首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Context

Landscape and habitat filters are major drivers of biodiversity of small habitat islands by influencing dispersal and extinction events in plant metapopulations.

Objectives

We assessed the effects of landscape and habitat filters on the species richness, abundance and trait composition of grassland specialist and generalist plants in small habitat islands. We studied traits related to functional spatial connectivity (dispersal ability by wind and animals) and temporal connectivity (clonality and seed bank persistence) using model selection.

Methods

We sampled herbaceous plants, landscape (local and regional isolation) and habitat filters (inclination, woody encroachment and disturbance) in 82 grassland islands in Hungary.

Results

Isolation decreased the abundance of good disperser specialist plants due to the lack of directional vectors transferring seeds between suitable habitat patches. Clonality was an effective strategy, but persistent seed bank did not support the survival of specialist plants in isolated habitats. Generalist plants were unaffected by landscape filters due to their wide habitat breadth and high propagule availability. Clonal specialist plants could cope with increasing woody encroachment due to their high resistance against environmental changes; however, they could not cope with intensive disturbance. Steep slopes providing environmental heterogeneity had an overall positive effect on species richness.

Conclusions

Specialist plants were influenced by the interplay of landscape filters influencing their abundance and habitat filters affecting species richness. Landscape filtering by isolation influenced the abundance of specialist plants by regulating seed dispersal. Habitat filters sorted species that could establish and persist at a site by influencing microsite availability and quality.
  相似文献   

2.

Context

Species are expected to shift their distributions in response to global environmental changes and additional protected areas are needed to encompass the corresponding changes in the distributions of their habitats. Conservation policies are likely to become obsolete unless they integrate the potential impacts of climate and land-use change on biodiversity.

Objectives

We identify conservation priority areas for current and future projected distributions of Iberian bird species. We then investigate the extent to which global change informed priority areas are: (i) covered by existing protected area networks (national protected areas and Natura 2000); (ii) threatened by agricultural or urban land-use changes.

Methods

We use outputs of species distributions models fitted with climatic data as inputs in spatial prioritization tools to identify conservation priority areas for 168 bird species. We use projections of land-use change to then discriminate between threatened and non-threatened priority areas.

Results

19% of the priority areas for birds are covered by national protected areas and 23% are covered by Natura 2000 sites. The spatial mismatch between protected area networks and priority areas for birds is projected to increase with climate change. But there are opportunities to improve the protection of birds under climate change, as half of the priority areas are currently neither protected nor in conflict with urban or agricultural land-uses.

Conclusions

We identify critical areas for bird conservation both under current and climate change conditions, and propose that they could guide the establishment of new conservation areas across the Iberian Peninsula complementing existing protected areas.
  相似文献   

3.

Context

As global landscapes continue to change, the sustainability of the ecosystem services they support are increasingly coming into question. In the rapidly changing neotropics, multiple-use plants epitomize sources of ecosystem services. To sustain the relationship that exists between such plants and human populations, a sound understanding of their well-being is required.

Objectives

Density data on multiple-use plants were compared across forest types and land tenure classes to understand the implications of these two spatial frames of reference for landscape sustainability.

Methods

The density of an aggregate sample of seventeen multiple-use and a sub-sample of five species were examined relative to forest type and land tenure class across fourteen Rupununi, Southern Guyana, study sites. The examination of plant density based on the two sample sizes was used to make inferences on how the two frames of reference may impact landscape sustainability.

Results

The mean density of the aggregate sample was highest in three of six forest types, but showed no statistical difference across land tenure classes. When individual species were considered mean densities showed no statistical difference across land tenure classes, but differences were observed for three species across forest types. Mean densities were highest in forest types within which swidden agriculture occurs and in the protected area where logging is prohibited.

Conclusions

Our findings suggested that in changing tropical landscapes plant species distribution can be predicted by forest types, but land tenure classes may provide clearer signals as to where a species well-being and hence ecosystem services may be compromised.
  相似文献   

4.

