首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
喷孔空化特性和近孔初始射流结构研究   总被引:1,自引:0,他引:1  
设计了透明的有机玻璃喷嘴头部代替原喷油器的压力室和喷孔,在高压共轨试验台架上搭建了喷油器孔内流动和近孔喷雾可视化试验装置,采用高速可控闪光摄影与长距离显微成像技术相结合方法,获得了喷孔内部空化流动和近孔区域初始射流结构形态的发展过程图像。结果表明,所有试验喷孔内均呈现空化流动,空化强度和空化类型与针阀升程和喷油压力有关,喷油压力越高,对应空化初生的喷油时刻越早,并且空化类型在喷孔内出现的频率和时间也不同;喷油前喷孔内存在初始气泡,初始气泡大小不同导致了近孔区域初始射流结构不同。基于大涡模拟(Large eddy simulation,LES)和界面追踪法(Volume of fluid,VOF)多相流模型,根据喷嘴内部几何形状和试验条件,模拟计算喷孔内初始气泡的演变过程以及初始射流结构形态的形成发展过程,试验结果与模拟结果相符。  相似文献   

2.
利用基于光学高通滤波高速摄像法建立的实验系统,研究了加热条件下环境温度、环境压力、气体密度、启喷压力和液体种类等参数对液体射流热不稳定性的影响规律。研究结果表明,液体射流的温度梯度、气体密度、射流速度的增加都是液体射流破碎的强烈失稳因素,对加热条件下液体射流的破碎有显著的促进作用,而液体种类对射流破碎不稳定性的影响是复杂和综合性的。实验结果与理论所给出的液体射流破碎不稳定性的结论是吻合的。  相似文献   

3.
龙新平  姚鑫  杨雪龙 《排灌机械》2012,(2):136-140,152
基于有限体积法和Realizablek—s湍流模型,对多孔喷嘴射流泵内部流场进行数值模拟和分析,并与试验结果进行对比,验证了数值模拟的可靠性.引入涡动力学理论对喉管内部工作流体和被吸流体的混合机理进行分析,研究了喉管内部流向涡和展向涡的分布及其峰值沿流向的变化.结果表明:多孔喷嘴结构能够加快工作流体和被吸流体的混合,提高射流泵的效率;射流泵喉管内的涡结构对工作流体和被吸流体的混合有重要影响,相对流向涡而言,展向涡的强度较大,在喉管内的衰减较为平缓;在射流泵中,对两股流体起主要掺混作用的是流向涡,其强度和衰减的速率决定了混合效率;在涡量一定的情况下,流向涡越强,衰减越快;展向涡结构越小,越能加速喉管中的混合,从而提高泵的效率;喉管内涡的分布表明,位于喷嘴中心的出口可能导致较大的损失,各孔喷嘴出口应优先沿圆周方向布置.  相似文献   

4.
为了研究射流自吸式离心泵的非定常流动特性,选取内置射流喷嘴的自吸式离心泵作为研究对象,在定常数值计算的基础上采用大涡模拟技术对其进行了非定常数值求解,获得了全流场的流动信息,以第4圈收敛后的流场为例,分析了1个周期内不同时刻下的流场变化规律,并监测射流器内监测点的压力脉动,通过快速傅里叶变换(FFT)分析了监测点的频域特性.结果表明:在1个旋转周期内低压区始终位于射流器直线段,高压区位于泵腔内;靠近叶轮进口位置监测点的压力脉动值要小于靠近喷嘴附近的值;设计工况下,各个监测点的压力脉动最强频率在290.06 Hz附近,监测点的数值模拟主频与理论计算所得的转频与叶频略有偏差,压力脉动集中在fn~3fn区间的低频区域.  相似文献   

