首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Stagonospora nodorum blotch (SNB), caused by the necrotrophic fungus Stagonospora nodorum (teleomorph: Phaeosphaeria nodorum), is among the most common diseases of winter wheat in the United States. New opportunities in resistance breeding have arisen from the recent discovery of several necrotrophic effectors (NEs, also known as host-selective toxins) produced by S. nodorum, along with their corresponding host sensitivity (Snn) genes. Thirty-nine isolates of S. nodorum collected from wheat debris or grain from seven states in the southeastern United States were used to investigate the production of NEs in the region. Twenty-nine cultivars with varying levels of resistance to SNB, representing 10 eastern-U.S. breeding programs, were infiltrated with culture filtrates from the S. nodorum isolates in a randomized complete block design. Three single-NE Pichia pastoris controls, two S. nodorum isolate controls, and six Snn-differential wheat controls were also used. Cultivar-isolate interactions were visually evaluated for sensitivity at 7 days after infiltration. Production of NEs was detected in isolates originating in each sampled state except Maryland. Of the 39 isolates, 17 produced NEs different from those previously characterized in the upper Great Plains region. These novel NEs likely correspond to unidentified Snn genes in Southeastern wheat cultivars, because NEs are thought to arise under selection pressure from genes for resistance to biotrophic pathogens of wheat cultivars that differ by geographic region. Only 3, 0, and 23% of the 39 isolates produced SnToxA, SnTox1, and SnTox3, respectively, by the culture-filtrate test. A Southern dot-blot test showed that 15, 74, and 39% of the isolates carried the genes for those NEs, respectively; those percentages were lower than those found previously in larger international samples. Only two cultivars appeared to contain known Snn genes, although half of the cultivars displayed sensitivity to culture filtrates containing unknown NEs. Effector sensitivity was more frequent in SNB-susceptible cultivars than in moderately resistant (MR) cultivars (P = 0.008), although some susceptible cultivars did not exhibit sensitivity to NEs produced by isolates in this study and some MR cultivars were sensitive to NEs of multiple isolates. Our results suggest that NE sensitivities influence but may not be the only determinant of cultivar resistance to S. nodorum. Specific knowledge of NE and Snn gene frequencies in this region can be used by wheat breeding programs to improve SNB resistance.  相似文献   

2.
Stagonospora nodorum blotch (SNB), caused by Phaeosphaeria nodorum, is a destructive disease of wheat (Triticum aestivum) found throughout the United States. Host resistance is the only economically feasible option for managing the disease; however, few SNB-resistant wheat cultivars are known to exist. In this study, we report findings from an association mapping (AM) of resistance to P. nodorum in 567 spring wheat landraces of diverse geographic origin. The accessions were evaluated for seedling resistance to P. nodorum in a greenhouse. Phenotypic data and 625 polymorphic diversity array technology (DArT) markers have been used for linkage disequilibrium (LD) and association analyses. The results showed that seven DArT markers on five chromosomes (2D, 3B, 5B, 6A, and 7A) were significantly associated with resistance to P. nodorum. Genetic regions on 2D, 3B, and 5B correspond to previously mapped quantitative trait loci (QTL) conferring resistance to P. nodorum whereas the remaining QTL appeared to be novel. These results demonstrate that the use of AM is an effective method for identifying new genomic regions associated with resistance to P. nodorum in spring wheat landraces. Additionally, the novel resistance found in this study could be useful in wheat breeding aimed at controlling SNB.  相似文献   