Context

Despite decades of research, there is an intense debate about the consistency of the hump-shaped pattern describing the relationship between diversity and disturbance as predicted by the intermediate disturbance hypothesis (IDH). Previous meta-analyses have not explicitly considered interactive effects of disturbance frequency and intensity of disturbance on plant species diversity in terrestrial landscapes.

Objective

We conducted meta-analyses to test the applicability of IDH by simultaneously examining the relationship between species richness, disturbance frequency (quantified as time since last disturbance as originally proposed) and intensity of disturbance in forest landscapes.

Methods

The effects of disturbance frequency, intensity, and their interaction on species richness was evaluated using a mixed-effects model.

Results

We found that species richness peaks at intermediate frequency after both high and intermediate disturbance intensities, but the richness-frequency relationship differed between intensity classes.

Conclusions

Our study highlights the need to measure multiple disturbance components that could help reconcile conflicting empirical results on the effect of disturbance on plant species diversity.
  相似文献   

5.

Context

Habitat loss is a major threat to biodiversity. It can create temporal lags in decline of species in relation to destruction of habitat coverage. Plant species specialized in semi-natural grasslands, especially meadows, often express such extinction debt.

Objectives

We studied habitat loss and fragmentation of meadows and examined whether the changes in meadow coverage had caused an extinction debt on vascular plants. We also studied whether historical or present landscape patterns or contemporary environmental factors were more important determinants of species occurrence.

Methods

We surveyed the plant species assemblages of 12 grazed and 12 mown meadows in Central Finland and detected the meadow coverages from their surroundings on two spatial scales and on three time steps. We modelled the effects of functional connectivity, habitat amount, and isolation on species richness and community composition.

Results

We observed drastic and dynamic meadow loss in landscapes surrounding our study sites during the last 150 years. However, we did not find explicit evidence for an extinction debt in meadow plants. The observed species richness correlated with contemporary factors, whereas both contemporary factors and habitat availability during the 1960s affected community composition.

Conclusions

Effective conservation management of meadow biodiversity builds on accurate understanding of the relative importance of past and present factors on species assemblages. Both mown and grazed meadows with high species richness need to be managed in the future. The management effort should preferably be targeted to sites located near to each other.
  相似文献   

6.

Context

A recent hypothesis, the habitat amount hypothesis, predicts that the total amount of habitat in the landscape can replace habitat patch size and isolation in studies of species richness in fragmented landscapes.

Objectives

To test the habitat amount hypothesis by first evaluating at which spatial scale the relationship between species richness in equal-sized sample quadrats and habitat amount was the strongest, and then test the importance of spatial configuration of habitat—measured as local patch size and isolation—when habitat amount was taken into account.

Methods

A quasi-experimental setup with 20 habitat patches of dry calcareous grasslands varying in patch size, patch isolation and habitat amount at the landscape scale was established in the inner Oslo fjord, Southern Norway. We recorded species richness of habitat specialists of vascular plants in equal-sized sample quadrats and analysed the relationship between species richness, habitat amount in the landscape and patch size and isolation.

Results

Although the total amount of habitat in a 3 km-radius around the local patch was positively related to species richness in the sample quadrats, local patch size had an additional positive effect, and the effect of patch size was higher when the amount of habitat within the 3 km-radius was high than when it was low.

Conclusions

In our study system of specialist vascular plants in dry calcareous grasslands, we do not find support for the habitat amount hypothesis.
  相似文献   

7.
8.

Background

Expression of economically relevant proteins in alternative expression platforms, especially plant expression platforms, has gained significant interest in recent years. A special interest in working with plants as bioreactors for the production of pharmaceutical proteins is related to low production costs, product safety and quality. Among the different properties that plants can also offer for the production of recombinant proteins, protein glycosylation is crucial since it may have an impact on pharmaceutical functionality and/or stability.

Results

The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor was transiently expressed in Nicotiana benthamiana plants and subjected to mammalian-specific mucin-type O-glycosylation by co-expressing the pharmaceutical protein together with the glycosylation machinery responsible for such post-translational modification.