5.
为了掌握射流泵中工作流体与被吸流体的混合过程,通过基于雷诺平均N-S方程(RANS)的不同双方程湍流模型以及大涡模拟(LES)对射流泵内部三维单相流场进行数值模拟,并将这些模型的计算结果和试验值进行对比,研究了适合射流泵模型的数值方法,并在此基础上,对不同工况下射流泵的内部流动进行了分析.结果表明:采用LES方法对射流泵湍流场进行模拟计算的结果是可靠的,无论是压力比还是效率,LES模型的数值模拟结果均与试验值吻合较好;采用双方程模型预测的喉管段高速核心区在混合过程中能量耗散过快,且没有预测出剪切层的旋涡结构,只有LES方法才能得到合理的旋涡结构,从而能准确地反映出大流量工况时剪切层中工作流体和被吸流体间的动量和能量输运及混合过程,因此LES所预测的射流泵的能量特性比其他湍流模型更接近试验值;流量比越大,工作流体与被吸流体在喉管内的混合位置越靠后,势流核区沿轴向区域越长,均匀混合后的轴向速度越大.  相似文献   

6.
分析了农药混合装置原理,对射流器进行了关键参数的设计,应用Gambit建立射流器三维网格模型,应用Fluent仿真分析了射流口直径、引流口直径、引流口位置对引射流量的影响,提出了射流器结构参数优化设计的方法,为农药射流混合装置的设计提供了理论与方法。  相似文献   

7.
射流泵液固两相流特性三维大涡模拟   总被引:1,自引:0,他引:1  
为研究射流泵的三维液固两相流动特性,应用计算流体动力学(CFD)方法模拟其内部流动特征.采用LES方法和混合模型对射流泵在输送固体颗粒时的三维流场进行了数值模拟,分析了不同的固体颗粒直径、固相初始体积分数及流量比等参数对射流泵液固两相射流的湍射流场及射流泵基本特性的影响.结果表明:在较小的流量比条件下,固液两相流射流泵的压力比和效率与清水时的差别不大;但是在较大的流量比条件下,随着固相初始体积分数的增大,基本性能曲线与效率均下降,且流量比和固相初始体积分数越大时,其下降幅度越大;在固相初始体积分数和固相颗粒直径一定时,流量比越大,充分混合后的含砂体积分数将随之增大.固体颗粒直径越大,则越容易产生局部体积分布集中的现象,易在射流泵内形成堵塞.研究结果为工程实际应用提供了一定的技术支持.  相似文献   

8.
基于CFX数值模拟技术,对射流脉冲三通的内部结构进行设计.首先通过控制变量法,得到了射流三通的稳定振荡区间,其中各关键结构参数的设计范围分别为分流劈距20~45 mm,位差1.1~2.1 mm,侧壁倾角6°~16°.在该结构范围内进行4因素3水平正交试验设计,4组因素分别为位差比、侧壁倾角、劈距比、喷嘴深宽比,3组水平分别为脉冲频率、水头振幅和流量振幅,得到了各因素对性能指标的影响主次顺序和最优模型设计方案.对比优化模型与普通模型的脉冲效果,模拟结果表明优化模型的脉冲频率提高了0~2.5 Hz,水头振幅提高了0~20 kPa.对普通三通和射流三通的脉冲效果进行水力性能试验,其中射流三通的脉冲频率为2.0~4.0 Hz,比模拟结果偏小,水头振幅为17~53 kPa,比模拟结果偏大.与普通三通相比,不同压力条件下,射流三通的单侧出口流量均较大,说明射流三通能够提供稳定的脉冲水流.  相似文献   

9.
在系统层次研究设计的一般规律,以典型机构为实例,讨论结构演变过程,用宏观序参量加以描述,并通过设计机器人动作规划实现序列序参量运算,通过机构设计实例加以验证;用协同学序参量的概念描述行为-结构映射过程,揭示行为-结构映射的内在规律,在此基础上,进一步提出用设计机器人(D-Robot)执行序参量运算实现自动设计和分析,以实现往复运动行为的机构设计为例验证了方法的有效性。提出D-Robot通用模版,并以此为框架编制凸轮机构设计和分析D-Robot动作规划,实现了凸轮机构设计和分析自动设计。输入条件是从动件尖端运动轨迹,输出包括凸轮理论和实际廓线、速度和加速度运动分析、凸轮力分析、动平衡、速度波动及飞轮设计、运动模拟及设计分析报告。  相似文献   

