, four crossbred steers were used in a Latin square design to determine the effects of supplement protein concentration on intake and digestibility of hay harvested from stockpiled bermudagrass pasture. Treatments were no supplement; or 0.23, 0.46, and 0.69 g of supplemental protein per kilogram of BW. Forage intake increased (P < 0.05) 16% and OM intake increased (P < 0.01) 30% in supplemented compared to unsupplemented steers. Diet OM digestibility increased (P = 0.08) 14.5% and total digestible OM intake increased (P < 0.05) 49% in supplemented compared to unsupplemented steers. Supplement protein concentration did not alter forage intake, total digestible OM intake, or apparent digestibility of OM or NDF. During the initial 30 d after first killing frost, beef cows did not respond to supplementation. However, later in the winter, supplementation improved utilization of stockpiled bermudagrass forage.  相似文献   

15.
The objective of this study was to evaluate an interaction between harvest at 0600 (AM) vs. 1800 (PM) with high (HI) or low (LO) ruminal degradability of a protein supplement to change voluntary intake, digestion, or N retention by steers offered switchgrass (Panicum virgatum L.) hay. Black steers (255 +/- 14 kg of BW) were blocked by BW, and then randomly assigned (5 steers each) to AM/HI, PM/HI, AM/LO, or PM/LO treatment groups. Steers were group-housed in covered, outdoor pens with individual feeding gates. After adaptation and standardization, intake was measured for 21 d followed by a digestion trial (5 d of total collection). Steers were offered 767 (LO) or 825 (HI) g/d of supplement to provide 268 g of CP/d. Compared with AM, PM had greater (P = 0.01) concentrations of total nonstructural carbohydrate (TNC, 71 vs. 56 g/kg of DM), and lesser concentrations of NDF (760 vs. 770 g/kg of DM, P = 0.02), ADF (417 vs. 427 g/kg of DM, P = 0.02), and CP (55.9 vs. 58.6 g/ kg of DM, P = 0.07). Protein fractions A, B(2), and B(3) were similar for AM and PM, but HI contained more (P < 0.02) A (694 vs. 296 g/kg of protein) and less B(2) (174 vs. 554 g/kg of protein) fraction than LO. Harvest interacted with supplement to increase (P = 0.07) ad libitum digestible DMI for steers offered PM/HI (11.4 g/kg of BW daily) compared with steers offered PM/LO (10.2 g/kg of BW daily), but there was no difference for steers offered AM/LO or AM/HI (10.7 g/kg of BW). Apparent digestibilities of DM (594 vs. 571 g/kg of intake), NDF (591 vs. 562 g/kg of intake), ADF (585 vs. 566 g/kg of intake), and N (651 vs. 632 g/kg of intake) were greater (P < 0.04) for PM than for AM. Apparent digestibility of N was greater (P = 0.02) for HI (652 g/ kg of intake) vs. LO (631 g/kg of intake). Interactions between harvest and supplement for apparent digestibilities of NDF (P = 0.09) and ADF (P = 0.03) were due to no change or an increase in digestibility in response to increased ruminal degradability of supplement in steers offered PM harvest, whereas increased ruminal degradability of supplement decreased digestibility of NDF and ADF in steers offered AM harvest. Treatments did not affect hay intake (3.93 kg/d), N retained (15.8 g/d), or plasma urea N (5.25 mM) during ad libitum intake. Greater TNC in PM vs. AM harvest was not sufficient by itself to increase total voluntary DMI, but greater protein degradability interacted with harvest time to increase ruminal fiber digestibility and digestible DMI of beef steers offered PM vs. AM harvest.  相似文献   

