首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.  相似文献   

2.
The sustainability of plantation forests is closely dependent on soil nitrogen availability in short-rotation forests established on low-fertility soils. Planting an understorey of nitrogen-fixing trees might be an attractive option for maintaining the N fertility of soils. The development of mono-specific stands of Acacia mangium (100A:0E) and Eucalyptus grandis (0A:100E) was compared with mixed-species plantations, where A. mangium was planted in a mixture at a density of 50% of that of E. grandis (50A:100E). N2 fixation by A. mangium was quantified in 100A:0E and 50A:100E at age 18 and 30 months by the 15N natural abundance method and in 50A:100E at age 30 months by the 15N dilution method. The consistency of results obtained by isotopic methods was checked against observations of nodulation, Specific Acetylene Reduction Activity (SARA), as well as the dynamics of N accumulation within both species. The different tree components (leaves, branches, stems, stumps, coarse roots, medium-sized roots and fine roots) were sampled on 5–10 trees per species for each age. Litter fall was assessed up to 30 months after planting and used to estimate fine root mortality. Higher N concentrations in A. mangium tree components than in E. grandis might be a result of N2 fixation. However, no evidence of N transfer from A. mangium to E. grandis was found. SARA values were not significantly different in 100A:0E and 50A:100E but the biomass of nodules was 20–30 times higher in 100A:0E than in 50A:100E. At age 18 months, higher δ15N values found in A. mangium tree components than in E. grandis components prevented reliable estimations of the percentage of N derived from atmospheric fixation (%Ndfa). At age 30 months, %Ndfa estimated by natural abundance and by 15N dilution amounted to 10–20 and 60%, respectively. The amount of N derived from N2 fixation in the standing biomass was estimated at 62 kg N ha−1 in 100A:0E and 3 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 16 kg N ha−1 in 50A:100E by the 15N dilution method. The total amount of atmospheric N2 fixed since planting (including fine root mortality and litter fall) was estimated at 66 kg N ha−1 in 100A:0E and 7 kg N ha−1 in 50A:100E by the 15N natural abundance method, and 31 kg N ha−1 in 50A:100E by the 15N dilution method. The most reliable estimation of N2 fixation was likely to be achieved using the 15N dilution method and sampling the whole plant.  相似文献   

3.
In an alley cropping experiment, a study was carried out on N2 fixation by Gliricidia sepium, nitrogen (N) accumulation by prunings of Gliricidia, Senna siamea (formerly Cassia siamea) and Gmelina arborea, and the N contribution to associated crops of rice and cowpea.Total N accumulated by the hedgerow trees ranged from 297–524 kg N ha–1 on average but varied between tree species and depended on the growing season. Gliricidia sepium accumulated 370 kg N ha–1 on average and more than half of this came from fixation. Senna siamea and Gmelina arborea served as reference trees for estimating N2 fixation. The estimates of N2 fixation using Gmelina as a reference gave higher estimates than those using Senna.Although the dry matter and nitrogen yields of prunings from the hedgerow trees were high, their relative nitrogen contribution to the associated crops was generally low ranging from 5 to 29%. Higher crop yields and nitrogen contribution were observed with Gliricidia sepium prunings. The low N contribution from prunings was attributed to the lack of synchronization between the N released from the prunings and the crop's demand for N.  相似文献   

4.
Theobroma cacao seedlings were grown alone (TCA) or associated with saplings of N2-fixing shade trees Gliricidia sepium and Inga edulis in 200 l of 15N labelled soil within a physical root barrier for studying direct nitrogen transfer between the trees and cacao. Root:shoot partitioning ratio for sapling total N was lower than biomass root:shoot ratio in all species. Sapling total 15N was partitioned between root and shoot in about the same ratio as total N in cacao and inga but in gliricidia much higher proportion of 15N than total N was found in roots. Thus, whole plant harvesting should be used in 15N studies whenever possible. Average percentage of fixed N out of total tree N was 74 and 81% for inga estimated by a yield-independent and yield-dependent method, respectively, and 85% for gliricidia independently of estimation method. Strong isotopic evidence on direct N transfer from trees to cacao was observed in two cases out of ten with both tree species. Direct N transfer was not correlated with mycorrhizal colonisation of either donor or receiver plant roots. Direct N transfer from inga and gliricidia to cacao is conceivable but its prevalence and the transfer pathway via mycorrhizal connections or via reabsorption of N-rich legume root exudates by cacao require further study. Competition in the restricted soil space may also have limited the apparent transfer in this study because the trees accumulated more soil-derived N than cacao in spite of active N2 fixation.  相似文献   

