首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Development of a small‐scale method to measure dough extensibility, using a 2‐g mixograph and the TA.XT2 texture analyzer (TA) equipped with Kieffer rig, suitable for early‐generation wheat quality screening is presented. Three hook speeds 3.3, 7.0, and 10.0 mm/sec were tested on the TA. Only at the lower hook speed of 3.3 mm/sec were wheats, varying in quality, clearly differentiated. The ability to differentiate between wheats using the TA was compared with the Brabender Extensigraph. The sample ranking based on the resistance to extension (Rmax) from the TA at a hook speed of 10.0 mm/sec correlated highly (r = 0.99) to the ranking obtained on the extensigraph. Dough extensibility data from the extensigraph and the TA, using hook speed 10.0 mm/sec, was correlated (r = 0.90) to loaf volume. Similarly, dough extensibility on the TA, using hook speed 3.3 mm/sec, was correlated to loaf volume (r = 0.96). The effect of three dough water contents (farinograph absorption, farinograph absorption + 6%, and 2‐g mixograph water absorption) on physical properties of dough were evaluated by mixing the dough in a 2‐g mixograph and testing the extensibility on the TA. Dough prepared at farinograph absorption + 6% and at mixograph absorption allowed differentiation between wheats based on the resistance to extension (Rmax).  相似文献   

2.
《Cereal Chemistry》2017,94(2):270-276
The extensigraph is an internationally accepted method for measurement of physical properties of dough subjected to mechanical handling and resting. Standard extensigraph methods ( 1 , ISO 5530‐2) use the farinograph for the preparation of dough in the presence of 2% salt at reduced water absorption (farinograph absorption minus 2–3%). However, the dough so prepared is usually underdeveloped and drier than typically seen in common baking processes. In addition, the standard extensigraph test is time consuming and requires a large sample size. In this study, an alternate dough preparation protocol is proposed, consisting of a Swanson‐type pin mixer at reduced salt (1%) and elevated water absorption (farinograph absorption plus 4%). With the alternate method, dough is fully developed and similar to bread dough in physical properties. 1 is followed for dough rounding, molding, resting, and stretching by using the Brabender Extensograph‐E instrument. Strong correlations for resistance to extension (r = 0.90) and area (r = 0.92) were found between the modified and standard dough preparation methods. This protocol requires much less flour sample and significantly increases sample throughput.  相似文献   

3.
Gluten aggregation properties were investigated by means of the GlutoPeak device, a viscometer recently proposed as a rapid and sensitive test for measurement of wheat flour technological performance. In this study, 62 soft wheat flour samples of different quality and end use were utilized to evaluate if the GlutoPeak parameters could adequately predict chemical and rheological characteristics of soft wheat flour dough, that is, protein content measured by the Kjeldahl method, dough strength measured by a Chopin alveograph, and dough stability and water absorption measured by a Brabender farinograph. Linear correlation analysis showed that most GlutoPeak curve parameters were strongly correlated with protein content, dough strength, and water absorption. The statistical models, obtained by a stepwise multiple regression method, showed the GlutoPeak device to be a promising tool to characterize wheat flour (Radj2 = 0.84 for protein content, Radj2 = 0.71 for dough strength, and Radj2 = 0.67 for water absorption). The rather high accuracy of the prediction models for the three mentioned parameters confirmed that GlutoPeak parameters are well correlated with other frequently used flour quality parameters and are able to describe flour technological performance.  相似文献   

4.
Measurements of creep‐recovery of flour‐water doughs were made using a dynamic mechanical analyzer (DMA) in a compression mode with an applied probe force of 50 mN. A series of wheat flour and blend samples with various breadmaking potentials were tested at a fixed water absorption of 54% and farinograph optimum water absorption, respectively. The flour‐water doughs exhibited a typical creep‐recovery behavior of a noncross‐linked viscoelastic material varying in some parameters with flour properties. The maximum recovery strain of doughs with a fixed water absorption of 54% was highly correlated (r = 0.939) to bread loaf volume. Wheat flours with a large bread volume exhibited greater dough recovery strain. However, there was no correlation (r = 0.122) between maximum creep strain and baking volume. The maximum recovery strain of flour‐water doughs also was correlated to some of the parameters provided by mixograph, farinograph, and TA‐XT2 extension.  相似文献   

