首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Post-larval and juvenile Macrobrachium rosenbergii were exposed for 72 h at 29 C to four pH levels (8.5, 9.0, 9.5, 10.0) and four concentrations of un-ionized ammonia-nitrogen (0, 1, 2, and 3 mg/L NHj-N). Results indicated potentiation between NH3 and high pH. Juveniles were more tolerant of high pH and NH3 than post-larvae.
For post-larvae, estimates of 72 h LC50 for pH were 9.43, 9.21, and 8.71 at 0, 1, and 2 mg/L NH3-N, respectively; 72 h LC50 estimates for NH3-N were 2.18 and 1.45 mg/L at pH levels of 8.5 and 9.0, respectively. For juveniles, estimates of 72 h LC50 for pH were 9.91, 9.56, 9.04, and 8.76 at 0, 1, 2, and 3 mg/L NH3-N, respectively; 72 h LC50 estimates for NH3-N were 2.02 and 0.54 mg/L at pH 9.0 and 9.5, respectively.
In pond culture of M. rosenbergii , high pH levels can cause mortality at stocking. The 72 h data can be used as an indication of safe stocking levels of pH and ammonia. These data suggest that post-larvae should not be exposed to pH > 9.0 nor to NH3-N > 1 mg/L in the pH range 8.5–9.0 and juveniles should not be exposed to pH > 9.5 nor to NH3-N > 0 mg/L at pH 9.5, > 1 mg/L at pH 9.0, or > 2 mg/L at pH 8.5.  相似文献   

2.
Tiger prawn Penaeus monodon postlarvae (PL6) were exposed to a mixture of ammonia and nitrite by the static renewal method. When the toxicity ratio of the ammonia-nitrite mixture was 1:1, the 48 h, 72 h and 96 h LC50 values were 2.20, 1.43 and 0.84 toxicity units which were equivalent to 12.66 mg/L ammonia-N (0.60 mg/L NH3-N) plus 14.91 mg/L nitrite-N, 8.23 mg/L ammonia-N (0.39 mg/L NH3-N) plus 9.69 mg/L nitrite-N, and 4.83 mg/L ammonia-N (0.23 mg/ L NH3-N) plus 5.69 mg/L nitrite-N. When the toxicity ratio of the ammonia-nitrite mixture was 51, the 48 h, 72 h and 96 h LC50 values were 2.50, 1.56 and 0.85 toxicity units which were equivalent to 23.98 mg/L ammonia-N (1.13 mg/L NH3-N) plus 5.65 mg/L nitrite-N; 14.96 mg/L ammonia-N (0.71 mg/L NH3-N) plus 3.52 mg/L nitrite-N, and 8.15 mg/L ammonia-N (0.39 mg/ L NH, N) plus 1.92 mg/L nitrite-N. A mixture of ammonia and nitrite exerted greater toxicity than high concentrations of either ammonia or nitrite alone. The combined effect of ammonia and nitrite on P. monodon postlarvae was antagonistic for 48 and 72 hours exposure, but synergistic after 96 hours exposure.  相似文献   

3.
Pcnaeus monodon juveniles (35.4 ± 2.2 mm TL) were exposed to seawater (20 ppt) having different concentrations of total ammonia (NH3+ NH,+) and nitrite. Median lethal concentration (LC50) was determined with static-renewal tests. The LC50, of total ammonia-N, NH3-N and niMte-N on shrimps decreased with increase of exposure time. The 24, 48, 72, % and 120 h LC50 were 94.96, 61.09, 47.47 45.58 and 38.00 mg/L total ammonia-N (2.68, 1.73, 135, 1.29 and 1.08 mg/L NH3-N) and 215.85, 185.33, 88.54, 54.76 and 37.97 mg/L nitrite-N, respectively. The 144h LC50 of total ammonia-N and NH3-N was 36.71 mg/L and 1.04 mgL. The "threshold" of ammonia and nitrite was found at 144h and 120h respectively, from the toxicity curve approaching asymptote. A "safe value" was 3.7 mg/L total ammonia-N, 0.1 mg/L NH3-N (20 ppt, pH 7.70, 27C) and 3.8 mg/L nitrite-N for P. monodon juvenile .  相似文献   