5.
This paper summarizes several studies on N recycling in a tropical silvopastoral system for assessing the ability of the system to increase soil fertility and insure sustainability. We analyzed the N2 fixation pattern of the woody legume component (Gliricidia sepium), estimated the recycling rate of the fixed N in the soil, and measured N outputs in tree pruning and cut grass (Dichanthium aristatum). With this information, we estimated the N balance of the silvopastoral system at the plot scale. The studies were conducted in an 11-year-old silvopastoral plot established by planting G. sepium cuttings at 0.3 m × 2 m spacing in natural grassland. The plot was managed as a cut-and-carry system where all the tree pruning residues (every 2-4 months) and cut grass (every 40-50 days) were removed and animals were excluded. No N fertilizer was applied. Dinitrogen fixation, as estimated by the 15N natural abundance method, ranged from 60-90% of the total N in aboveground tree biomass depending on season. On average, 76% of the N exports from the plot in tree pruning (194 kg [N] ha–1 yr–1) originated from N2 fixation. Grass production averaged 13 Mg ha–1 yr–1 and N export in cut grass was 195 kg [N] ha–1 yr–1. The total N fixed by G. sepium, as estimated from the tree and grass N exports and the increase in soil N content, was about 555 kg [N] ha–1 yr–1. Carbon sequestration averaged 1.9 Mg [C] ha–1 yr–1 and soil organic N in the 0-0.2 m layer increased at a rate of 166 kg [N] ha–1 yr–1, corresponding to 30% of N2 fixation by the tree. Nitrogen released in nodule turnover (10 kg [N] ha–1 yr–1) and litter decomposition (40 kg [N] ha–1 yr–1) contributed slightly to this increase, and most of the recycled N came from the turnover or the activity of other below-ground tree biomass than nodules. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
Nitrogen inputs from biological nitrogen fixation contribute to productivity and sustainability of agroforestry systems but they need to be able to offset export of N when trees are harvested. This study assessed magnitudes of biological nitrogen fixation (natural 15N abundance) and N balance of Acacia mangium woodlots grown in farmer’s fields, and determined if N2 fixation capacity was affected by tree age. Tree biomass, standing litter, understory vegetation and soil samplings were conducted in 15 farmer’s fields growing A. mangium as a form of sequential agroforestry in Claveria, Misamis Oriental, Philippines. The trees corresponded to ages of 4, 6, 8, 10 and 12 years, and were replicated three times. Samples from different plant parts and soils (0–100 cm) were collected and analyzed for δ15N and nutrients. The B-value, needed as a reference of isotopic discrimination when fully reliant on atmospheric N, was generated by growing A. mangium in an N2-free sand culture in the glasshouse. Isotopic discrimination occurring during N2 fixation and metabolic processes indicated variation of δ15N values in the order of nodules > old leaves > young leaves > stems > litterfall and roots of the trees grown in the field, with values ranging from −0.8 to 3.5‰ except nodules which were enriched and significantly different from other plant parts (P < 0.0001). Isotopic discrimination was not affected by tree age (P > 0.05). Plants grown in N free sand culture exhibited the same pattern of isotopic discrimination as plants grown in the field. The estimated B-value for the whole plant of A. mangium was −0.86‰. Mature tree stands of 12 years accumulated up to 1994 kg N ha−1 in aboveground biomass. Average proportion of N derived from N2 fixation of A. mangium was 54% (±22) and was not affected by age (P > 0.05). Average yearly quantities of N2 fixed were 128 kg N ha−1 in above-ground biomass amounting to 1208 kg N fixed ha−1 over 12 years. Harvest of 12-year old trees removed approximately 91% of standing aboveground biomass from the site as timber and fuel wood. The resulting net N balance was +151 kg N ha−1 derived from remaining leaves, twigs, standing litter, and +562 kg N ha−1 when tree roots were included in the calculation. The fast growing A. mangium appears to be a viable fallow option for managing N in these systems. However, other nutrients have to be replaced by using part of the timber and fuel wood sales to compensate for large amounts of nutrient removed in order for the system to be sustainable.  相似文献   

