首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
S-allele identification by PCR analysis in sweet cherry cultivars   总被引:3,自引:0,他引:3  
Gametophytic self‐incompatibility, governed by the S‐locus, operates in sweet cherry. The knowledge of the S‐genotype of sweet cherry cultivars is therefore essential to establish productive orchards by defining compatible combinations. The isolation of sweet cherry S‐R Nases has allowed the use of different molecular techniques to characterize the S‐genotypes of sweet cherry cultivars. Previously, incompatibility group assignment could only be carried out on mature trees through pollination tests. In this work, PCR analysis with primers designed on the conserved sequences of sweet cherry S‐R Nases has been used to characterize the S‐genotype of 71 sweet cherry cultivars, including 26 cultivars whose S‐allele constitution had not been previously described. This approach has allowed the detection of alleles that had not been amplified by PCR before, to identify six putative new S‐alleles, to define three new self‐incompatibility groups and to compile the standards for a PCR‐based S‐allele typing method in sweet cherry.  相似文献   

2.
Summary Protein stylar extracts of 16 cultivars of sweet cherry (Prunus avium), from the 10 different incompatibility groups to which incompatibility alleles have been assigned, were separated on acrylamide gels using isoelectric focusing (IEF) and were stained for ribonuclease activity. When two cultivars from the same incompatibility group were analyzed they gave identical zymograms and the cultivars of the 10 different incompatibility groups gave in all eight distinct zymograms. The ribonuclease polymorphism could be correlated with the reported S allele constitutions of the cultivars. Three ribonuclease bands were identified that each consistently corresponded to one of the six known incompatibility alleles (S 1, S2 and S 6), a fourth band apparently corresponded to S 3 and to the combination of S 4 and S 5, and a fifth band to S 4 and S 5 in other combinations. Thus, it seems that S alleles of cherry have ribonuclease activity and that IEF is useful for distinguishing S allele constitutions. The ribonuclease pattern of Summit, a cultivar of unknown incompatibility group, indicated its incompatibility genotype to be S 1S2, and this was confirmed by controlled pollination. The same band corresponded to S 4 and S 4', the mutant allele in self-compatible cultivars. IEF and ribonuclease staining promise to be useful tools for exploring the incompatibility relationships of cherry cultivars and perhaps of other self-incompatible Prunus crops.  相似文献   

3.
The Latvian and the Swedish sweet cherry (Prunus avium L.) genetic resources collections comprise valuable material for breeding. The collections represent local Latvian and Scandinavian genetic resources: semi-wild samples, landraces, and cultivars developed in local breeding programmes, as well as diverse germplasm from the northern temperate zone. The objective of this investigation was to determine which S 1 –S 6 alleles are most important in the sweet cherry genetic resources collections and to compare the identified allelic and genotypic frequencies in material of different origin. Accessions in the two collections were screened for the presence of the self-incompatibility (S) S 1 to S 6 alleles, using PCR based typing. Significant differences (P < 0.05) between screened collections were found in frequencies of S 4 and S 5 alleles. Analysis of allele combinations identified the high occurrence of selections with the S-genotype S 3 S 6 in both collections. Compared to the S-allele frequencies published for over 250 sweet cherry cultivars from Western and Southern Europe, the Latvian and Swedish germplasm appeared to have a high frequency of the S 6 allele in both collections, and a relatively high frequency of the S 5 allele in Latvian germplasm. This study represents the first comprehensive S-allele screening for the sweet cherry genetic resources collections in Latvia and Sweden. Both sweet cherry collections contain high proportion of accessions adapted to north central European growing conditions, not typical for the majority of the documented sweet cherry genetic resources, which explains differences in certain S-allele occurrence.  相似文献   

4.
Prunus avium is primarily cultivated for its fruit, sweet cherries. However, it is also used to produce high‐quality timber. In a P. avium seed orchard, gametophytic self‐incompatibility is a restriction for free pollen flow and should be considered when establishing basic forest materials. In this study, S‐locus diversity and cross‐incompatibility of wild cherry individuals in clonal banks established for breeding for timber production were investigated. Wild cherry trees (140) with outstanding forest growth habit, collected in northern Spain, grafted and planted in two clonal banks, were genotyped at the S‐locus. The self‐incompatibility S‐locus genes, S‐RNase and SFB, were analysed by PCR. Twenty‐two S‐haplotypes, resulting in 72 different S‐genotypes, were identified. The genotypes were grouped into 33 incompatibility groups and 39 unique genotypes. This initial S‐locus analysis revealed large genetic diversity of wild cherry trees from the Spanish northern deciduous forest, and provides useful information for seed orchard design. Wild P. avium displays significantly more genetic diversity than what is detected in local cultivars, revealing a narrowing of genetic diversity during local domestication.  相似文献   