4.
ABSTRACT:   Experiments were conducted to determine the acute tolerance of juvenile (mean weight ± standard error, 9.9 ± 0.9 g) black sea bass Centropristis striata to environmental un-ionized ammonia-nitrogen (NH3-N) and nitrite-nitrogen (NO2-N) exposure at various salinities. Specifically, median lethal concentrations (LC50 values) of NH3-N and NO2-N at 24, 48 and 96 h of exposure were determined at salinities of 10, 20 and 30 g/L at 22°C. With the exception of LC50 values determined at 48 h, median lethal concentrations of NH3-N to black sea bass were not influenced by environmental salinity; 24, 48, and 96 h LC50 values ranged from 0.81 to 0.85, 0.65–0.77, and 0.46–0.54 mg-NH3-N/L, respectively. In contrast, tolerance of black sea bass to environmental NO2-N was compromised at reduced salinities. Median lethal concentrations of NO2-N to fish at 24, 48 and 96 h of exposure ranged from 288.3 to 429.0, 258.4 to 358.8 and 190.0 to 241.9 mg-NO2-N/L, respectively. Results indicate that while juvenile black sea bass are relatively sensitive to acute NH3-N exposure, they are highly resistant to NO2-N exposure.  相似文献   

5.
Penaeus setiferus postlarvae were exposed to acute levels of ammonia, nitrite, and to a mixture of both by a short-term static method, The 24h, 48-h and 72-h LC50 values for un-ionized ammonia were 1.49, 1.21 and 1.12 mg/L NH3-N (un-ionized ammonia as nitrogen), and 11.55, 9.38 and 8.69 mg/L ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24-h, 48-h and 72-h LC50 values for nitrite were 268.06, 248.84 and 167.33 mg/L nitrite-N (nitrite as nitrogen). Nitrite was much less toxic than ammonia. The joint effect of ammonia and nitrite on the postlarvae was synergistic at 48-h exposure and antagonistic after 72 h. Postlarvae of P. setiferus may be considered as organisms sensitive to ammonia and nitrite.  相似文献   

6.
Abstract. Tiger shrimp, Penaeus monodon Fabricius, post-larvae (32·0±3mg, 1·43±0·03 cm) were exposed to control, 0·12, 0·60, 1·20 and 2·40mg/l ammonia-N (un-ionized plus ionized ammonia as nitrogen) which is equivalent to control, 6,32,63 and 126μg/1 NH3-N (un-ionized ammonia as nitrogen) for 8 weeks in 25 ppt, as pH of 7·85–8·18 and 26–28°C by static renewal method. Growth in weight and length of the shrimps exposed to 1·20 and 2·40 mg/l ammonia-N were significantly lower (P < 0·05) than those exposed to control. The EC50 (concentration that reduced growth by 50% of that of the controls) was 1·33 mg/l ammonia-N, 70 μg/l NH3-N for weight gain, and 2·35 mg/1 ammonia-N, 123μg/l NH3-N for length gain of P. monodon post-larvae. The'maximum acceptable toxicant concentration'(MATC) of ammonia-N and NH3-N for P. monodon post-larvae was 0·60mg/l and 32μg/l, respectively after 6 weeks of exposure.  相似文献   

7.
The effect of ammonia and pH levels on giant river prawn Macrobrachium rosenbergii larvae were evaluated to provide science-based information on safe levels of ammonia and pH for larviculture. Survival rate, developmental stage, and larval weight gain were determined for larvae kept in water with total ammonia (NH 4-N)concentrations of 0, 1, 2, 4, and 8 mg\L and pH 7, 8, and 9. The trials were conducted in two phases: phase 1, larvae from stages I through VIII and phase 2, larvae from stage VIII until metamorphose. Oxygen consumption was determined for larvae in stages I and VIII at total ammonia concentrations of 0, 4, and 8 mg/L and pH 8. Survival rate up to stage VIII varied from 86 to 98% and did not differ for total ammonia concentrations in pH 7 and 8 and for 0 mg/L NH4 N in pH 9. Survival rate was significantly lower (0–20%) for total ammonia concentrations from 1 to 8 mg/L (0.43–3.41 mg/L of unionized ammonia) in pH 9. Larval stage indexes (7.9–8.0 range) and weight gain (1.572–2.931 mg range) of larvae at the end of phase 1 of the experiment did not differ for the different ammonia concentration solutions, but were significantly lower in pH 9. In phase 2, no parameter differed among treatments for pH 7 and 8; however there was total mortality at pH 9 until 96h. Respiration rates diminished when larvae were exposed to total ammonia concentrations of 4 and 8 mg/L (0.28 and 0.55 mg/L of unionized ammonia), but development remained unaltered. Therefore, M. rosenbergii larvae tolerate high levels of total ammonia, while toxicity depends primarily on unionized ammonia concentrations. In addition, alkaline pH (9) acted directly on the larvae, curbing development and causing severe mortality. Larval tolerance to high ammonia and pH levels decreases for the last zoeal stages.  相似文献   