Conclusions

The pharmaceutical glycoprotein human Granulocyte-Colony Stimulating Factor can be expressed in N. benthamiana plants via agroinfiltration with its native mammalian-specific mucin-type O-glycosylation.
  相似文献   

9.

Context

Species show different sensitivity to habitat loss and fragmentation depending on their specialization. Populations of a species at the range margin are generally assumed to be more stenoecious than populations at the core of the distribution and should therefore be more sensitive to habitat fragmentation.

Objectives

We evaluated the hypothesis that fragmentation effects species more strongly at the range periphery of their range compared to the core, resulting in lower genetic variability in comparable patch sizes and lower gene flow among populations.

Methods

We compared the genetic diversity and structure of five sand lizard (Lacerta agilis) populations at the margin of its range in Bulgaria and of 11 populations at the core of its distribution in Germany. We based the analysis on microsatellites, comprising 15 loci in Bulgaria and 12 in Germany.

Results

All diversity indices declined with patch size. For medium-sized patches all diversity indices were lower at the range periphery compared to the core, with two of them being significant. AICc based model selection showed strong support for core/periphery and patch size effects for observed and expected heterozygosity but only a patch size effect for allelic richness. There was no isolation-by-distance and each sampled population was allocated to a separate cluster with high probability for both countries, indicating that all populations are (almost) completely isolated.

Conclusion

Our study indicates an increased sensitivity of a species to fragmentation at the periphery compared to the core of its distribution. This differential sensitivity should be accounted for when prioritizing species based on their fragmentation sensitivity in landscape management.
  相似文献   

10.

Context

Amphibian metapopulations have become increasingly fragmented in the Midwestern United States, with wetland-breeding salamanders being especially dependent on intact, high-quality forested landscapes. However, the degree to which amphibian populations are isolated, the factors that influence dispersal and, ultimately, functional connectivity remain areas in need of investigation.

Objectives and methods

We combined population demographic and genetic approaches to assess how a landscape fragmented by agriculture influences functional connectivity and metapopulation dynamics of a locally threatened salamander (Ambystoma jeffersonianum).

Results

We found that the allelic richness and heterozygosity of this species was significantly related to the level of connectivity with other occupied breeding wetlands and that decreased connectivity resulted in increased genetic differentiation. We also found that effective population size appears to be declining and, while correlative, our focal landscape has experienced significant losses of forested upland habitats and potential wetland breeding habitats over the last 200 years.

Conclusions

By combining population and landscape genetic analyses with an assessment of regional wetland occupancy, our study has uniquely synthesized genetic and metapopulation processes, while also incorporating the effects of the landscape matrix on dispersal, connectivity, and population differentiation. The significant relationship between connectivity with heterozygosity, allelic richness, and genetic divergence observed in this study reinforces empirical observations of long distance dispersal and movements in ambystomatid salamanders. However, our results show that protection of core habitat around isolated wetlands may not sufficiently minimize genetic differentiation among populations and preserve critical genetic diversity that may be essential for the long-term persistence of local populations.
  相似文献   

11.

Context

Despite the key role of biological control in agricultural landscapes, we still poorly understand how landscape structure modulates pest control at different spatial scales.

Objectives

Here we take an experimental approach to explore whether bird and bat exclusion affects pest control in sun coffee plantations, and whether this service is consistent at different spatial scales.

Methods

We experimentally excluded flying vertebrates from coffee plants in 32 sites in the Brazilian Atlantic Forest, encompassing a gradient of forest cover at landscape (2 km radius) and local (300 m) spatial scales, and quantified coffee leaf loss, as an indicator of herbivory, and fruit set.

Results

Leaf loss decreased with higher landscape forest cover, but this relation was significantly different between treatment and control plants depending on local forest cover. On the other hand, fruit set responded to the interaction between treatment and local forest cover but was not affected by landscape forest cover. More specifically, fruit set increased significantly with local forest cover in exclusion treatments and showed a non-significant decrease in open controls.