5.
Self and cross-incompatibility determination by means of fruit and seed set experiments or pollen tube growth observations in the style has been frequently reported to be unclear in pear (Pyrus communis L.). Thus,in order to develop a reliable in vivo method to test pollen-pistil incompatibility in pear, pollen tube performance has been studied along the pistil following self and cross-pollinations. Results show that, while pollen tube growth in the style may be an unclear test, ovule observation at the microscope for the presence of pollen tube in the nucellus is a proper method to test incompatibility in this crop. With this analysis we could identify S-alleles of ‘Williams’ (S1S2) and ‘Coscia’(S3S4), and three of the four possible S-genotypes resulting from the ‘Williams’ × ‘Coscia’ cross, as represented by ‘Butirra Precoz Morettini’ (S1S3), ‘Santa Maria Morettini’ (S2S3)and ‘Tosca’ (S1S4). This result demonstrates that ‘Williams’ and ‘Coscia’ cultivars do not share any allele in common. We also established two new inter-incompatibility groups in pear. Furthermore, the presence of a common allele between ‘Williams’ and ‘Agua de Aranjuez’,and ‘Coscia’ and ‘Agua de Aranjuez’, three apparently unrelated old cultivars, may indicate a narrower genetic base than expected for European pear. This finding together with the fact that 40% of new released cultivars have direct or indirect parental relationship with the cultivars ‘Coscia’ and/or ‘Williams’, anticipates the possibility of new cases of cross-incompatibility for this crop in the future. Both the method described and the determination of the S-genotypes will facilitate the characterisation of self and cross-incompatibility relationships in this species. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
M. Schuster    H. Flachowsky    D. Köhler 《Plant Breeding》2007,126(5):533-540
Sweet cherries are self-incompatible because of a gametophytic self-incompatibility system. S alleles in the style and pollen determine the crossing relationships. Knowledge of the S allele constitution of cultivars is very important for cherry growers and breeders, and recently, molecular methods have been developed to distinguish the S alleles in sweet cherries. The S allele genotypes of 149 sweet cherry cultivars and clones, including 126 not previously genotyped, were determined by using PCR analysis. Thirteen different S alleles in 40 combinations were distinguished and nine new incompatibility groups were documented. Two new S alleles were identified in five local sweet cherry processing cultivars from southwestern Germany using the second intron primers. The sequence of these alleles was determined and compared to all known sequences available in the NCBI database. The sequences obtained showed high similarities to the alleles S 19 and S 22, previously described only in wild cherries, Prunus avium L.  相似文献   

7.
T. Sonneveld    T. P. Robbins    K. R. Tobutt 《Plant Breeding》2006,125(3):305-307
A novel polymerase chain reaction (PCR) approach to determine and confirm the self‐incompatibility (S) genotype of cherries is reported. The method involves PCR amplification with a new pair of consensus primers that immediately flank the first intron of cherry S‐RNases, one of which is fluorescently labelled. Fluorescent amplification products range from 234 to c. 460 bp and can be sized accurately on an automated sequencer. Thirteen S alleles reported in sweet cherry can be distinguished, except for S2 and S7, which have an amplification product of exactly the same size. S13, which is also amplified, gives a microsatellite‐like trace which shows minor intra‐allelic length variation. This method gives fast and accurate results and should be especially useful for medium/high‐throughput genotyping of wild and cultivated cherries.  相似文献   

8.
Apricot (Prunus armeniaca L.) shows gametophytic self-incompatibility controlled by a single locus with several allelic variants. An allele for self-compatibility (SC) and seven alleles for self-incompatibility (S1S7) were described previously. Our experiments were carried out to ascertain whether the number of allelic variants of apricot S-locus was indeed so small. Twenty-seven apricot accessions were analysed for stylar ribonucleases by non-equilibrium pH gradient electrofocusing (NEpHGE) to determine their S-genotype. To validate the results of electrofocusing, the applicability of the S-gene-specific consensus PCR primers designed from sweet cherry sequences was tested. NEpHGE revealed 12 bands associated with distinct S-alleles in newly genotyped cultivars. Cherry consensus primers amplified 11 alleles out from 16 ones, which indicated that these primers could also recognize most of the S-RNase sequences in apricot, and provided an efficient tool to confirm or reject NEpHGE results. By combining the protein and DNA-based methods, complete or partial S-genotyping was achieved for 23 apricot accessions and nine putatively new alleles (provisionally labelled S8S16) were found. Their identity needs to be confirmed by pollination tests or S-allele sequencing. This study provides evidence that similarly to other Prunus species, the S-locus of apricot is more variable than previously believed.  相似文献   