5.
Gliadins are among the most important protein fractions affecting wheat baking quality, but they are also plant allergens and a cause of celiac disease or food intolerance. Therefore, we investigated how gliadin immunoreactivity and dough rheological properties are influenced by thioredoxin, a regulatory disulfide protein that can reduce disulfide bonds, a typical motive in many allergenic proteins. Ten winter wheat genotypes of different qualities were analyzed. Reduction by thioredoxin strongly (>50%) decreased gliadin immunoreactivity as estimated by enzyme‐linked immunosorbent assay with immunoglobulin E (IgE) sera from allergic patients and standard antigliadin antibodies but did not significantly affect dough rheological properties. Most parameters from the Brabender extensigraph were only slightly lower. Simultaneously, the farinograph curve exhibited a drawdown dislocation, possibly due to increased water absorption by modified flour, and dough consistency visibly improved. Results suggest that thioredoxin may be a universal natural beneficial modifier, able to significantly decrease gliadin immunoreactivity (hence its potential allergenicity) without decreasing the unique technological properties of wheat flour.  相似文献   

6.
《Cereal Chemistry》2017,94(3):409-416
The chapatti and breadmaking quality of nine (eight Indian and one Australian) wheat (Triticum aestivum L.) cultivars was compared. The extension of a chapatti strip measured with a Kieffer dough extensibility rig correlated with chapatti scores for overall quality (r = 0.84), pliability (r = 0.91), hand feel (r = 0.72), chapatti eating quality (r = 0.68), and taste (r = 0.80). Overall chapatti quality also correlated with the resistance to extension of a chapatti strip (r = 0.68) when tested for uniaxial extension with a texture analyzer. The texture analyzer provided objectivity in the scoring of chapatti quality. The high‐molecular‐weight glutenin subunit protein composition assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis did not correlate with the overall chapatti score. A negative correlation was found between chapatti and bread scores (r = −0.77). The different requirements for chapatti and bread quality complicate the breeding of new wheat varieties and the exchange of germplasm between regions producing wheat for chapatti and those supplying bread producers.  相似文献   

7.
Dough strength is needed for efficient breadmaking quality. This property is strongly influenced in wheat (Triticum aestivum L.) by gluten seed storage proteins and, in particular, by high‐molecular‐weight (HMW) glutenin subunit composition. Experiments were designed to elevate expression of a key native HMW glutenin subunit (1Dy10) via genetic engineering and to determine whether resultant flours can be used in sponge and dough applications, the most common commercial bread‐baking procedure. Both unblended and blended samples from transgenic and nontransgenic sister lines were tested, with blended samples being formed by addition to a control sample. Dough properties, as determined by farinograph evaluation, were improved by the transgene‐encoded increases in 1Dy10 in both undiluted and blended flours. Mean farinograph stability of transgenic samples was twice that of the control, and blends with transgenic samples demonstrated increases in stabilities proportional to the amount of transgenic flour included. Mean farinograph quality numbers of transgenic samples, and of all blends containing transgenic flour, were significantly higher than both the control and all nontransgenic treatments. In the sponge and dough bake procedure, undiluted transgenic samples induced lower scores, relative to both control and undiluted nontransgenic samples, for water absorption, crumb body firmness, and loaf volume. In blends, however, the transgenic samples resulted in improvements in some sponge and dough loaf attributes, including loaf symmetry and crumb color score, without any concomitant loss of loaf volume in transgenic blends. These improved variables relate to finished product appearance and to consumer selection in markets. The use of transgenic flours with increased 1Dy10 glutenin content in commercial blends could provide advantages in sponge and dough bake applications.  相似文献   

