首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Quality assessment of thermally modified spruce (Picea abies (L.) Karst) and beech (Fagus sylvatica L.) wood and of the corresponding reference samples was carried out by means of non-destructive FT-NIR spectroscopic measurements and PLS regression. Oven-dry and basic density as well as MOE and MOR determined by 3-point bending tests were evaluated. The focus was put on specimens produced from material that had been thermally modified in an industrial scale kiln. Modelling results range from poor to very good. The results of the spectra taken from the spruce samples resulted in better prediction results than the spectra of the beech samples. This could be due to different proveniences or variation in the industrial modification process. The results indicate that FT-NIR surface measurements of sound thermally modified wood samples could be applied to evaluate several characteristics before and after the modification process. The method could be used for screening during pre-sorting of thermally modified wood.  相似文献   

2.
Classification of thermally modified wood by FT-NIR spectroscopy and SIMCA   总被引:1,自引:0,他引:1  
Quality assessment of thermally modified wood has evolved as one of the major fields in the research on thermal modification of wood. This study investigates NIR spectroscopy in combination with the pattern recognition method of soft independent modeling of class analogies (SIMCA). Focus is put on identifying different treatment intensities of thermally modified samples of beech, ash, and Norway spruce. The results indicate that SIMCA classification based on NIR spectroscopy could be used for quality control of thermally modified wood. The method might be applicable for producers (pre-delivery checks) and customers (reception control). However, transfer from laboratory to industrial conditions needs further investigation.  相似文献   

3.
The focus of this study was to investigate the chemical and colour changes occurring at different exposure times on artificially photo-irradiated surfaces of normal and red heartwood in beech in order to understand the mechanisms that cause the changes and to evaluate the possibility of usages of beech not only for energy production purposes. In this sense, surface colour modifications are of crucial importance to define the commercial value of beech wood. The artificial photo-irradiation of the wood samples was performed in a Solar Box, equipped with an ultraviolet filter that cuts off the spectrum at 280 nm. Reflectance spectrophotometry and Fourier transform infrared (FTIR) spectroscopy were used to assess artificial sunlight influence. The experimental data were statistically treated to evaluate their significance. Colour monitoring revealed that wood surface colour undergoes an important variation due to photo-irradiation, occurring within the first 24–48 h. Moreover, it was found that the chromatic coordinates (L*a*b*) in normal wood and in red heartwood tended to similar values after 504 h. FTIR spectroscopy allowed for investigating the rate of photodegradation of wood surface due to oxidation reactions of wood components. The results were validated by statistical analysis applied both to the colorimetric and spectroscopic data.  相似文献   

4.
Characterisation, quality assessment and property prediction are several of the major industrial challenges for widespread acceptance of thermally modified wood (TMW). This study shows the potential of the multivariate analysis of mid-infrared (MIR) spectral data for the prediction of impact strength, five mechanical parameters in bending, moisture content, weight loss, density and chemical composition of small specimens of thermally modified beech, Norway spruce and Scots pine woods. Anti-swelling efficiency was also studied using DRIFT spectroscopy for spruce wood only. Calibrations were successfully accomplished by partial least-squares regression, with R Y 2 and Q CUM2 values >0.96 for 64 out of 67 models. Predictions were also successful, with relative prediction values >0 and RMSEP:SD ratios <1 in most cases. Changes in the MIR spectra of TMW show that bands arising from the lignin environment and new bands appearing due to the degradation of carbohydrates, giving negative loadings, were related to strength loss, while those bands arising from the polysaccharides were associated with property retention. It is concluded that this approach is a powerful tool to characterise a number of properties of TMW with a single after-treatment measurement.  相似文献   

5.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

6.
Abstract

One of the main disadvantages of wood is hygroscopicity resulting from its polar character. The sorption–desorption of water causes unwanted swelling and shrinkage in wood. Thermal modification substantially reduces this inconvenient feature. Unfortunately, the same chemical changes that reduce water sorption alter the polar character of the material and result in poorer wetting of thermally treated wood by waterborne adhesives. Gluability of thermally modified beech (Fagus silvatica L.) and birch (Betula pubescens Ehrh.) wood with two commercial amino resins, melamine–urea–formaldehyde (MUF) and melamine–formaldehyde (MF), and a two-component polyurethane (PUR) adhesive was investigated. Both wood species were modified according to two temperature regimes: 160°C and 190°C. Shear strengths of the joints were then determined according to EN 205:2003 standard. The results showed that thermally modified beech and birch wood can be effectively glued not only with commercially available PUR adhesives, but also with aqueous MF and MUF resins. The resultant shear strengths of the joints were limited by the strength of the thermally modified substrate.  相似文献   