16.
Twelve Angus steers (BW 452.8 ± 6.1 kg) fitted with ruminal cannulae were used to determine the impact of trace mineral (TM) source on digestibility, ruminal volatile fatty acid (VFA) composition, ruminal soluble concentrations of Cu, Zn, and Mn, and relative binding strength of trace minerals located in the rumen insoluble digesta fraction. Steers were fed a medium-quality grass hay diet (DM basis: 10.8% CP, 63.1% neutral detergent fiber [NDF], 6.9 mg Cu/kg, 65.5 mg Mn/kg, and 39.4 mg Zn/kg) supplemented with protein for 21 d. Treatments consisted of either sulfate (STM) or hydroxy (HTM) sources (n = 6 steers/treatment) to provide 20, 40, and 60 mg supplemental Cu, Mn, and Zn/kg DM, respectively. Following a 21-d adaptation period, total fecal output was collected for 5 d. Dry matter (P < 0.07) and CP (P < 0.06) digestibility tended to be reduced, and NDF (P < 0.04) and acid detergent fiber (ADF) (P < 0.05) digestibility were reduced in STM- vs. HTM-supplemented steers. On day 6, ruminal fluid was collected at 0, 2, and 4 h post-feeding and analyzed for VFA. There were no treatment x time interactions for VFA. Steers receiving HTM had less (P < 0.02) molar proportions of butyric acid and greater (P < 0.05) total VFA concentrations than STM-supplemented steers. Steers were then fed the same diet without supplemental Cu, Zn, or Mn for 14 d. On day 15 steers received a pulse dose of 20 mg Cu, 40 mg Mn, and 60 mg Zn/kg DM from either STM or HTM (n = 6 steers/treatment). Ruminal samples were obtained at 2-h intervals starting at −4 and ending at 24 h relative to dosing. There was a treatment x time interaction (P < 0.03) for ruminal soluble Cu, Mn, and Zn concentrations. Ruminal soluble mineral concentrations were greater (P < 0.05) for Cu at 4, 6, 8, 10, 12, and 14 h; for Mn at 4 and 6 h; and for Zn at 4, 6, and 8 h post-dosing in STM compared with HTM-supplemented steers. Copper concentrations were greater (P < 0.05) at 12 and 24 h and Zn concentrations in ruminal solid digesta were greater at 24 h in HTM-supplemented steers. Upon dialysis against Tris-EDTA, the percent Zn released from digesta was greater (P < 0.05) at 12 h (P < 0.03) and 24 h (P < 0.05), and the percent Cu released was greater (P < 0.02) at 24 h post-dosing in HTM steers when compared with STM-supplemented steers. Results indicate that Cu and Zn from HTM have low solubility in the rumen and appear to be less tightly bound to ruminal solid digesta than Cu and Zn from STM. The lower ruminal soluble concentrations of Cu and Zn in steers given HTM were associated with greater fiber digestibility.  相似文献   

17.
Tarentaise heifers fitted with a rumen cannula (539 +/- 7.5 and 487 +/- 15.7 kg avg initial BW in Exp. 1 and 2, respectively) were used in two Latin square metabolism experiments having 2 x 2 factorial treatment arrangements to determine the effects of supplementation with Aspergillus oryzae fermentation extract (AO) or laidlomycin propionate (LP) on intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected (IF) or uninfected (FF) tall fescue (Festuca arundinacea) hay diets consumed ad libitum. Heifers were housed in individual stanchions in a metabolism facility with ambient temperatures controlled to range between 26.7 and 32.2 degrees C daily. Total feces and urine were collected for 5 d following a 21-d dietary adaptation period. In situ DM and NDF disappearance and ruminal fermentation characteristics were also determined. In Exp. 1, DMI was 24% greater (P < 0.01) by heifers offered FF than by those offered IF (6.7 vs 5.4 kg/d). Heifers fed 2 g/d AO tended (P = 0.09) to consume 4% more DM than those fed a diet without AO. Degradable DM and NDF fractions of IF were greater (P < 0.01) than those of FF, but AO supplementation did not affect situ disappearance (P > or = 0.42). In Exp. 2, DMI was 18.9% greater (P < 0.01) by heifers offered FF than by those offered IF (6.6 vs 5.5 kg/d). Heifers fed LP (50 mg/d) consumed 10.6% less (P < 0.05) DM than those not fed LP (5.7 vs 6/5 kg/d). Digestibility of NDF tended to be greater (P = 0.08) and digestibility of ADF was greater (P < 0.05) from FF than from IF. Conversely, apparent N absorption (%) was greater (P < 0.05) from IF than from FF. Heifers fed LP had lower (P < 0.05) ADF digestibility than those not fed LP. In situ degradable DM and NDF fractions were greater (P < 0.01) from IF than from FF. Diets supplemented with LP had higher (P < 0.01) indigestible DM and NDF fractions than those without LP. Propionic acid and total VFA concentrations were greater (P < 0.05) from heifers offered FF than from those offered IF and from heifers fed LP than from those not fed LP. Therefore, it appears the major effect of N. coenophialum was a reduction in forage intake and total-tract fiber digestibility in certain situations. Response to the feed additives was similar whether heifers were offered IF or FF and no evidence was apparent that either additive would improve performance substantially by animals consuming low-quality fescue hay diets.  相似文献   