7.
Growth rate, resource partitioning, and several biological traits related to biological N2 fixation for six native or non-native tree species were compared using 15N isotope dilution techniques. The trees were field grown for six years in a semiarid mediterranean-climate region with five to six months a year of absolute drought. Trees were tested as candidates for new agroforestry systems being developed in central Chile to improve soil fertility and land health, while also increasing productivity and profitability for landowners and animal breeders. Four nitrogen-fixing legume trees (NFTs) were tested: Acacia caven (Mol.) Mol.Prosopis alba Griseb., P. chilensis (Mol.) Steuntz. emend. Burk., and Tagasaste ( Chamaecytisus proliferus L.f. subsp. palmensis (Christ.)Kunkel). Additional, non-nitrogen-fixing trees were the slow-growing native Huingán (Schinus polygamus (Cav.) Caberera and the fast-growing European Ash (Fraxinus excelsior L.). Among the NFTs, highly contrasting patterns in biological nitrogen fixation (BNF) were detected, for Ndfa (proportion of N derived from atmosphere), nodule efficiency (NE = gN fixed g–1 nodules), and N content in leaves, stems and roots. Tagasaste produced 2.5–25 times more biomass and fixed 4.5 to 30 times more atmospheric nitrogen than the South American Acacia and Prosopis species. Ndfa reached 250 g plant–1 in Tagastaste, in the sixth year, with NE = maximum 2.68 in the 4th year, and 1.12 in the 6th year. In contrast, Acacia caven had by far the highest NE of the four NFTs – 12.13 in the 4th year and 6.6 in the 6th year. Whereas BNF in Tagasaste peaked in the fourth year, and declined thereafter, BNF in Acacia caven increased steadily over six years. Fraxinus excelsiorand Schinus polygamus had growth rates and biomass accumulation intermediate between that of Tagasaste and the South American NFTs.Results are discussed in relation to agroforestry, restoration of soil fertility, and ecological and economic rehabilitation of damaged ecosystems and landscapes.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

8.
The long-term fate of fertilizer N in forest ecosystems is poorly understood even though such information is critical for designing better forest fertilization practices. We studied the distribution and recovery of 15N (4.934 atom% excess)-labelled fertilizer (applied as urea at 200 kg N ha−1) 10 years after application to a 38–39-year-old Douglas-fir (Pseudotsuga menzeisii (Mirb.) Franco) stand in coastal British Columbia. The urea was applied in the spring (May 1982) or fall (November 1982). Sampling was conducted in October 1992, and we found that after 10 years, there were few differences between the fall and spring fertilizer applications in total N and 15N distribution within the tree and forest ecosystem. On average total fertilizer-N recovery was 59.4%; about 14.5% of the applied-N was recovered in the trees including coarse roots, with foliage containing 41% of the labelled-N recovered in the aboveground tree biomass. Tissue 15N remained mobile and could be transferred to new growth. Soil recovery was 39.8%, which had decreased from 57.0% at a previous 1-year sampling, with an average loss of 3.0% per year from the mineral soil and 3.7% from the litter layers. However, it appears that there was little continuing tree uptake. While short-term effects of fall vs. spring urea application were previously reported, there were no long-term effects on either stand productivity or fertilizer use efficiency, suggesting that if fertilization is properly done, timing of fertilization is not a critical issue in terms of maximizing fertilizer use efficiency for the coastal Douglas-fir forest we studied. Our results also highlight the high capacity of this ecosystem to retain externally applied inorganic N over the long-term, the importance of maximizing nitrogen uptake in the first year, and also of the continuing need to develop new approaches to overcome the generally low efficiency of forest N fertilization.  相似文献   