7.
This study shows how the air permeability of thermally modified wood contributes to its water-repellent efficiency. For this purpose, freshly cut boards of hornbeam(Carpinus betulus), poplar(Populus nigra), and heartwood of oak(Quercus castanifolia) were modified at a steam temperature of 180 °C for 3 h inside a Thermo Wood kiln.The porous structure, permeability, and water uptake of wood were affected differently by thermal modification,depending on the wood species. The creation of microcracks in the cell walls, due to collapsing of fiber cells,resulted in a noticeable increase in the permeability of hornbeam. Despite checking in the poplar wood structure,its permeability was negatively affected by thermal modification. In contrast to oak and poplar, a negative waterrepellent efficiency was observed for the modified hornbeam, caused by an increase in the permeability.  相似文献   

8.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

9.
Test samples of Japanese larch (Larix leptolepis) heartwood and Japanese beech (Fagus crenata) sapwood were heated for 22 h at constant temperatures (50°–180°C) under three water content conditions. Raman spectra of the samples were recorded before and after the heat treatments, and spectral changes in the range from 1000 cm−1 to 1800 cm−1 were evaluated using the difference spectrum method. For both wood species, the Raman band intensity at 1655–1660 cm−1 due mainly to the C=C and C=O groups in lignin clearly decreased with increasing heat-treatment temperature (HTT). The spectral change was thought to reflect the progress of condensation reactions of lignin molecules during the heat treatment. Moreover, the decrease in band intensity was considerably facilitated by the presence of water in the cell wall, suggesting that the condensation is closely related to the softening of lignin. From the spectral changes in the wavenumber region of 1200–1500 cm−1, it was considered that wood constituents are partially decomposed at the higher HTT. Part of this article was presented at the 53rd Annual Meeting of the Japan Wood Research Society, Fukuoka, March 2003  相似文献   

10.
This report presents a new derivative from the chemical conversion of hardwood. Silylation of hardwood was successfully achieved using trimethylsilyl chloride with pyridine as base. The new wood compounds were analyzed by FTIR spectroscopy. The FTIR spectra of the silylated wood compounds show new absorption bands derived from trimethylsilyl ether groups. Furthermore, the products were investigated by means of EDX analysis. The presence of silicon confirmed the conversion of wood into the corresponding silyl ether derivative. Electron microscopy, i. e. SEM, shows that the location of the silicon was not restricted to the surface of the wood fibres. Penetration of the reactants into the wood body occurred, when a solid wood sample (beads) was used.  相似文献   

11.
采用傅里叶变换红外光谱技术比较红心杉与普通杉的化学官能团.结果表明:两种木材红外光谱特征吸收峰的位置、数目及形状相似.差异出现在波数1 800 ~ 600 cr-之间,红心杉中1 736 cm-吸收峰/(I1736)变得不明显.红心杉中超过50%特征峰吸收相对强度大于普通杉.红心杉的I1510/I1 736和I1 510/I1 372比值均小于普通杉.红心杉I1270/I1230,I1425/I96,I1372/I667和I1372/I2917均大于普通杉.据此,红心杉中木质素和半纤维素含量低于普通杉,而综纤维素含量大于普通杉.红心杉木质素中愈创木基单元比例较高,且纤维素结晶度大于普通杉.  相似文献   

12.
The fracture toughness of thermally modified beech (Fagus sylvatica L) and ash (Fraxinus excelsior L) wood under Mode I loading was quantified using Compact Tension (CT) specimens, loaded under steady-state crack propagation conditions. The influence of three heat-treatment levels and three moisture contents, as well as two crack propagation systems (RL and TL) was studied. Complete load–displacement records were analysed, and the initial slope, k init, critical stress intensity factor, K Ic, and specific fracture energy, G f, evaluated. In the case of both species, thermal modification was found to be significantly affect the material behaviour; the more severe the thermal treatment, the lower the values of K Ic and G f, with less difference being observed between the most severe treatments. Moisture content was also found to influence fracture toughness, but had a much less significant effect than the heat treatment.  相似文献   