9.
Primers amplifying a range of Prunus S-alleles   总被引:2,自引:1,他引:2  
Although various consensus polymerase chain reaction (PCR) primers have been reported for identifying Prunus S‐alleles, they have been developed from and optimized on a limited set of alleles, which may limit their applicability to a broader allele range. To develop a primer set for use across the genus, degenerate consensus primers were designed from conserved regions of 27 S‐RNase sequences available from five Prunus species. The primers were tested in 15 previously genotyped cultivars of cherry, almond and apricot, representing alleles S1 to S6 in each crop and also Sc in apricot. Comparisons were made with previously published primers tested in the same 15 cultivars under reported reaction conditions. The new primers generated an amplification product for each of the 19 S‐alleles whereas those previously available amplified no more than 14. The primers will be useful for genotyping and genetic studies in cultivars and wild populations.  相似文献   

10.
Self‐incompatibility in Brassicaceae plants is sporophytically controlled by a single multi‐allelic locus (S locus), which contains at least three highly polymorphic genes expressed in the stigma (SLG and SRK) and in the pollen (SCR/SP11). Using polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) analysis with SXG‐specific primer pairs, the S haplotypes of F1 hybrid and open‐pollinated commercial cultivars of Brassica rapa were identified. The number of S haplotypes detected in the F1 hybrid cultivars of Chinese cabbage, komatsuna, pak‐choi, turnip, open‐pollinated cultivars of Chinese cabbage and turnip were 9, 9, 4, 11, 13 and 12, respectively. Nine of them had different PCR‐RFLP profiles from those of the S‐tester lines that determined the SLG sequences. Four SLG sequences in the F1 hybrid cultivars were determined and named S53, S54, S55 and S56, respectively. It is demonstrated that the PCR‐RFLP analysis using specific primer pairs of SLG and SRK is useful for identification of the S haplotypes, in both, S homozygous and S heterozygous plants of B. rapa. The possibility of using this method routinely in breeding programmes, and in the evaluation of F1 hybrid seed purity, is discussed.  相似文献   

11.
The selection of cross-compatible cultivars is essential to ensure fruit set in self-incompatible species like Japanese plum and thus the S-genotype must be determined in order to establish incompatibility groups. In this study an improved Japanese plum S-genotyping method, based in polymerase chain reaction and capillary electrophoresis detection of intron polymorphisms of S-locus genes, S-RNase and SFB, has been assayed and validated in a wide sample of cultivars. This method allows a more precise determination of amplified fragment sizes and therefore a better differentiation of self-incompatibility alleles. The assayed methodology was proven effective in the detection of 13 different S-alleles of S-RNases and SFBs and was used to S-genotype 105 Japanese plum cultivars, 32 of which are described by first time in this work. Analysed cultivars were assigned into 11 incompatibility groups and two new incompatibility groups (XX and XXI) were identified, increasing to 21 the number of incompatibility groups described in this crop.  相似文献   