8.
Shipping trials were conducted with adult Penaeus setiferus to determine the effect of 24 hour closed shipments on water quality, to evaluate methods of reducing water quality deterioration and to maximize packing density (biomass). Other trials were undertaken with juvenile P. setiferus and adult P. vannamei for comparison. The method utilized 8 L seawater chilled to 18–19 C, inside doubled polyethylene bags held in a Styrofoam box (42 × 42 × 23 cm deep). Gaseous O2 was injected into the water to 8 ppm (for standardization) and into the space above the water. Super-saturation of dissolved oxygen (>20 ppm for 24 hours) had no adverse effect on survival. Initial trials resulted in increased ammonia (from 0.1 to 4–6 ppm NH4-N), increased carbon dioxide (from <2 to 80–100 ppm), increased temperature (from 18–19 to 25–26 C) and decreased pH (from 8.0 to 6.0–6.4). Increases in shipping density (number or biomass of shrimp per L seawater) further intensified water quality deterioration. Carbon dioxide (with concomitant pH decline) is implicated as the major limiting factor during 24 hour closed shipment. Ammonia accumulation was reduced or totally eliminated with addition of AmQuelΘ (Kordon, Inc, Hayward, California), 2 depending on the dosage used. The buffer, Trizma® 8.3 (Sigma Chemical Co, St. Louis, Missouri), 2 limited CO2 buildup and reduced pH decline. Maintenance of low temperature over 24 hours was enhanced with addition of a frozen cold pack placed over the shipping bags. However, the control of ammonia, pH and carbon dioxide by the addition of AmQuel and Trizma did not increase survival, possibly due to toxic effects of the chemicals.  相似文献   

9.
The marine white shrimp Litopenaeus vannamei is widely cultured. Recently, farmers have begun to culture this shrimp in low-salinity brackish water (< 6 g/L). The intensification of shrimp culture often results in occurrences of elevated nitrite concentration during the growing season. Nitrite is toxic to shrimp and exposure to high concentrations may cause retarded growth and mortalities. The current study was aimed at investigating the acute and chronic toxicity of nitrite to L. vannamei grown in low-salinity (2 g/L) brackish water. Studies of the 96-h EC50 and LC50 values of nitrite were performed to determine the acute toxicity, and an aquarium growth study (2 d post exposure to elevated nitrite concentrations) was conducted to evaluate the chronic effects of nitrite on shrimp production. The 96-h EC50 and LC50 values for juvenile L. vannamei grown in water of 2 g/L salinity was about 9 mg/L NO2-N, suggesting a safe concentration for shrimp production in ponds to be less than 0.45 mgIL NO2-N. Exposing shrimp to nitrite concentration of 4 mg/L for 2 d reduced their growth but did not affect their survival.  相似文献   

10.
Artemia franciscana were hatched and tested for tolerance to ammonia at pH 6.5 and 8.5 in artificial seawater with a salinity of 17 ‰. Nauplii seemed to be less tolerant of ammonia at pH 6.5 despite the fact that more of the ammonia is in the ionized form (NH4+). It is suggested that this greater sensitivity is a result of the NH4+ competing with the Na+ during gut transfer. Nauplii hatched from decapulated cysts were more tolerant of ammonia than those hatched from whole cysts, probably because of a greater energy reserve.  相似文献   

11.
初步研究了产自中美洲地区的美洲鳗鲡(Anguilla rostrata)苗种对于温度、pH值、溶解氧、亚硝酸盐、氨氮、光强等生态因子的适宜范围及耐受极限。结果显示:鳗苗适宜水温是20℃~28℃,临界上限和下限分别是38℃及0℃;鳗苗正常活动的溶氧临界值是1.0 mg L-1,半数窒息点为0.7 mg L-1;适宜pH为4~10,耐受的上下限分别为11和3;非离子态氨对鳗苗24、48、72、96h的半致死浓度分别是4.54、4.08、4.08、2.62 mg L-1,安全浓度为0.26 mg L-1;亚硝酸盐对鳗苗24、48、72、96h的半致死浓度分别是92.05、65.81、45.54、37.06 mg L-1,安全浓度为3.71 mg L-1;引起鳗苗不安的光强阈值是5.88 µE/m2/s。  相似文献   