10.
为了提高毛管射流三通的脉冲特性,采用正交设计方法,选取喷嘴宽度、喷嘴深度、控制管宽度、位差、劈距、侧壁夹角6个因素,每个因素取5个水平参数,设计了共25组不同结构的毛管射流三通模型.采用CFX数值模拟技术,对25组三通模型进行模拟计算.以脉冲频率、水头振幅和压差作为试验评价指标,通过极差法分析了结构参数对脉冲特性的影响规律,确定影响各因素的主次顺序;利用方差法确定影响因素显著特性,确定最优结构尺寸模型.经过试验验证,结果表明在进口压力为50~120 kPa下,与4 mm喷嘴宽度射流三通相比,优化模型射流三通脉冲频率提高了3~10次/min,水头振幅(压力)提高了3.2~11.1 kPa,灌水均匀系数提高了0.53%~1.94%,流量偏差率降低了0.81%~5.33%.优化射流三通模型可提供持续稳定脉冲水流,脉冲特性得到较大提高,可有效改善灌水均匀度.  相似文献   

11.
采用RNG k-ε湍流模型,应用流体有限元方法,对错流紊动射流的流动速度场进行了数值模拟研究。结果表明,错流射流内部有分叉现象,射流喷口背风侧的流动出现了分离并形成尾迹区。分析了分又及尾迹区产生的机理。给出了射流与主流速度比等于3和5的速度场。研究结果表明:射流与主气流速度比直接影响流场特性,其值越大射流对主气流的影响越大。  相似文献   

12.
全圆旋转射流喷头设计与水力性能试验   总被引:3,自引:0,他引:3  
为了提高农业节水灌溉效率,提出了一种全圆旋转射流喷头。确定了喷头的CFD数值模拟方法,选取深宽比、位差比、劈距比、侧壁倾角作为试验因素,以射流附壁切换频率和流量振幅为指标,通过正交试验得到了喷头内流道的优化结构。通过高速摄影技术对喷头的射流附壁切换频率进行测定,同时监测喷头的进口流量,结果表明,模拟所得的流量压力关系与试验结果基本一致,相对误差范围为2. 1%~4. 0%,射流附壁切换频率随进口压力的变化趋势基本相同,相对误差范围为7. 7%~22. 2%。当进口压力为0. 15、0. 20、0. 25 MPa时,分别研究了PY210A型摇臂式喷头和射流喷头的水力性能,其中射流喷头的流量较小(1. 19~1. 53 m3/h)、射程较远(13. 0~15. 7 m)、平均喷灌强度较小(2. 85~3. 63 mm/h),转动周期较短(81~105 s),摇臂式喷头的喷洒水量呈马鞍形分布,射程近处和远处的喷洒水量相对较大,射流喷头的喷洒水量呈三角形分布,喷洒水量随射程增加而减小。  相似文献   

13.
为探明不同翼端间隙条件下水翼端部间隙区湍流特征及间隙湍流损失机理,以NACA0009型钝尾缘水翼为研究对象,采用基于SST k-ω湍流模型的超大涡模拟方法,分析了间隙宽度τ(分别为0.1c和0.02c)和翼端倒圆半径r(分别为0,0.5%c和1%c)对间隙区涡系结构、湍流雷诺应力、湍动能和湍流损失的影响。结果表明,不同间隙条件下,间隙流动的雷诺应力分布与间隙涡系分布趋于一致,以法向正应力〈v′v′〉和展向正应力〈w′w′〉为主。大间隙下(τ=0.1c),湍动能和雷诺应力主要分布在间隙分离涡区域,速度梯度〈v〉/z和雷诺应力〈w′w′〉主导间隙分离涡区域的湍动能生成,随翼端倒圆半径增加,间隙湍流损失因间隙区雷诺应力的显著减小而降低;小间隙下(τ=0.02c),间隙端壁边界层在间隙泄漏涡的强卷吸作用下形成诱导涡,间隙区湍流损失主要产生于间隙泄漏涡和诱导涡区域内,随翼端倒圆半径增大而增大,其原因是主导诱导涡湍动能生成的雷诺应力〈v′v′〉与速度梯度〈v〉/y和主导间隙泄漏涡湍动能生成的〈v′w′〉与(〈v〉/z+〈w〉/y)均随翼端倒圆半径增加而增大。  相似文献   