12.
The pear cultivar ‘Osa-Nijisseiki’ (S2Ssm 4; sm = stylar-part mutant) has been used as a parent to breed self-compatible cultivars that produce excellent fruits. However, determination of the self-compatibility of ‘Osa-Nijisseiki’ offspring requires a lot of time, 6 years or more, by conventional cross breeding. We have designed a rapid reliable method for the identification of self-compatible varieties of ‘Osa-Nijisseiki’ offspring based on the polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) with S-allele specific restriction endonucleases. By using this method, 8 self-compatible varieties were selected among 16 selections resulting from a cross between the self-compatible cultivar ‘Osa-Nijisseiki’ (S2Ssm 4) and the self-incompatible cultivars ‘Niitaka’ (S3S9), ‘Whasan’ (S3S5), ‘Chuwhangbae’ (S4S6). The S-genotypes of 16 ‘Osa-Nijisseiki’ offsprings were also determined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Stylar proteins were extracted from parents and seedlings of six progenies of cherry (Prunus avium), separated using isoelectric focusing, and the gels stained for ribonuclease activity. The zymogram of each plant showed two main ribonuclease bands in the region pI 8.3 to 9.6. Progenies from crosses of parents with one band in common segregated into just two classes, whereas progenies from crosses of parents with no common bands segregated into four classes, the two types of segregation corresponding to those expected from semi-compatible and fully-compatible crosses respectively. This behaviour was consistent either with the ribonuclease locus being tightly linked with the self-incompatibility, S, locus, or else with the S locus coding for the ribonuclease variants. Evidence favouring the latter hypothesis is discussed. An apparently anomalous segregation led us to assign to ‘Bradbourne Black’ a genotype different from that previously reported, and analysis of some other cultivars in the same incompatibility group, Group VII, led us to conclude the genotype of this group is S3S5, and not S4S5 as previously reported. Correspondingly, we suggest the genotype of Group V is S4S5, and not S3S5. Five new S alleles, S7, S8, S9, S10 and S11 were proposed in parental cultivars and selections that had not previously been assigned a genotype. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
self-(in)compatibility almond genotypes: A review   总被引:1,自引:0,他引:1  
To compile self-(in)compatibility almond genotypes, a review of 133 commercial cultivars of wide geographical origin was made. The information gathered from own and mainly published work will be useful for both grower's cultivar choice when planting and for breeder's cross design when planning. The almond S genotypes compiled were identified using five different methods: biological (pollination tests in the field and in the laboratory) and molecular (RNases, PCR and sequencing). In most cases, genotypes were assigned after combining more than one technique. Cultivars were classified into three categories: self-incompatible (99), self-compatible (16) and doubtful self-incompatible (18). The database is divided in 9 fields (name, origin, parentage, obtention year (crossing, selection or release), S genotype, technique used, reference, consensus genotype, and cross incompatibility group). A study of the 27 S alleles already identified and their geographical distribution within the cultivated almond is also presented. The study was divided into cultivars of known and unknown parentage and the distribution of S alleles frequencies was uneven among the 133 cultivars. S allele frequencies are related to geographical origin. Some alleles (S 1, S 5, S 7 and S 8) are more frequently observed than the others among cultivars of both known and unknown parentage. In the cultivated almond, the S f allele is only found in the Puglia region, Italy. The S f frequency is three times higher in cultivars released from breeding programmes than in cultivars selected by growers. From the 351 resulting possible genotypes by combination of the 27 S alleles identified only 20 CIG (0-XIX) have been established, which represents a small fraction of the whole genetic diversity of this polymorphic gene in almond.  相似文献   

15.
Summary Certain parent-progeny crosses were studied to determine whether several S loci acted independently or epistatically to produce incompatibility in garden chrysanthemums, Chrysanthemum morifolium Ramat. The ratios of compatible: incompatible crosses with the original parent, as the pollen parent, were nearly 1:3, 1:1, and 1:1 for the I1, backcross (BC), and BCF2 generations, respectively. In particular, crosses between each progeny and the original parent showed that the number of compatible crosses was much higher than expected if each S locus acted independently. Therefore, interaction must have existed among pollen S alleles from different S loci. This information was used to demonstrate a method by which garden chrysanthemums could be inbred by sib mating in successive generations.Scientific Journal Series Paper Number 13,001 of the Minnesota Agricultural Experiment Station.  相似文献   

16.
To clarify incompatibility relationships among almond cultivars, 35 were analysed for stylar ribonucleases, which have previously been shown to correlate with incompatibility S alleles. Stylar proteins were extracted and separated electrophoretically and the zymograms compared with ladders of ribonucleases corresponding to the 12 S alleles previously reported. Sixteen cultivars showed a band corresponding to two of the known ribonucleases, 17 showed one known ribonuclease and one ‘new’ band, and two showed two new bands. Twelve new ribonucleases were detected; 11 were attributed to new S alleles (S13 to S23) and a mutant form of S7 was attributed to S7A. Genotypes were proposed for nine cultivars of five incompatibility groups that had not been genotyped previously, VII, X, XI, XII and XIII. Twenty‐four cultivars of unknown incompatibility relationships were provisionally genotyped: six of these could be assigned to existing groups and two new groups were established, XIV and XV, along with group O of cultivars with unique genotypes. Test crosses confirmed that eight pairs of cultivars showing similar zymograms were indeed cross‐incompatible, including the two representatives of each of the two new groups. Virtually all self‐incompatible cultivars of known genotype are listed in a table. The data should be useful for planning cultivar combinations for orchards and for designing crosses for breeding programmes.  相似文献   