9.
Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.  相似文献   

10.
The fate of high and equally distributed ammonium and nitrate deposition was followed in a 72-year-old roofed Norway spruce forest at Solling in central Germany by separately adding 15NH4+ and 15NO3 to throughfall water since November 2001. The objective was to quantify the retention of atmospheric ammonium and nitrate in different ecosystem compartments as well as the leaching loss from the forest ecosystem. δ15N excess in tree tissues (needles, twigs, branches and bole woods) decreased with increased tissue age. Clear 15N signals in old tree tissues indicated that the added 15N was not only assimilated to newly produced tree tissues but also retranslocated to old ones. During a period of over 3-year 15N addition, 30% of 15NH4+ and 36% of 15NO3 were found in tree compartments. For both 15N tracers, 15% of added 15N was found in needles, followed by woody tissues (twigs, branches and boles, 7–13%) and live fine roots (7%). The recovery of 15NH4+ and 15NO3 in the live fine roots differed with soil depth. The recovery of 15NH4+ tended to be higher in the live fine roots in the organic layer than in the upper mineral soil. In the live fine roots in deeper soil, the recovery of 15NO3 tended to be higher than that of 15NH4+. Soil retained the largest proportion of 15N, accounting for 71% of 15NH4+ and 42% of 15NO3. Most of 15NH4+ was recovered in the organic layer (65%) and the recovery decreased with soil depth. Conversely, only 8% of 15NO3 was found in the organic layer and 34% of 15NO3 was evenly distributed throughout the mineral soil layers. Nitrate leaching accounted for 3% of 15NH4+ and 19% of 15NO3. Only less than 1% of the both added 15N was leached as DON. These results suggested that trees had a high contribution to the retention of atmospheric N and soil retention capacity determined the loss of atmospheric N by nitrate leaching.  相似文献   

11.
Soil N transformation was investigated using15N dilution method along a slope on a conifer plantation forest. Although there was no significant difference in the net N mineralization rates by laboratory incubation, net nitrification rates increased downslope. Gross N transformation by15N dilution method showed a distinct difference not only on the rates, but also on the main process between the lower and the upper of the slope. Half of minelarized N was immobilized and the other half was left in NH 4 + pool at the upper part of the slope, while all of mineralized N was used for immobilization or nitrification and NH 4 + pool decreased at the lower of the slope. Soil N transformations were classified into two groups: one was shown below 773 m and the other was shown above 782 m. The incubation with nitrification inhibitor showed that nitrification was mainly conducted by autotrophs irrespective of the position of the slope. Microbial biomass and microbial C/N were similar among the sites. However, the gross mineralization rate was higher below 773 m than above 782 m under similar respiration rates. This suggests that the substrate quality may be one of the controlling factors for soil N transformation. Extractable organic C/N was similar to microbial C/N at the lower of the slope. It indicated that the substrate was more decomposable below 773 m. It is considered that soil N transformation is affected by topographical gradient of moisture and nutrient which makes plant growth and decomposition rate different.  相似文献   

12.
Acacia senegal, an important leguminous tree in arid and semi-arid environments, has shown promise as a multipurpose species, including gum production and soil fertility improvement, linked with N2-fixation capabilities. Of particular interest are ontogenetic and edaphic effects on A. senegal performance in natural populations. Our research objectives were to investigate the effect of tree age and site phosphorus conditions on (1) tree N2-fixation and (2) soil N and C dynamics in natural stands of A. senegal var. senegal, Baringo District, in the Rift Valley, Kenya. Sites consisted of A. senegal saplings (9 months) and mature A. senegal trees (7 years) along an edaphic gradient of soil P availability. A single-tree neighborhood approach was employed using a two by two factorial design: site conditions [high and low soil P contents] and tree age class [juvenile and mature]. Soil (N and C pools and fluxes) and plant metrics were quantified. A soil transfer experiment was also employed to confirm age and site effects on soil N mineralization. On the high soil P site, A. senegal had significantly lower foliar (15N levels than neighboring non-leguminous species (Balanites aegyptiaca), while foliar δ15N values in A. senegal on the low P site exhibited no significant difference with our reference plant, B. aegyptiaca. Across P sites, B. aegyptiaca had similar foliar δ15N values. These results indicate that the rate of N2-fixation of A. senegal trees, as determined with foliar 15N natural abundance methodology, increased with increasing soil P availability in these natural populations. However, N2-fixation rates declined with age. Although soil texture and soil CO2 efflux did not differ between sites or across ages, soils under mature A. senegal at the high P site exhibited significantly greater total N content and total C content in comparison to soils at the low P site and under juvenile plants. Furthermore, under mature A. senegal trees, soil N mineralization rates were significantly greater as compared to under saplings. Soil transplants confirmed that soil microbial activity may be stimulated under mature trees as N mineralization rates were 2-3 fold greater compared to under A. senegal saplings. Our findings suggest that tree age and soil P availability are important factors in the nitrogen budget of natural populations of A. senegal, determining N2-fixation rates, and potentially influencing soil total N and C pools and soil mineral N. This study provides information regarding the adaptation of A. senegal under differing edaphic conditions thus increasing accuracy of management support for A. senegal populations as productive agroforests.  相似文献   