Conclusions

These results suggest that services provided by flying vertebrates are modulated by processes occurring at different spatial scales. We posit that in areas with high local forest cover flying vertebrates may establish negative interactions with predaceous arthropods (i.e. intraguild predation), but this would not be the case in areas with low local forest cover. We highlight the importance of employing a multi-scale analysis in systems where multiple species, which perceive the landscape differently, are providing ecosystem services.
  相似文献   

12.

Context

Ecological impacts of past land use can persist for centuries. While present-day land use is relatively easy to quantify, characterizing historical land uses and their legacies on biodiversity remains challenging. Southern Transylvania in Romania is a biodiversity-rich area which has undergone major political and socio-economic changes, from the Austro-Hungarian Empire to two World Wars, communist dictatorship, capitalist democracy, and EU accession—all leading to widespread land-use changes.

Objectives

We investigated whether present-day community composition of birds, plants, and butterflies was associated with historical land use.

Methods

We surveyed birds, plants, and butterflies at 150 sites and classified those sites as forest, arable land, or managed grassland for six epochs using historical maps from the 1870s, 1930s, and 1970s, satellite imagery from 1985 to 2000, and field visits in 2012. Sites were labelled permanent if they had the same land use at all epochs and non-permanent otherwise. We used clustering and PERMANOVA based on community similarity to test for associations between community composition and land-use history.

Results

We found significant differences (p = 0.030) in bird communities between permanent and non-permanent forest sites, and permanent and non-permanent grassland sites (p = 0.051). No significant associations were found among plants or butterflies and land-use history.

Conclusions

Bird communities were associated with historical land use, though plants and butterflies were not. Historical land-use change in our study area was likely not sufficiently intense to cross relevant ecological thresholds that would lead to legacy effects in present-day plant and butterfly communities.
  相似文献   

13.

Context

The habitat amount hypothesis has rarely been tested on plant communities. It remains unclear how habitat amount affect species richness in habitat fragments compared to island effects such as isolation and patch size.

Objectives

How do patch size and spatial distribution compared to habitat amount predict plant species richness and grassland specialist plant species in small grassland remnants? How does sampling area affect the prediction of spatial variables on species richness?

Methods

We recorded plant species density and richness on 131 midfield islets (small remnants of semi-natural grassland) situated in 27 landscapes in Sweden. Further, we tested how habitat amount, compared to focal patch size and distance to nearest neighbor predicted species density and richness of plants and of grassland specialists.

Results

A total of 381 plant species were recorded (including 85 grassland specialist species). A combination of patch size and isolation was better in predicting both density and richness of species compared to habitat amount. Almost 45% of species richness and 23% of specialist species were explained by island biogeography parameters compared to 19 and 11% by the amount of habitat. A scaled sampling method increased the explanation level of island biogeography parameters and habitat amount.

Conclusions

Habitat amount as a concept is not as good as island biogeography to predict species richness in small habitats. Priority in landscape planning should be on larger patches rather than several small, even if they are close together. We recommend a sampling area scaled to patch size in small habitats.
  相似文献   

14.

Context

Humans have altered grasslands in recent decades through crop conversion, woody encroachment, and plant invasions. Concurrently, grassland birds have experienced range-wide declines. Studies have reported effects of plant invasions and land conversion on nest ecology, but few have assessed relative impacts of these changes.

Objectives

We compared impacts of invasive plants and landscape context on nest survival of a grassland songbird, the dickcissel (Spiza americana). We also compared effects on parasitism by brown-headed cowbirds (Molothrus ater) and tested whether parasitism affects survival.

Methods

From 2013–2016, we monitored 477 dickcissel nests. We measured nest-site vegetation (including woody plants, tall fescue Schedonorus arundinaceous, and other invasive grasses) and measured landscape context at broad scales.

Results

Nest survival declined with increasing tall fescue cover at nest sites, and parasitism was more common at nests with greater fescue and woody cover. Some evidence suggested a negative effect of row-crop cover within 1000 m on nest survival, but no landscape patterns unambiguously affected survival. Woodland cover and wooded-edge prevalence were associated with reduced parasitism risk. Parasitized nests had smaller clutches, failed more frequently, and produced fewer fledglings than non-parasitized nests.