17.
Proteins were extracted from styles of 29 self-incompatible cultivars of almond and separated using non-equilibrium pH gradient electro-focusing, and the gels were stained for ribonuclease activity. Mutually incompatible cultivars had similar banding patterns and, for the 24 cultivars already genotyped in France or California, the bands correlated well with the reported alleles. The band corresponding to S1 of the French labelling system was indistinguishable from that corresponding to Sb of the Californian labelling system, and a controlled cross confirmed that these alleles are identical. The band corresponding to the Californian Sa was distinct from the bands corresponding to French alleles and, to harmonise the allele labels, it was redesignated S5. The genotypes of five uncharacterised self-incompatible cultivars were inferred from zymograms as follows: ‘Desmayo Largueta’ and ‘Glorieta’, S1S5, ‘Masbovera’, S1S9, ‘Tarragones’, S2S9, and ‘Tokyo’, S6S7. The alleles designated S6 and S9 have not previously been reported. Nine self-compatible cultivars or selections were analysed, and each showed a band corresponding to an incompatibility allele as well as a common band; however, the correspondence of this common band to Sf, the allele for self-compatibility, is unproven. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Incompatibility and resistance to woolly apple aphid in apple   总被引:1,自引:0,他引:1  
The study investigated the reported linkage of the locus for resistance to woolly apple aphid with the locus for incompatibility. Apple seedlings from the cross ‘Northern Spy’(heterozygous for resistance) בTotem’(susceptible) were scored for resistance, and for incompatibility genotype, by analysis of stylar ribonucleases, and for Got‐1, the isoenzyme marker for incompatibility. Cosegregation analysis provided no evidence that the loci for resistance and incompatibility are linked. Two rootstock cultivars,‘M9’and ‘Merton 789′, which in early work had been reported to give poor set in crosses with ‘Northern Spy’, were found to have the same incompatibility genotype as ‘Northern Spy’, namely S1S3.‘M4’and ‘Irish Peach’, two other cultivars that had given poor set when crossed on to ‘Northern Spy’, appeared to be homozygous at the incompatibility locus and to have the genotypes S3S3 and S1S1, respectively.  相似文献   

19.
The stylar products of the S‐locus for the gametophytic self‐incompatibility (GSI) system in the Rosaceae are ribonucleases (S‐RNases). Recently, sequences for 13 pear S‐RNase alleles have been published and named following a letter–symbol nomenclature (Sa to Sd and Sh to Sp). To establish the correspondence between these sequences and the self‐incompatibility alleles we have described previously (S1 to S5), we have amplified genomic DNA with consensus primers from the cultivars, ‘Williams’ (S1S2), ‘Coscia’ (S3S4), ‘Butirra Precoce Morettini’ (S1S3), ‘Santa Maria Morettini’ (S2S3) and ‘Doyenne du Comice’ (S4S5) and identified PCR products specifically associated with each S allele. Cloning and sequencing of the amplification products has revealed that they correspond to European pear sequences already deposited in the database. This allowed us to link S‐RNase sequences with S allele phenotypes and to determine a correspondence between the symbol–letter nomenclature used to name S‐RNase sequences and the number‐based nomenclature used to name S alleles. Based on this result the prediction of new cross‐incompatibilities among pear cultivars is discussed. Finally, we propose a unified number‐based nomenclature to avoid future confusion denominating S alleles in pear.  相似文献   

20.
Summary Two self-compatible (sc) dihaploids, G254 and B16, and one self-incompatible (si) dihaploid, G609, from Solanum tuberosum L. were intercrossed reciprocally. Segregation ratios sc : si : pc (pseudo-compatible) were determined in all 6 F1's in three successive years and critically tested and discussed. Genotypes at the S-locus could be assigned to the dihaploid parents and the S-allele on the translocation in sc G254 identified as S 1. Using these genotypes all sc and si genotypes were derived which could be expected in the F1's.Incompatibility groups were detected in each F1 from the results of complete diallels involving si plants. The genotype of each group was identified by test crosses. Compatibility groups could be both detected and identified by crossing in each F1 the sc plants as females with the already identified si sibs. In this way a complete series of 6 si testers and corresponding sc genotypes was obtained involving four alleles at the S-locus and S 1 and S x on the translocation.Certative disadvantage of pollen carrying the translocation could be ruled out as a possible cause of unexpected ratios. The hypothesis of an S-bearing translocation as the cause of self-compatibility could account for all results on the assumption that translocation homozygotes are lethal and the S-allele on the translocation is active in the pollen only.The following bachelor students have contributed to the experimental data used in this article: Janny Olsder, J. Marelis, H. v.d. Brink, J. Sonneveld, D. Vreugdenhil, Digna van Ballegooijen and Els Staas-Ebregt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号