13.
Despite the spatial significance of Canada's boreal forest, there is very little known about CH4 and N2O emissions from non-peatlands within it. The primary objective of this project was to study the atmosphere–soil exchange of CH4 and N2O at three sites in the boreal forest of central Saskatchewan. In the summers of 2006 and 2007, CH4 and N2O emissions were measured along transects in three different mature forest stands (aspen, black spruce and jack pine) using a sealed chamber method. At the aspen site, the gross rates of mineralization and nitrification, and the relative contribution of nitrification and denitrification to N2O emissions, were also measured using the 15N isotope dilution technique. Results indicated that the jack pine and black spruce sites were slight sinks of CH4 (−0.123 g CH4–C m−2 yr−1and −0.017 g CH4–C m−2 yr−1 respectively in 2006 and −0.095 g CH4–C m−2 yr−1and 0.045 g CH4–C m−2 yr−1 respectively in 2007), whereas the aspen site was a net source (4.40 g CH4–C m−2 yr−1 in 2006 and 19.60 g CH4–C m−2 yr−1 in 2007). The high CH4 emissions at the aspen site occurred at depressions that were water-filled due to above-average precipitation levels in 2005–2007. All three sites had very low cumulative N2O emissions, ranging from −0.002 to 0.014 g N2O–N m−2 yr−1 in both years. The 15N results indicated that N cycling at the aspen site was very conservative, allowing little N to escape the system as N2O; the emissions that did occur were due primarily to a nitrification-related process.  相似文献   

14.
Lowland evergreen rainforests in southern Chile growing on highly productive soils and accessible sites have been subjected to traditional and industrial logging of valuable timber trees. Old-growth rain forests in this area are characterized by highly conservative N cycles, which results in an efficient N use of ecosystems. We hypothesize that different logging practices, by changing forest structure and species composition, can alter the quantity and quality (i.e. C/N ratio) of litterfall and soil organic matter and soil microbial processes that determine N storage and availability. To test this hypothesis we investigated chemical properties, microbial N transformations, N fluxes and N storage in soils of lowland evergreen rainforests of Chiloé Island after 10 years since industrial selective logging (ISL) and in stands subjected to traditional selective logging (TSL) by landowners in small properties. We compared them to reference unlogged old-growth stands (OG) in the same area. Tree basal area was more reduced in the stands subjected to ISL than to TSL. Litterfall inputs were similar in both logging treatments as in OG stands. This was due to greater biomass of understory species after logging. In TSL understory tree species determined a higher litterfall C/N ratio than ISL. We found higher soil N availability and content of base cations in surface soils of logged forests than in OG. The litter horizon of OG forest had significantly higher rates of non-symbiotic N fixation than logged forests. In the ISL treatment there was a trend toward increasing soil denitrification and significantly higher NO3–N/Nt ratio in spring waters, which led to a stronger δ15N signal in surface and deep soils. We conclude that massive understory occupation by the shade-intolerant native bamboo Chusquea quila in ISL led to enhanced litter quality (lower C/N ratios) relaxing the tightness of the N cycle, which increased soil N availability leading to a higher proportion of nitrate in spring waters and higher gaseous N losses. In contrast, under TSL a higher litterfall C/N ratio slowed decomposition and net N mineralization rates thus reducing the chances for N losses, and enhancing C and N storage in soil. We suggest that sustainable logging practices in these rain forests should be based on lower rates of canopy removal to enhance colonization of the understory by shade-tolerant trees, which are associated with a more efficient N cycle.  相似文献   