12.
Super Intensive Culture of Red-Tailed Shrimp Penaeus penicillatus   总被引:1,自引:0,他引:1  
Two continuous grow-out experiments of red-tailed shrimp Penueus penicillatus were conducted for one year in a super intensive system with a stocking density of 171 and 286 postlarvae/m2, respectively. The postlarval shrimp (Ph8–12) were cultured in three 0.14 ha earthen ponds with concrete dikes. The shrimp were fed with a commercially prepared feed four times a day. Water quality parameters from the second trial varied as follows: water temperature from 23.0 to 30.4 C, salinity from 15.33 to 21.00 ppt, dissolved oxygen (DO) from 3.47 to 7.34 mg/L, NH3-N from 0.002 to 0.869 mg/L, nitrite-N from 0.013 to 0.844 mg/L, and nitrate-N from 0.021 to 1.795 mg/L. Ammonia-N increased from 0.022 to 46.110 mg/L, while the pH declined from 8.12 to 7.32. Yield was 4,650 kg/0.42 ha from the first crop in 131 days and 5,160 kg/0.42 ha from the second crop in 141 days. The productivity of this system producing P. penicillatus was 11–12 tons/ha/crop.  相似文献   

13.
Three kinds of locally available plastic biofilter media with different configurations (plastic rolls, PVC pipes and scrub pads) were evaluated for their efficiency in organic waste removal from the effluents of an intensive recirculating tilapia culture system. A set of three types of solid-removing filters consisting of screened sedimentation; upflow sand as well as plastic bead filtration accomplished the mechanical filtration. Values of critical metabolic wastes like total ammonia nitrogen (TAN) (0.92 ppm) and nitrite-nitrogen (NO2-N) (0.22 ppm) were found to be well within the acceptable limits, while other water quality parameters in the culture water were also maintained within the normal range by the filtration system. Removal rates of 3.46 g TAN/m3 per day and 0.77 g NO2-N/m3 per day, as well as TAN and NO2-N removal efficiencies of 29.37 and 27.3% respectively, were established to be the best for the plastic-roll biofilter medium as compared to PVC-pipe and scrub-pad media. Percent removal of TAN and NO2-N per pass of the biofilter (25.49 and 26.3% respectively) and the specific TAN and NO2-N removal rates (43 and 9.6 mg/m2 per day) of plastic rolls were also found to be superior to the other two biofilter media. Pieces of PVC pipes as biofilter medium is recommended to be used in the biofilters in view of their cheaper cost.  相似文献   

14.
非离子氨对史氏鲟早期仔鱼72和96小时的LC50分别为068和063mg/L;对晚期仔鱼的8、12、14、48、72和96小时的LC50分别为050、043、035、026、021和017mg/L,当浓度达到035mg/L时,在17小时内造成试验鱼全部死亡。48小时内造成早期仔鱼50%死亡的总铁浓度为500mg/L。史氏鲟仔鱼对pH忍耐性的上限和下限分别为925和360,立刻致死的pH值分别为209—250和1010—1000。  相似文献   

15.
Cu~(2+)、Zn~(2+)、Cd~(2+)对厚颌鲂幼鱼的联合致毒效应研究   总被引:3,自引:0,他引:3  
采用单因子静态急性毒性试验方法与加和等毒性溶液法,分别研究了Cu2+、Zn2+、Cd2+对厚颌鲂(M ega-lobrama pellegrini)幼鱼的急性毒性和联合毒性效应。结果显示:3种重金属离子对厚颌鲂幼鱼的毒性由强到弱依次为Cu2+、Cd2+、Zn2+,其中Cu2+对厚颌鲂幼鱼24 h、48 h、72 h、96 h的半致死质量浓度(LC50)分别为0.54 mg/L、0.38 mg/L、0.27 mg/L、0.23 mg/L;Cd2+对厚颌鲂幼鱼24 h、48 h、72 h、96 h的半致死质量浓度(LC50)分别为14.32 mg/L、8.34 mg/L、6.36 mg/L、4.44 mg/L;Zn2+对厚颌鲂幼鱼24 h、48 h、72 h、96 h的半致死质量浓度(LC50)分别为21.95 mg/L、17.56 mg/L、15.33 mg/L、14.62 mg/L。Cu2+、Cd2+、Zn2+对厚颌鲂幼鱼的安全质量浓度分别为0.056 mg/L、0.849 mg/L、3.372 mg/L。Cu2+、Cd2+、Zn2+两两共存时对厚颌鲂幼鱼96 h的联合毒性效应均表现为毒性增强的协同作用。  相似文献   