3.
ABSTRACT Ascocarps of Phaeosphaeria nodorum, which causes Stagonospora nodorum blotch (SNB) of wheat, have not been found by others in the eastern United States despite extensive searches. We sampled tissues from living wheat plants or wheat debris in Kinston, NC, each month except June from May to October 2003. Additional wheat samples were gathered in Kinston, Salisbury, and Plymouth, NC, in 2004 and 2005. For the 3 years, in all, 2,781 fruiting bodies were dissected from the wheat tissues and examined microscopically. Fruiting bodies were tallied as P. nodorum pycnidia or ascocarps, "unknown" (not containing spores, potentially P. nodorum or other fungi), or "other fungi." In the 2003 sample, asco-carps of P. nodorum were present each month after May at a frequency of 0.8 to 5.4%, and comprised a significantly higher percentage of fruiting bodies from wheat spikes than of those from lower stems and leaves. Ascocarps also were found at frequencies <10% in some wheat debris samples from 2004 and 2005. Analysis of the nucleotide sequences of internally transcribed spacer regions of 18 genetically distinct North Carolina isolates from 2003 suggested that all were P. nodorum, not the morphologically similar P. avenaria f. sp. triticea. Neither the 18 isolates from 2003 nor a set of 77 isolates derived from 2004 Kinston leaf samples gave reason to suspect a mating-type imbalance in the larger P. nodorum population (P >/= 0.4). We conclude that, in North Carolina, sexual reproduction plays a role in initiation of SNB epidemics and the creation of adaptively useful genetic variability, although its relative importance in structuring this population is uncertain.  相似文献   

4.
Engle JS  Madden LV  Lipps PE 《Phytopathology》2006,96(12):1355-1362
ABSTRACT To determine the distribution of Stagonospora nodorum and Pyrenophora tritici-repentis on wheat in Ohio, flag leaves with lesions were collected from wheat-producing counties in 2002 and 2003. Counties were arbitrarily grouped into seven regions. Log-linear analysis of pathogen presence within regions indicated that the presence of S. nodorum was independent of the presence of P. tritici-repentis. A logistic analysis revealed that the occurrence of both pathogens varied by region in one or both years. The aggressiveness of S. nodorum isolates was determined by inoculating two susceptible genotypes with a subsample of isolates from each region from both years. S. nodorum isolates obtained from northeast Ohio, with fewer wheat fields, were less aggressive than those from other regions. Isolates obtained from west-central Ohio, surrounded by regions with high wheat production annually, were significantly more aggressive than those obtained in the remaining five regions. Isolates from the five other regions did not differ significantly (P > 0.05) in aggressiveness. Races 1 and 2, and a few race 3 isolates, of P. tritici-repentis were detected in Ohio. The distribution of P. tritici-repentis races 1 and 2 was not associated with any region, although the prevalence of race 1 was three times greater than race 2. The rarer race 3 was associated with three dispersed regions. Results indicate that S. nodorum was the major wheat leaf-blotching pathogen. There were no positive or negative associations of S. nodorum and P. tritici-repentis or individual races of P. tritici-repentis in any of the tested regions, which indicates that neither pathogen can be used to predict the presence of the other. The isolated northeastern corner of Ohio appeared to contain isolates of S. nodorum with unique characteristics and potentially only one race of P. tritici-repentis, indicating that this area may be genetically isolated from the remaining tested areas of the state.  相似文献   

5.
The relationships between in vitro production of cell wall-degrading enzymes and aggressiveness of three Phaeosphaeria nodorum isolates were investigated. When grown in liquid medium containing 1% cell wall from wheat leaves as the carbon source, the isolates secreted xylanase, α-arabinosidase, β-xylosidase, polygalacturonase, β-galactosidase, cellulase, β-1,3-glucanase, β-glucosidase, acetyl esterase and butyrate esterase. Time-course experiments showed different levels of enzyme production and different kinetics between isolates. A highly aggressive isolate produced more xylanase, cellulase, polygalacturonase and butyrate esterase than did the two weakly aggressive isolates. Xylanase was the most active polymer-degrading enzyme produced, suggesting a key role during pathogenesis by P. nodorum .  相似文献   