15.
Quantitative field measurements of biological nitrogen fixation (BNF) and biomass production by four different understorey pastures in a Pinus radiata-pasture agroforestry system were determined over a period of one year. The trees were two years old at the beginning of this study and the understorey pastures were being cut and removed for silage. The BNF was determined using the 15N dilution technique. Pastures of ryegrass+clover, cocksfoot+clover, phalaris+clover and lucerne were used. Substantial amounts of BNF were found (71 to 230 kg N ha–1 year–1) with lucerne showing the highest N fixation. However, lucerne derived only 71 to 72% of its N from the atmosphere (%Ndfa) during the spring/summer period compared to 83–97% with clovers, thus the net N demand from the soil was substantially higher with lucerne. This caused increased N stress to the trees. Clover in ryegrass+clover pasture fixed more N than the other grass+clover pastures. Although pasture position in relation to trees did not affect annual pasture total DMY and %Ndfa, pastures north of tree row grew better than those in other positions. Trees significantly affected the BNF of legumes and the botanical composition of pastures with highest BNF and legume production occurring in pastures midway between two rows of trees. These results suggest that it would be advantageous to evaluate different legumes and grasses for tolerance of shade and moisture stress in future studies. As the trees studied were only 1.5 to 3 m in height, their effects on BNF, seasonal pasture biomass production and botanical composition are expected to increase with tree dominance in the ecosystem with time. Amounts of N fixed were related to the productivity (i.e. dry matter and N yield) and seasonal persistence of the legumes. The productivity was high in spring and summer and low in autumn and winter.  相似文献   

16.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

17.
The bark ofPteroceltis tatarinowii is a raw material for manufacturing Xuan Paper. The effects of Ca2+ concentrations on the accumulation of mineral elements in the bark, leaf and root ofPteroceltis tatarinowii were studied under controlled conditions. The types of Hoagland nutrient solution with three Ca2+ concentrations levels (200, 400 and 600 μg·g−1) and a control (without Ca2+ were designed to culturePteroceltis tatarinowii. After 6 months, contents of seven mineral elements including Ca, K, Mg, Mn, Zn, Cu and Na in the root, leaf and bark were analyzed. The results indicated that Ca accumulations content in the root, leaf and bark had positively relation with Ca2+ concentrations (200, 400, 600 μg·g−1), and the order of the Ca content in the three components was root>leaf>bark. Ca content in the root treated with 600 μg·g−1 Ca2+ concentrations was 5.5 times as high as that of the control, and about 1.4 times as high as that of the root treated in 200 and 400 μg/g Ca2+ concentrations respectively. On the contrary, K and Mg contents in the root, leaf and bark were negatively related to Ca2+ concentrations, especially in the bark, and their accumulation trend followed the order of leaf>root>bark. K content in the bark treated with 600 μg·g−1 Ca2+ concentrations was 39.3% of that of the control, and was 79.0% and 91.8% of that of the bark treated with 200μg·g−1 and 400μg·g−1 Ca2+ concentrations respectively; Mg content in the bark treated with 600μg·g−1 Ca2+ concentrations was 23.4% of that of the control, and was 27.1% and 35.4% of that of the bark treated with 200 and 400 μg·g−1 Ca2+ concentrations respectively. Compared with the control, the general tendency of Mn, Zn and Cu content decreased with increasing of Ca2+ concentrations and their contents were in the order: root>leaf>bark. Based on the results of this study, the experiment has been useful for providing academic bases in improving the bark quality ofPteroceltis tatarinowii on non-limestone soil. Foundation item: This paper is supported by National Natural Science Foundation of China (No. 39970608). Biography: Fang Shengzun (1963), male, Professor in Stiiviculture, Nanjing Forestry University, Nanjing 210027, P.R. China. Responsible editor: Zhu Hong  相似文献   

18.
The kinetics effects of carbon dioxide enriched atmosphere on carboxylesterase (CarE) activity from Stegobium paniceum and Lasioderma serricorne were comparatively investigated here. The results showed that L. serricorne had significantly greater specific activity of CarE than S. paniceum [0.399 vs. 0.358 mmol (min mg)−1]. Moreover, CarE of L. serricorne expressed a higher affinity (i.e. lower K m value) to the substrate α-naphthyl acetate than S. paniceum (0.1 vs. 0.8 mM). The in vitro kinetics of CarE showed that there were no significant effects of controlled atmosphere on the affinity of carboxylexterase to α-naphthyl acetate for both pests besides increased of V max values. Such result draws attention to the higher tolerance of L. serricorne to CO2-enriched atmosphere and the necessary care required for managing this species with such a control tactic. The information also suggests a potential effect of esterases in mitigating the toxic effect of controlled atmosphere in insect pest species.  相似文献   