16.
在水温(23±1)℃和pH6.9~7.3下,采用半静态法研究敌百虫、二氧化氯和聚维酮碘三种常用药物对平均体质量(6.1±0.23)g的卡拉白鱼Chalcalburnus chalcoides的急性毒性。结果表明:敌百虫对卡拉白鱼的24h、48h、72h、96h半致死质量浓度分别为0.40mg/L、0.34mg/L、0.31mg/L和0.29mg/L,安全质量浓度为0.07mg/L;二氧化氯对卡拉白鱼24h、48h、72h、96h的半致死质量浓度分别为28.18mg/L、27.16mg/L和24.93mg/L、23.00mg/L,安全质量浓度为7.57mg/L;聚维酮碘对卡拉白鱼24h、48h、72h、96h的半致死质量浓度分别为119.91mg/L、83.87mg/L、72.78mg/L和64.61mg/L,安全质量浓度为14.13mg/L。三种药物对卡拉白鱼的毒性由高至低依次为:敌百虫二氧化氯聚维酮碘。敌百虫对卡拉白鱼毒性较强,在生产中需谨慎使用;二氧化氯和聚维酮碘的安全质量浓度高于生产中常用的泼洒浓度,可安全使用。  相似文献   

17.
Abstract This study was undertaken to determine the effect of salinity and pH on tolerance to low dissolved oxygen concentration in postlarval (PL 12; 18 mg wet weight) and early juvenile (720 mg wet weight) Peneaus setiferus . Lethal levels of dissolved oxygen were determined in animals at four combinations of salinity and pH (36 and 15 ppt salinity and pH 6 and 8). For postlarvae, the 48-h LC50 for dissolved oxygen was 1.27 mgO2/L at 15 ppt and pH8, and was significantly lower than that obtained in the other combinations of salinity and pH (P < 0.05). For juveniles, the 72-h LC50 was 1.16 mg1L at 15 ppt and pH 8, and was significantly lower than that obtained in the other combinations of salinity and pH (P < 0.05). A significant interaction between salinity and pH was observed. These results suggest that the intensive culture of P. setiferus may be conducted at moderate salinity, where shrimp appear to be more tolerant of low concentrations of oxygen than at higher salinities.  相似文献   

18.
Abstract. Rainbow trout, Salmo gairdneri Richardson, were reared intensively in nine aerated static-water ponds. Dissolved oxygen concentrations were maintained above 5 mg/l and un-ionized ammonia (NH3) levels were monitored in all ponds. Fish were removed periodically and gill, liver and trunk kidney samples were removed for histological examination. Average NH3 concentrations did not exceed a previously reported chronically toxic level, but average daily maximum concentrations exceeded this level in all but two ponds. Gills exhibited lesions characteristic of those attributed to ammonia exposure in all ponds and fish with the most damaged gills had livers demonstrating reduced glycogen vacuolation. No histological changes were noted in kidney tissue. Because gills were damaged even though average NH3 levels were quite low, it is recommended that research in static water carefully consider the cyclical nature of NH3 concentrations.  相似文献   

19.
为研究敌百虫对奥尼罗非鱼幼鱼的急性毒性效应,采用96 h半静水式生物毒性试验方法,在水温(23.5±2.0)℃,溶解氧>5 mg/L的条件下,分别检测在曝气自来水(pH为6.5)和池塘水(pH为8.5)中敌百虫对奥尼罗非鱼幼鱼的急性毒性效应。结果显示:在曝气自来水中,敌百虫对奥尼罗非鱼幼鱼24、48、72、96 h的半致死质量浓度分别为3.68、3.31、2.05、1.57 mg/L,安全质量浓度为0.157 mg/L;在池塘水中,敌百虫对奥尼罗非鱼幼鱼24、48、72、96 h的半致死质量浓度分别为0.35、0.29、0.17、0.13 mg/L,安全质量浓度为0.013 mg/L。试验结果表明,在池塘水中敌百虫对奥尼罗非鱼幼鱼的毒性比在曝气自来水条件下强。  相似文献   

20.
在pH 8.5、水温(28.5±0.5)℃、盐度30条件下,用500 ml烧杯设置10、20、40、801、60 mg/L5个氨氮(总氮)质量浓度梯度和1个对照组(天然海水),研究氨氮对锈斑蟳早期幼体(Z1)急性毒性试验。结果表明,氨氮暴露12 h,40 mg/L以下质量浓度组毒性作用不显著,但80 mg/L以上质量浓度组与对照组差异显著(P<0.05);氨氮暴露24 h,20 mg/L以下质量浓度组毒性作用不显著,但40 mg/L以上质量浓度组与对照组有显著差异(P<0.05);氨氮暴露36~96 h,0、10 mg/L组间差异不显著,但20 mg/L以上质量浓度组与对照组有显著差异(P<0.05)。12、24、36、48、60、72 h氨氮暴露的半致死质量浓度分别为85.566、36.171、22.880、12.485、8.299、4.313 mg/L。锈斑蟳早期幼体培育的安全质量浓度为0.431 mg/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号