18.
To assess the impact of S fertilization on bahiagrass (Paspalum notatum) quality and Cu metabolism in cattle, two studies were conducted during the summer grazing season (1999 and 2000). Pasture replicates (16.2 ha; n = 2/treatment) received the same fertilizer treatment in each growing season, consisting of 1) 67 kg N/ha from ammonium sulfate (AS), 2) 67 kg N/ha from ammonium nitrate (AN), and 3) control (no fertilizer; C). Forage sampling was conducted at 28-d intervals following fertilization by the collection of whole plants (four samples/pasture) in randomly distributed 1-m2 grazing exclusion cages and analyzed for CP, in vitro organic matter digestibility, S, P, Ca, K, Mg, Na, Fe, Al, Mn, Cu, and Zn. To determine the effect of fertilizer treatment on liver trace mineral concentrations in grazing cattle, random liver tissue samples were collected (n = 12; four/treatment) at the start and end of the study period in 2000. Ammonium sulfate fertilization increased (P < 0.001) forage S concentration in both years. Plant tissue N concentrations were increased by N fertilization, regardless of source, in 2000, but not in 1999. Cows grazing AS pastures had lower (P < 0.05) liver Cu concentrations at the end of the study period in 2000 compared to AN and C. In Exp. 2, 37 Cu-deficient heifers grazing AS fertilized pastures were obtained from the same location and allocated to one of two treatments, consisting of supplements providing 123 mg/d of either inorganic (Cu sulfate; n = 12) or organic (Availa-Cu; n = 15) Cu. Treatments were delivered for 83 d. Liver Cu increased over time in all heifers regardless of treatment; however, heifers supplemented with Availa-Cu tended (P = 0.09) to have higher mean liver Cu concentrations than those receiving Cu sulfate. The results of these studies indicate that AS fertilization of bahiagrass increases forage S concentrations. When provided free-choice access to a complete salt-based trace mineral supplement, cows grazing AS-fertilized pastures had lower liver Cu concentrations than cows grazing pastures fertilized with AN; upon removal from high-S pastures, cattle were able to respond to Cu supplementation.  相似文献   

19.
Because wheat forage contains high concentrations of N, NPN, digestible DM, and water, beef cattle and sheep require an adaptation period before positive BW are seen. The objective of the present experiment was to determine the impact of length of exposure of lambs and steers to wheat forage on BW gains, N retention, and forage digestibility. Sixteen steer calves (average BW = 210 +/- 12 kg) and 20 wether lambs (average BW = 31.5 +/- 2.0 kg) were randomly assigned to 1 of 2 treatment groups. Group 1 grazed a wheat pasture for 120 d during the winter, whereas group 2 was wintered on dormant warm-season grass pastures plus warm-season grass hay and plant-based protein supplements. In the spring (April 5), all lambs and steers grazed wheat pasture for 14 d and were then housed in metabolism stalls and fed freshly harvested wheat forage to determine forage digestibility and N metabolism. Data were analyzed for lambs and steers separately as a completely randomized design, using the individual animal as the experimental unit. Lambs and steers grazing wheat pasture for the first time in the spring had less ADG during the first 14 d than lambs (80 vs. 270 g, respectively; P = 0.01) and steers (1.06 vs. 1.83 kg, respectively; P = 0.09) that had grazed wheat pastures all winter. Digestibility of DM, NDF, and ADF fractions and N metabolism of freshly harvested wheat forage by lambs and steers were not different (P > 0.10) between the 2 treatment groups. Less ADG during the first 14 d of wheat pasture grazing is most likely the result of less DMI by nonadapted animals and is not due to diet digestibility or N metabolism.  相似文献   

20.
Six ruminally fistulated steers (550 kg) and 24 heifers (315 kg) were used to determine the effect of source and amount of ruminal-escape lipid in a supplement on forage intake and digestion. Steers were used in a 6 x 6 Latin square digestion study to evaluate six supplementation treatments: 1) negative control (NC), no supplement; 2) positive control (PC), soybean meal:grain sorghum supplement; 3) low-Megalac (calcium salts of fatty acids; LM) supplement; 4) high-Megalac (HM) supplement; 5) low-Alifet (crystallized natural animal fat, LA) supplement; and 6) high-Alifet (HA) supplement. Supplements were fed at .30% of BW on a DM basis and were isoenergetic within fat levels (high vs low). Steers were fed mature brome hay (7.2% CP) at 1.5% of BW on a DM basis. In the forage intake trial, heifers were assigned randomly to the same supplement treatments. Prairie hay (4.4% CP) was offered at 130% of ad libitum intake. Dry matter and NDF digestibility, ruminal DM fill, indigestible ADF passage rate, and fluid dilution and flow rates were not different (P greater than .10) among treatments. Total VFA concentrations were greater (P less than .01) and acetate-to-propionate ratio (Ac:Pr) was less (P less than .01) in supplemented groups; however, neither source nor level of escape lipid influenced either total VFA or Ac:Pr. Forage intake was greater (P less than .01) for supplemented groups than for the NC. At the high level of fat inclusion, heifers supplemented with Alifet ate slightly more (P less than .05) forage than those supplemented with Megalac.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号