6.
Stagonospora nodorum blotch, caused by Phaeosphaeria nodorum, is considered one of the most destructive foliar diseases of wheat in the United States. However, relatively little is known about the population biology of this fungus in the major wheat-growing regions of the central United States. To rectify this situation, 308 single-spore isolates of P. nodorum were analyzed from 12 populations, five from hard red spring wheat cultivars in Minnesota and North Dakota and seven from soft red winter wheat in Indiana and Ohio. The genetic structure of the sampled populations was determined by analyzing polymorphisms at five microsatellite or simple-sequence repeat (SSR) loci and the mating type locus. Although a few clones were identified, most P. nodorum populations had high levels of gene (H(S) = 0.175 to 0.519) and genotype (D = 0.600 to 0.972) diversity. Gene diversity was higher among isolates collected from spring wheat cultivars in North Dakota and Minnesota (mean H(S) = 0.503) than in those from winter wheat cultivars in Indiana and Ohio (H(S) = 0.269). Analyses of clone-corrected data sets showed equal frequencies of both mating types in both regional and local populations, indicating that sexual recombination may occur regularly. However, significant gametic disequilibrium occurred in three of the four populations from North Dakota, and there was genetic differentiation both within and among locations. Genetic differentiation between the hard red spring and soft red winter wheat production regions was moderate (F(ST) = 0.168), but whether this is due to differences in wheat production or to geographical variation cannot be determined. These results suggest that sexual reproduction occurs in P. nodorum populations in the major wheat-growing regions of the central United States, and that geographically separated populations can be genetically differentiated, reflecting either restrictions on gene flow or selection.  相似文献   

7.
A review of Septoria diseases of wheat is given with particular emphasis on the resistance of this host to Septoria nodorum Berk. Following a general historical outline, the effects of glume blotch on the wheat plant are described, including symptoms and physiological changes. Brief reference is made to epidemiological studies, and then resistance breeding and genetic studies are discussed. The role of antifungal compounds in resistance is dealt with in more detail, and with reference to the author's own research results. It is concluded that no single mechanism of resistance of wheat to S. nodorum emerges and that the resistance factors appear to be varying quantitatively rather than qualitatively.  相似文献   

8.
Interactions between Erysiphe graminis f.sp. tritici and Septoria nodorum on wheat were studied in the greenhouse and in a 2-year field experiment using artificial inoculation. The integrated form of the logistic growth model dy/dt = ry (1 -y/K ), with infection rate r and final accumulated disease K , was fitted to the disease progress data. Septoria nodorum substantially reduced the disease severities of E. graminis , and caused significant reductions of at least 60% in final accumulated disease K of E. graminis. In the field trials, E. graminis increased the final accumulated disease K of S. nodorum. Owing to the extremely low severity of E. graminis , the increase of S. nodorum severity was small, and significance was given in one of the two years only, with an increase in K of roughly 30%. In the pot experiment, final accumulated disease K of S. nodorum remained unchanged, but there was a significant 30% increase in the infection rate r of S. nodorum. The difference between field and pot trials was explained by the climatic conditions in the greenhouse which excluded secondary infections of 5. nodorum , and which are important factors for disease progress in the field.  相似文献   

9.
Yellow or tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (caused by Phaeosphaeria nodorum) occur together and are a constraint to wheat yields in Australia. Recently, higher crop yields and lower fungicide costs have made fungicides an attractive management tool against these diseases. Yield-loss under different rates of progress of yellow spot and septoria nodorum blotch was examined in four experiments over three years to define the relationship between disease severity and yield. In these experiments, differences in disease were first promoted by inoculations either with P. tritici-repentis-infected stubble or aqueous spore suspensions of P. nodorum. Disease progress was further manipulated with foliar application of fungicide. The pattern of disease development varied in each year under the influence of different rainfall patterns. The inoculation and fungicide treatments produced differences in disease levels after flag leaf emergence. The infection of yellow spot or septoria nodorum blotch caused similar losses in grain yield, ranging from 18% to 31%. The infection by either disease on the flag or penultimate leaf provided a good indication of yield-loss. Disease severity on flag leaves during the milk stage of the crop or an integration of disease as area under the disease progress curve on the flag leaves based on thermal time explained more than 80% variance in yield in a simple regression model. The data provided information towards the development of disease management strategies for the control of septoria nodorum blotch and yellow spot.  相似文献   

10.
Single-spore cultures of wheat- and barley-adapted isolates of Septoria nodorum were serially passaged through detached leaves of wheat or barley. Rare instances of change in host adaptation were observed after passaging but associated changes in other characters, including heterokaryon compatibility, identified the changed isolates as contaminants. Inoculation of progressively more dilute spore suspensions to detached leaves revealed that some isolates were highly infective to the host to which they were adapted, with a high probability of a single spore initiating infection. Inocula deliberately contaminated with a small proportion of spores of opposite host adaptation revealed changes when passaged on wheat that mimicked the rare changes observed on passaging pure wheat- or barley-adapted isolates. These results suggest that adaptation to wheat or barley is a stable property of pure cultures of S. nodorum and that the occasional changes in host adaptation observed on passaging result from selection of contaminants.  相似文献   