Conclusions

Determining the impacts of invasive plants and other anthropogenic changes on grassland birds will aid in prioritizing management to improve habitat quality. Our results indicate that optimizing landscape context around habitats may not affect dickcissel nest survival strongly, except perhaps through effects on parasitism. In contrast, controlling tall fescue and shrubs within grasslands could benefit birds by increasing nest success and reducing parasitism.
  相似文献   

15.

Context

The conservation value of residential landscapes is becoming increasingly apparent in our urbanizing world. The ecological characteristics of residential areas are largely determined by the decisions of many individual “managers.” In these complex socio-ecological systems, it is important to understand the factors that motivate human decision-making.

Objectives

Our first objective was to quantify wildlife resources and management activities in residential landscapes and compare vegetation in front and back yards. Our second objective was to test three hypotheses linked with variation in yards: socioeconomic characteristics, neighborhood design factors, and perceptions of neighborhood birds.

Methods

We conducted surveys of over 900 residents in 25 Chicago-area neighborhoods to examine the wildlife resources contained in front and back yards and the social factors associated with variation in yards. We used a multi-scalar approach to examine among-yard and among-neighborhood variation in residential landscapes.

Results

Results indicate that back yards contain more wildlife resources than front yards, including greater vegetation complexity, more plants with fruit/berries, and more plants intended to attract birds. Furthermore, different hypotheses explain variation in front and back yards. Perceptions of birds were most important in explaining variation in back yard vegetation and wildlife-friendly resources per parcel, while neighbors’ yards and socioeconomic characteristics best explained front yard vegetation.

Conclusions

This study demonstrates the importance of back yards as an unexplored and underestimated resource for biodiversity. In addition, the results provide insight into the complex factors linked with yard decisions, notably that residents’ connections with neighborhood birds appear to translate to on-the-ground actions.
  相似文献   

16.

Context

To understand, even improve, the land of shrinking nature and spreading urbanization, a science applicable from remote natural areas to cities is needed.

Objective

Today’s scientific principles of urban ecology are articulated and compared with ecology based primarily on natural ecosystems; we either robustly merge the trajectories or watch them diverge.

Methods

A literature review emphasizes that the field of ecology emerged from late 19th century and early 20th century research mostly in semi-natural environments, whereas urban ecology mainly developed from studying plants, habitat types, and ecosystem nutrient flows in late 20th century city environments.

Results

Ninety urban ecology principles are identified and succinctly stated. Underlying the principles, 18 distinctive types of urban attributes are recognized in four major groups: land uses; built objects; permeating anthropogenic flows; human decisions/activities. The attributes or objects studied in “natural area” ecology and urban ecology differ sharply, as do the primary objects present in late 19th century and late 20th century cities. None of the 90 basic principles would have emerged from research on natural areas, and all are readily usable for improving urban and urbanizing areas.

Conclusion

Incorporating urban ecology science into ecology’s body of principles and theory now should catapult the field of ecology to the next level, and noticeably increase its usefulness for society.
  相似文献   

17.

Context

Urban sprawl and the expanding transportation infrastructure drive land consumption and landscape fragmentation, causing environmental deterioration and loss of species. Current understanding of how these drivers interact to shape landscape fragmentation is still poor. However, a strong correlation between urban sprawl and landscape fragmentation patterns is commonly assumed.

Objectives

Our main objective was to test the strength, non-stationarity, and scale-dependency of the relationship between urban sprawl and landscape fragmentation patterns (‘sprawl-fragmentation relationship’). Subsequently, we propose an extended framework for the links between urban sprawl, expansion of transport infrastructure, and landscape fragmentation.

Methods

We quantified spatial patterns of urban sprawl and landscape fragmentation for mainland Spain at multiple scales. We then fitted global regression models and geographically weighted regression models with metrics of landscape fragmentation and urban sprawl.