13.
A mature, average stand of European beech was generated based on characteristic data of trial plots. Some 27 different strategies of target diameter harvest, were simulated for up to 80 years with the help of a distance-dependent single-tree growth simulator. The treatments were differing in the size of the target diameter, the beginning and the end of the harvest. Based on a statistical model, the probability of the occurrence of more than 30% of red heartwood at the front-side diameter was calculated for three sections of each log. Using the predicted probability, the decrease of timber quality due to red heartwood for different treatment strategies was assessed. The harvested volume and the predicted timber quality for different harvesting strategies were used to calculate the net revenue achieved in each simulation period with the help of a calculation program. The net present value for variable interest rates of the different harvesting strategies was calculated, assuming free land rent. Using a linear programming approach, optimal areas for different treatment strategies of a modelled forest of 100 ha were calculated under 4 different scenarios. The results of the optimisation showed how the increasing interest rates replaced higher target diameters out of the optimal solution. In contrast to that the treatments with higher target diameter became more important with increasing restrictions concerning budget or ecological constraints.  相似文献   

14.
Moisture-dependent orthotropic elasticity of beech wood   总被引:1,自引:1,他引:0  
Elastic material properties are one of the most important material characteristics in mechanical modelling. Wood with distinctively different properties in the longitudinal, radial and tangential directions exhibits a strong moisture-dependent material characteristic in the elastic range. In order to characterise beech wood as an orthotropic material, all of the independent elastic properties were determined at different moisture conditions. These characteristic properties have never been determined before as a function of moisture content yet are vital to the field of wood modelling. All elastic parameters, except for some Poisson’s ratios, show a decrease in stiffness with increasing moisture content. In comparison to available literature references at a moisture content of ω?≈?12%, the identified values were of the same order of magnitude. The determined material properties can be used to investigate the mechanical behaviour of beech wood structures including different moisture conditions.  相似文献   

15.
The shear strength of furfurylated, N-methylol melamine (NMM) and thermally modified wood bonded with emulsion polymer isocyanate, polyvinyl acetate (PVAc), and polyurethane (PU) adhesives was examined. Furfurylation and NMM modification of Scots pine had a significant negative effect on the bonding strength with all adhesives irrespective of the treatment intensity. The obtained low-shear strength values were related to the brittle nature of the wood after modifications rather to the failure of the bondline. PVAc showed a better bonding performance with both furfurylated and NMM modified wood while the combination of furfurylated wood and PU gave the highest reduction in bonding strength (47–51%). Shear strength also decreased significantly after thermal modification in both Scots pine (36–56%) and beech (34–48%) with all adhesives. With the exception of thermally modified beech samples bonded with PU, bondline was found to be the weakest link in thermally modified wood as it was revealed by the wood failure surfaces. Bondline thickness and effective penetration of adhesives did not relate to the shear strength of all modified wood materials. The lower shear strength of modified wood could be attributed to other factors, such as the reduced chemical bonding or mechanical interlocking of adhesives, and the reduced strength of brittle modified wood substrate.  相似文献   

16.
本文调查了三种耐用木材(Afzelia africana J.E. Smith; Erythrophleum suaveolens (Guill & Perr.) Brenam. Syn. E guinensis G.Don. or Milicia excelsa (Welw) C.C. Berg. Syn. Chlorophora excelsa (Welw) Benth.)的心材提取物(在60%的甲醇中风干提取)和两种专用木材防腐剂(CCA和Penta)在暴露的土壤区组设计条件下,抑制三种木材腐朽菌(Coridopsis Polyzona Klotzch; Lenzites trabea; or Trametes cingulata Fr.)对见血封喉边材的侵袭的相对潜能,并测定其阈值。提取物和防腐剂的剂量分别是8.009、24.778、48.056、96.111、144.167 kg·m-3 ,样品的暴露处理时间与ASTM D1413-72规定的一致分别是14周和18周。结果显示:在阈值范围内,任何一种心材提取物或木材防腐剂在研究中对木材腐朽菌的抑制能力在0.01的显著水平下,差异显著。这些生物杀灭剂的相对功效是取决于真菌的种类。没有任何一种心材提取物或木材防腐剂(除在用最高的存留水平处理被侵袭的非洲毒箭木的条件下)对于被处理的木材能够授予"非常持久"等级。本土树种的心材提取物相对持久力的减少的可能原因是复杂的。在最高的存留量(144.167 kg·m-3)水平下,在0.05显著水平下每种心材提取物和任一种专用木材防腐剂(CCA和Penta)之间的功效差异不显著.  相似文献   