11.
Necrotrophic effectors (also known as host-selective toxins) are important determinants of disease in the wheat-Stagonospora nodorum pathosystem. To date, five necrotrophic effector-host gene interactions have been identified in this system. Most of these interactions have additive effects while some are epistatic. The Snn4-SnTox4 interaction was originally identified in a recombinant-inbred population derived from a cross between the Swiss winter wheat cultivars 'Arina' and 'Forno' using the S. nodorum isolate Sn99CH 1A7a. Here, we used a recombinant-inbred population consisting of 121 lines developed from a cross between the hexaploid land race Salamouni and the hexaploid wheat 'Katepwa' (SK population). The SK population was used for the construction of linkage maps and quantitative trait loci (QTL) detection using the Swiss S. nodorum isolate Sn99CH 1A7a. The linkage maps developed in the SK population spanned 3,228 centimorgans (cM) and consisted of 441 simple-sequence repeats, 9 restriction fragment length polymorphisms, 29 expressed sequence tag sequence-tagged site markers, and 5 phenotypic markers. The average marker density was 6.7 cM/marker. Two QTL, designated QSnb.fcu-1A and QSnb.fcu-7A on chromosome arms 1AS and 7AS, respectively, were associated with disease caused by the S. nodorum isolate Sn99CH 1A7a. The effects of QSnb.fcu-1A were determined by the Snn4-SnTox4 interaction and accounted for 23.5% of the phenotypic variation in this population, whereas QSnb.fcu-7A accounted for 16.4% of the phenotypic variation for disease but was not associated with any known effector sensitivity locus. The effects of both QTL were largely additive and collectively accounted for 35.7% of the total phenotypic variation. The results of this research validate the effects of a compatible Snn4-SnTox4 interaction in a different genetic background, and it provides knowledge regarding genomic regions and molecular markers that can be used to improve Stagonospora nodorum blotch resistance in wheat germplasm.  相似文献   

12.
ABSTRACT Population genetic and epidemiological studies have resulted in different hypotheses about the predominant source of primary inoculum in the Phaeosphaeria nodorum-wheat pathosystem (i.e., sexually derived, windborne ascospores versus asexual or seedborne inoculum). We examined the genetic structure of seedborne populations of P. nodorum as a further step toward evaluating the hypothesis that seedborne inoculum is an important contributor to foliar epidemics in New York's rotational wheat fields. In all, 330 seedborne isolates from seven field populations were genotyped at 155 amplified fragment length polymorphism loci. Seedborne populations possessed high levels of genotypic diversity, with virtually every isolate (326/330) having a unique haplotype. As in previous population genetic studies of P. nodorum, we found low levels of gametic disequilibrium, although we could reject the null hypothesis of random mating with the index of association test for two populations. Thus, genotypically diverse and seemingly panmictic populations of P. nodorum that have been observed in wheat foliage could be derived from seedborne primary inoculum. Although sexual reproduction and recombination may contribute to the diversity of foliar populations of P. nodorum, population genetic data do not rule out seed as a source of primary inoculum. Further experimentation will be needed to determine definitively the relative importance of windborne ascospores and seed-borne asexual inoculum in epidemics of Stagonospora nodorum blotch in New York.  相似文献   

13.
Drechslera tritici-repentis , anamorph of Pyrenophora tritici-repentis , was found in diamond-shaped, dark-brown lesions on leaves of several winter wheat crops in England and Wales. Lesions were darker than the otherwise similar lesions caused by Septoria nodorum.  相似文献   