19.
To clarify the biosynthetic pathway for syringyl lignans, especially syringyl tetrahydronaphthalene lignans and formation of the C2–C7′ linkage, production of (+)-lyoniresinol (LYR) and its predicted intermediates [syringaresinol (SYR), 5,5′-dimethoxylariciresinol (DMLR), and 5,5′-dimethoxysecoisolariciresinol (DMSLR)] in Lyonia ovalifolia var. elliptica was investigated by means of feeding experiments with radiolabeled precursors. Following individual administration of l-[U-14C]phenylalanine (Phe), [8-14C]sinapyl alcohol (SA), and [8,8′-14C]SYR to excised young shoots of L. ovalifolia and their subsequent metabolism, free [14C]lignans and [14C]lignan glycosides were extracted with methanol from stems and leaves and were divided into ethyl acetate-soluble fractions (lignans) and aqueous fractions (lignan glycosides), respectively. Using a combination of xylanase, cellulase, and β-glucosidase, the glycosides were hydrolyzed to liberate [14C]lignans as aglycones. l-[U-14C]Phe was incorporated into (+)-[14C]SYR [stem 0.38%, 8% enantiomeric excess (e.e.)], (−)-[14C]SYR (leaves 2.75%, 72% e.e.), (+)-[14C]DMLR (stem 0.07%, 18% e.e. and leaves 0.009%, 58% e.e.), (−)-[14C]DMSLR (stem 0.03%, 46% e.e. and leaves 0.05%, 20% e.e.), (+)-[14C]LYR (leaves 0.013%, 22% e.e.) and glycosides of (+)-[14C]LYR (stem 0.036%, 50% e.e.) in 24h. Based on the percent incorporation and enantiomeric composition of the lignans, the biosynthetic pathway of (8R,8′R)-(+)-LYR was proposed as follows: a nonselective dehydrogenative dimerization of sinapyl alcohol yields (±)-SYR, which is reduced with low specificity to give (8R,8′R)-(+)-DMLR. This is cyclized to directly give (+)-LYR as well as reduced again to (8R,8′R)-(−)-DMSLR. Although further transformation of (−)-DMSLR also leads to the formation of (+)-LYR, cyclization could be a main pathway for (+)-LYR biosynthesis. This report was presented at the IAWPS 2005 International Symposium on Wood Science and Technology, Yokohama, November 2005  相似文献   

20.
The effects of 4 years of simulated nitrogen (N) and sulfur (S) depositions on gross N transformations in a boreal forest soil in the Athabasca oil sands region (AOSR) in Alberta, Canada, were investigated using the 15N pool dilution method. Gross NH4+ transformation rates in the organic layer tended to decline (P < 0.10, marginal statistical significance, same below) in the order of control (CK, i.e., no N or S addition), +N (30 kg N ha−1 yr−1), +S (30 kg S ha−1 yr−1), and +NS treatments, with an opposite trend in the mineral soil. Gross NH4+ immobilization rates were generally higher than gross N mineralization rates across the treatments, suggesting that the studied soil still had potential for microbial immobilization of NH4+, even after 4 years of elevated levels of simulated N and S depositions. For both soil layers, N addition tended to increase (P < 0.10) the gross nitrification and NO3 immobilization rates. In contrast, S addition reduced (P < 0.001) and increased (P < 0.001) gross nitrification as well as tended (P < 0.10) to reduce and increase gross NO3 immobilization rates in the organic and mineral soils, respectively. Gross nitrification and gross NO3 immobilization rates were tightly coupled in both soil layers. The combination of rapid NH4+ cycling, negligible net nitrification rates and the small NO3 pool size after 4 years of elevated N and S depositions observed here suggest that the risk of NO3 leaching would be low in the studied boreal forest soil, consistent with N leaching measurements in other concurrent studies at the site that are reported elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号