17.
Summary Soxhlet and supercritical fluid extracts of freshly cut oriental beech (Fagus orientalis) have been obtained using acetone. While the yield of the Soxhlet extract was 2.54% the yield of the supercritical acetone extract obtained at 240°C and 6.0–6.5 MPa was 9.55% (dry wood basis). The fatty acids present in the extracts were separated by chemical and Chromatographic methods and analysed by combined gas chromatography and mass spectrometry. Linoleic acid was the major fatty acid in both extracts.  相似文献   

18.
European beech (Fagus sylvatica L.) is a major tree species of European forest which is underexploited because of its low dimensional stability and durability. Similarly to what has been developed with radiata pine, furfurylation might be the answer to optimize the utilization of local beech wood. Beech wood furfurylation process was studied using five different catalysts: maleic anhydride, maleic acid, citric acid, itaconic acid, and tartaric acid. Optimization of the furfurylation process was investigated for different catalyst and furfuryl alcohol (FA) contents, and different duration of polymerization. The following properties were studied: weight percent gain (WPG), leachability, anti-swelling efficiency (ASE), wettability, modulus of elasticity, modulus of rupture, Brinell hardness, and decay durability. Tartaric acid, never investigated up to now, was retained as catalyst to perform furfurylation due to its efficacy compared to other catalysts and its novelty. Wood modification with FA and tartaric acid as catalyst led to samples with high WPG even after leaching, improved ASE, and lower wettability with water. Increasing the polymerization duration increased the fixation of FA in treated wood. Most of all, treatment gave a significant improvement in mechanical properties and resistance to wood decaying fungi.  相似文献   

19.
Alkaline degradation of spruce and beech wood   总被引:1,自引:0,他引:1  
Summary The alkaline delignification of spruce and beech wood is accomplished in three phases. The first phase results in a decrease of yield down to 83...80%, the second one in a decrease from 83...80% to 64...61% and the third one in a yeld drop from 64...61% to 50...46%. The amount of polysaccharides removed in the first phase was 22%, in the second phase 5...6% and in the third phase 10% of the total polysaccharides in the original wood. The amount of lignin removed in the first phase of delignification was 9...11% in the second phase 53...54% and in the third phase 28% of the total lignin in the original wood. The polysaccharides extracted in the second and third phase amounted to 70...78% of the polysaccharides removed in the first delignification phase. For an entire characterization of the delignification reaction not only the course of lignin removal is of importance but also the course of the polysaccharide extraction. The results show that for a two-stage alkali-oxygen-cooking technology the optimum yield after initial partial alkaline delignification lies in the range of 64...61%.  相似文献   

20.
In order to improve the dimensional stability of wood-polymer composites, wood flour pre-treated by polyethylene glyco1 (PEG) at two different concentrations and then thermally treated at 140°C, was used as raw material to produce wood flour/polypropylene (PP) composites at a wood content of 40%. The structure of modified wood flour was analyzed with a scanning electron microscope (SEM) and its effect on the physical and mechanical properties of wood flour/PP composites was evaluated. The SEM results indicated the "bulking" effect of PEG on wood flour, which resulted in reduced water uptake. The combination of PEG and heat treatment further improved the moisture resistance of the composites. However, PEG modification had a negative effect on the flexural modulus of rupture (MOR) and the modulus of elasticity (MOE); whereas heat treatment partly compensated for this reduction. For dynamic mechanical properties, PEG treatment decreased the storage modulus (E′). However, the heat treatment resulted in an increase of E′ of the wood flour/PP composites, with the temperature of loss factor peaks shifting to a higher temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号