14.
An experiment started in spring 1979 tested the effects of different treatments to perennial ryegrass, established as pure stands or undersown in spring wheat, on the severity of septoria diseases on the grass and in a following crop of winter wheat, sown in autumn 1980. Other plots were fallowed in 1979 and 1980 before sowing to winter wheat, also in autumn 1980.
Septoria tritici was most severe in winter wheat after fallow and least severe in wheat that had been direct-drilled after ryegrass. These effects were attributed to differences in amounts of available nitrogen, and consequent differences in crop growth, rather than to any differences in primary inoculum.
Symptoms attributed to S. nodorum on the ryegrass were more common where the grass had been established under spring wheat than where it had been sown as a pure stand. They also tended to be more common where ryegrass had been inoculated with spores of S. nodorum than where it had been sprayed with captafol. Similar effects on symptoms attributed to Septoria spp. (mostly S. tritici ) on the wheat were apparent in July. The results support the conclusion that the greater severity of septoria diseases that often occurs on wheat after grass than after non-graminaceous breaks, is probably due in part to survival of the pathogens on grass and, in some circumstances, on debris remaining from a previous wheat crop. However, other factors are also likely to be involved.  相似文献   

15.
ABSTRACT Stagonospora nodorum blotch (SNB) often develops explosively on upper leaves and glumes of wheat. Inoculum for late season infections may arise from early disease foci in the lower canopy or from recent immigration of wind-dispersed ascospores. Research was conducted to determine if foci of SNB are present and secondary spread has occurred in fields before tiller elongation. We determined the incidence of infection by Stagonospora nodorum for plants sampled at the mid-tillering stage in 96 1-m(2) quadrats in each of two fields. Isolates of S. nodorum were recovered from 32 quadrats, one per infected plant where possible. Multilocus restriction fragment length polymorphism haplotypes were determined for each isolate. Of 55 isolates collected from one field, there were 22 distinct haplotypes. Diseased plants were aggregated in both fields; aggregates sometimes extended to adjacent quadrats. Plants within aggregates were often infected by the same haplotype, suggesting that secondary spread had occurred. Foci overlapped because some aggregates were infected by more than one haplotype. Our results show that genetically diverse populations of S. nodorum were already established in fields before canopy development and were comprised of sometimes overlapping foci undergoing clonal expansion.  相似文献   

16.
The effect of nutrients on reduction of the germination and mycelial growth of Septoria nodorum by the fungicides propiconazole, fenpropimorph and prochloraz, and on the reduction of S. nodorum infection by prochloraz, was tested on wheat plants in a controlled environment. The nutrients tested were aphid honeydew, sucrose, a mixture of amino acids and combinations of sucrose with yeast extract and amino acids, all in different concentrations. All nutrients could stimulate S. nodorum infection in combination with the tested prochloraz concentrations (4.5–45 mg a.i./1), but amino acids did not significantly stimulate infection in the fungicide-free treatments. The stimulating effect of the nutrients was generally stronger with higher nutrient/fungicide ratios. Aphid honeydew had more effect than its main components sucrose and amino acids separately. Antagonism between nutrients and prochloraz was determined with the Colby method and from dose-response curves by comparing ED50 S and drawing antagonism isoboles. Aphid honeydew, sucrose and amino acids caused an up to 10-fold increase of the ED50 and can be considered antagonistic to prochloraz.  相似文献   

17.
ABSTRACT Our goal was to develop a simple model for predicting the incidence of wheat seed infection by Stagonospora nodorum across western and central New York in any given year. The distribution of the incidence of seed infection by S. nodorum across the region was well described by the beta-binomial probability distribution (parameters p and theta). Mean monthly rainfalls in May and in June across western and central New York were used to predict p. The binary power law was used to predict theta. The model was validated with independent data collected from New York. The predicted distribution of seed infection incidence was not statistically different from the actual distribution of the incidence of seed infection.  相似文献   