Results

Most variation in landscape fragmentation values (almost 80 % on average) is not explained by urban sprawl metrics through global modeling. Local models show substantial improvements in model performance, with an average of 37 % of the variance remaining unexplained. The contribution of urban sprawl to landscape fragmentation patterns varies locally and depends on scale, with higher contributions at coarser scales and at higher organizational levels.

Conclusions

Our investigation revealed three critical characteristics of the sprawl-fragmentation relationship: it does not prevail, is non-stationary, and scale-dependent. We propose four mechanisms that may have resulted in this mismatch: scale, time-lagged development, spatial arrangement of development, and other external variables including teleconnections. These spatial mismatches provide windows of opportunity for conservation through better development strategies.
  相似文献   

18.

Context

In response to predominantly local and private approaches to landscape change, landscape ecologists should critically assess the multiscalar influences on landscape design.

Objectives

This study develops a governance framework for Nassauer and Opdam’s “Design-in-Science” model. Its objective is to create an approach for examining hierarchical constraints on landscape design in order to investigate linkages among urban greening initiatives, patterns of landscape change, and the broader societal values driving those changes. It aims to provide an integrative and actionable approach for landscape sustainability science.

Methods

This framework is examined through an ethnographic study of public policy processes surrounding the urban tree initiatives in Boston, MA; Philadelphia, PA; and Baltimore, MD.

Results

These initiatives demonstrate the impact of political and economic decentralization on urban landscape patterns. Their collaborative governance approach incorporates diverse resources to implement programming at a fine-scale. The predominant tree giveaway program fragments the urban and regional forest.

Conclusion

Spatial and temporal fragmentation undermines the long-term security of urban greening programs, and it suggests reconsideration of the role of state regimes in driving broad scale spatial planning.
  相似文献   

19.

Context

Wild bee populations are currently under threat, which has led to recent efforts to increase pollinator habitat in North America. Simultaneously, U.S. federal energy policies are beginning to encourage perennial bioenergy cropping (PBC) systems, which have the potential to support native bees.

Objectives

Our objective was to explore the potentially interactive effects of crop composition, total PBC area, and PBC patches in different landscape configurations.

Methods

Using a spatially-explicit modeling approach, the Lonsdorf model, we simulated the impacts of three perennial bioenergy crops (PBC: willow, switchgrass, and prairie), three scenarios with different total PBC area (11.7, 23.5 and 28.8% of agricultural land converted to PBC) and two types of landscape configurations (PBC in clustered landscape patterns that represent realistic future configurations or in dispersed neutral landscape models) on a nest abundance index in an Illinois landscape.

Results

Our modeling results suggest that crop composition and PBC area are particularly important for bee nest abundance, whereas landscape configuration is associated with bee nest abundance at the local scale but less so at the regional scale.

Conclusions

Strategies to enhance wild bee habitat should therefore emphasize the crop composition and amount of PBC.
  相似文献   

20.

Context

Land-use/land-cover (LU/LC) dynamics is one of the main drivers of global environmental change. In the last years, aerial and satellite imagery have been increasingly used to monitor the spatial extent of changes in LU/LC, deriving relevant biophysical parameters (i.e. primary productivity, climate and habitat structure) that have clear implications in determining spatial and temporal patterns of biodiversity, landscape composition and ecosystem services.

Objectives

An innovative hierarchical modelling framework was developed in order to address the influence of nested attributes of LU/LC on community-based ecological indicators.

Methods

Founded in the principles of the spatially explicit stochastic dynamic methodology (StDM), the proposed methodological advances are supported by the added value of integrating bottom-up interactions between multi-scaled drivers.

Results

The dynamics of biophysical multi-attributes of fine-scale subsystem properties are incorporated to inform dynamic patterns at upper hierarchical levels. Since the most relevant trends associated with LU/LC changes are explicitly modelled within the StDM framework, the ecological indicators’ response can be predicted under different social-economic scenarios and site-specific management actions. A demonstrative application is described to illustrate the framework methodological steps, supporting the theoretic principles previously presented.

Conclusions

We outline the proposed multi-model framework as a promising tool to integrate relevant biophysical information to support ecosystem management and decision-making.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号