14.
基于大涡模拟数值仿真的喷射泵喉   总被引:1,自引:0,他引:1  
采用弱可压缩流体理论,大涡模拟数值方法,有限体积离散法,贴体坐标变换等理论和方法,研究了喷射泵内部流动状态。通过数值仿真,分别计算了具有不同喉管长度的喷射泵内部流场,并经过分析确定了喷射泵的最优喉管尺寸,计算数据和试验数据对比非常接近,证明了数值仿真结果是合理的、可信的。  相似文献   

15.
采用大涡模拟方法,运用CFD软件CFX对设计工况下的立式导叶自吸泵内部三维不可压缩湍流流场进行数值模拟。得到了其内部流场的压力分布和速度分布情况,对立式导叶自吸泵内部流场的相对速度分布和压力分布进行分析,对模型泵进行性能预测,得到了性能预测曲线,并进行了性能试验,结合预测结果与试验结果进行对比,说明大涡模拟法能够较准确地预测立式导叶自吸泵性能和内部流动特性,为立式导叶自吸泵的设计研究提供参考。  相似文献   

16.
喷筒结构对风送式喷雾机射流动力的影响   总被引:4,自引:0,他引:4  
风送式喷雾机借助风机产生的高速气流在喷口处雾化药液,并将细小的雾滴输送到目标的各个部位,射流动力方程是用来衡量驱动喷雾机的性能标准。通过对风送喷雾机喷筒内的气流速度、射流动量、射流动力等的分析,得出当风送喷雾机鼓入喷筒空气动力相同、气流速度相同时,喷筒结构的包络角和喷筒直径对出口气流速度耦合影响:喷筒出口流速越高,射流动力越大;并通过试验得到了验证,从而为设计合适的喷筒结构和提高喷雾机性能参数提供依据。  相似文献   

17.
为探明摇臂式喷头射流碎裂机理,基于VOF多相流模型理论,采用计算流体动力学(CFD)分析软件Fluent,在200~600 k Pa的中低压条件下,使用几何重建(Geometry reconstruction)方法进行界面跟踪,用瞬态PISO方案求解控制方程,对摇臂式喷头圆射流初级碎裂进行数值模拟,获得了初级碎裂液滴直径和射流碎裂长度。采用高速摄影技术进行实验测量,分析了初级碎裂液滴直径和射流碎裂长度模拟值和实测值的相对误差,讨论了初级碎裂液滴直径和射流碎裂长度随喷嘴直径和工作压力的变化情况。结果表明,摇臂式喷头圆射流初级碎裂包括连续段、过渡段和碎裂段3个典型形态,喷嘴直径和入口压力是影响射流碎裂长度和射流初级碎裂液滴直径的主要因素,射流初级碎裂液滴直径D与喷嘴直径d(d5 mm)有较好的相关性(D=1.634d,R2=0.912),初级碎裂液滴直径的模拟值与实测值相对误差为23.92%,拟合精度良好。给出了射流碎裂长度L与韦伯数We的拟合模型,该模型能较好预测摇臂式喷头在低压条件下射流碎裂长度。  相似文献   

18.
张绍英  吴雪  刘斌  郭华 《农业机械学报》2021,52(12):393-399
现有的射流阀均未对水力空化进行合理规划、有效控制和高效利用,存在破碎能量级低、能量构成欠合理、能量分散、能效低、废能占比高、对硬韧性物料破碎能力差等问题。为了提升高压射流破碎中的破碎能量级和密度,减少无效能产出,提出了一种短程射流共点交汇对撞阀结构方案及其水力空化效应机制。利用CFD进行了流场模拟,依据模拟结果配置了短程射流共点交汇对撞阀的几何和运行参数,通过捕集羟自由基和电镜成像检测了水力空化强化效果和对微晶纤维素的破碎效果,检测结果表明:与直孔阀相比,短程射流共点交汇对撞阀的羟自由基捕获量提高41%,无效动能减少60%~80%,可使微晶纤维壳层破碎并能剥离出直径约15nm的微原纤。短程射流共点交汇对撞破碎明显提升了溃灭冲击能,可作为硬韧性生物材料超微细化的有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号