18.
ABSTRACT A marked-isolate, release-recapture experiment was conducted to assess the relative contributions of seed-transmitted (released isolates) versus all other inocula to foliar and grain populations of Phaeosphaeria nodorum in winter wheat rotated with nonsusceptible crops in New York and Georgia, United States. Seed infected with two distinct groups of marked isolates of P. nodorum containing rare alleles (identified by amplified fragment length polymorphisms [AFLPs]) and balanced for mating type were planted in experimental field plots in two locations in each state. Recapture was done by isolating P. nodorum from leaves showing necrotic lesions at spring tillering and flowering stages, and mature grains from spikes showing glume blotch. Isolates from these samples were genotyped by AFLPs and categorized as released or nonreleased to infer sources of inoculum. Both infected seed and other sources of the pathogen contributed significant primary inocula to populations recovered from leaves and harvested grain. Seed-transmitted genotypes accounted for a total of 57% of all isolates recovered from inoculated plots, with a range of 15 to 90% of the populations of P. nodorum collected over the season in individual, inoculated plots at the four locations. Plants in the noninoculated control plots also became diseased and 95% or more of the isolates recovered from these plots were nonreleased genotypes. Although other potential sources of P. nodorum within and adjacent to experimental plots were not ruled out, nonreleased genotypes likely were derived from immigrant ascospores potentially from sources at a considerable distance from the plots. Our results suggest that, although reduction of seedborne inoculum of P. nodorum may delay foliar epidemics, this strategy by itself is unlikely to result in high levels of control in eastern North America because of the additional contribution from alternative sources of inoculum.  相似文献   

19.
ABSTRACT A toxin, designated SnTox1, was partially purified from culture filtrates of isolate Sn2000 of Stagonospora nodorum, the causal agent of wheat leaf and glume blotch. The toxin showed selective action on several different wheat genotypes, indicating that it is a host-selective toxin (HST). The toxic activity was reduced when incubated at 50 degrees C and activity was eliminated when treated with proteinase K, suggesting that the HST is a protein. The synthetic hexaploid wheat W-7984 and hard red spring wheat Opata 85, the parents of the International Triticeae Mapping Initiative (ITMI) mapping population, were found to be sensitive and insensitive, respectively, to SnTox1. The ITMI mapping population was evaluated for toxin reaction and used to map the gene conditioning sensitivity. This gene, designated Snn1, mapped to the distal end of the short arm of chromosome 1B. The wheat cv. Chinese Spring (CS) and all CS nullisomic-tetrasomic lines were sensitive to the toxin, with the exception of N1BT1D. Insensitivity also was observed when the 1B chromosome of CS was substituted with the 1B chromosome of an insensitive accession of Triticum dicoccoides. In addition, a series of 1BS chromosome deletion lines were used to physically localize the sensitivity gene. Physical mapping indicated that Snn1 lies within a major gene-rich region on 1BS. This is the first report identifying a putative proteinaceous HST from S. nodorum and the chromosomal location of a host gene conferring sensitivity.  相似文献   

20.
Stagonospora nodorum blotch (SNB) caused by Stagonospora nodorum is a severe disease of wheat (Triticum aestivum) in many areas of the world. S. nodorum affects both seedling and adult plants causing necrosis of leaf and glume tissue, inhibiting photosynthetic capabilities, and reducing grain yield. The aims of this study were to evaluate disease response of 280 doubled haploid (DH) individuals derived from a cross between resistant (6HRWSN125) and susceptible (WAWHT2074) genotypes, compare quantitative trait loci (QTL) for seedling and adult plant resistance in two consecutive years, and assess the contribution of QTL on grain weight. Flag leaves and glumes of individuals from the DH population were inoculated with mixed isolates of S. nodorum at similar maturity time to provide accurate disease evaluation independent of morphological traits and identify true resistance for QTL analysis. Fungicide protected and inoculated plots were used to measure relative grain weight (RGW) as a yield-related trait under pathogen infection. The lack of similar QTL and little or no correlation in disease scores indicate different genes control seedling and adult plant disease and independent genes control flag leaf and glume resistance. This study consistently identified a QTL on chromosome 2DL for flag leaf resistance (QSnl.daw-2D) and 4BL for glume resistance (QSng.daw-4B) from the resistant parent, 6HRWSN125, explaining 4 to 19% of the phenotypic variation at each locus. A total of 5 QTL for RGW were consistently detected, where two were in the same marker interval for QSnl.daw-2D and QSng.daw-4B indicating the contribution of these QTL to yield related traits. Therefore, RGW measurement in QTL analysis could be used as a reliable indicator of grain yield affected by S. nodorum infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号