8.
Improvement of food processing quality has become a major breeding objective in China. Nineteen Chinese leading winter wheat cultivars with improved quality and two Australian cultivars with high bread and noodle-making qualities were sown in four locations for two years to investigate dough properties, pan bread, and Chinese white salted noodle (CWSN) qualities, and their association with the quantity of protein fractions. The results indicated that genotype, environment, and genotype-by-environment interaction significantly affected most of quality traits and amount of protein fractions. Genotype mainly determined the quantity of gluten protein fractions and pan bread quality parameters, while environment was the most important source of variation for the noodle quality parameters. Chinese cultivars were characterized by acceptable protein content (11.1–13.4%), medium to strong dough strength (maximum resistance 176.9–746.5 BU), medium to poor dough extensibility (166.5–216.4 mm), fair to very good pan bread qualities, and good to very good CWSN qualities. Gliadin contributed more in quantity to protein content (r = 0.80, P < 0.001), however, glutenin and its subgroups were more important to dough strength. The quantity of glutenin, HMW-GS, and LMW-GS were highly and significantly correlated with dough strength-related traits such as farinograph development time, stability, extensigraph maximum resistance, and extension area (r = 0.70–0.91, 0.65–0.89, and 0.70–0.91, respectively; P < 0.001). The quantity of LMW-GS could explain 82.8% of the total variation of dough maximum resistance. The quantity of gliadin and the ratio of HMW-GS to LMW-GS determined dough extensibility (r = 0.75 and r = –0.59, respectively; P < 0.001 and P < 0.01, respectively). Higher quantity of glutenin and lower ratio of gliadin to glutenin resulted in higher bread score with r = 0.70 (P < 0.001) and r = –0.74 (P < 0.001), respectively. However, protein content and its fractions have a moderate undesirable effect on CWSN parameters such as color, firmness, and taste. Therefore, both allelic variation and quantity of storage protein fractions should be considered in breeding cultivars with improved pan bread making quality.  相似文献   

9.
《Cereal Chemistry》2017,94(3):513-518
In this research, the relationship between dough rheology and water behavior was investigated in response to two osmotic regulators, salt (NaCl) and polyethylene glycol (PEG), using two Canadian Western Red Spring (CWRS) wheat varieties (Harvest and Pembina). The effects of NaCl (0.5, 1.0, and 1.5 g/100 g of flour) and PEG 400 (2.5, 5.0, and 7.5 g/100 g of flour) on dough rheology (oscillatory and creep) were estimated by using a central composite design. Variation of NaCl showed a significant effect on the phase angle δ, indicating that increasing the NaCl resulted in a more elastic dough. The opposite trend was observed with the addition of PEG. PEG 400 exerted a softening effect owing to plasticization, so that a more compliant liquid‐like dough was produced. The effects of water content (±10% of farinograph absorption) and PEG molar mass on dough rheology and freezable water content were estimated by using a full factorial design. PEGs with different molar mass (400, ≈1,600, and 3,350 g/mol) were added at a concentration of 1 g/100 g of flour. The water content significantly affected all dough rheological attributes, whereas PEG molar mass had no effect. The complex shear modulus (G* ) decreased with increasing water content, and dough creep compliance (J max) increased. The elastic response of dough, determined as the relative elastic part (J el) decreased with increasing water content. A high correlation was found between the freezable water content and dough rheological attributes.  相似文献   

10.
The relationship of solvent retention capacity (SRC) values with four solvents, alveograph and farinograph properties, and cookie‐baking performance was evaluated with 20 Chinese soft wheat genotypes, including four cultivars and 16 advanced lines grown in the 2009–2010 season. Significant positive correlations were observed between water SRC (WSRC), sodium carbonate SRC (SOSRC), lactic acid SRC, and sucrose SRC (SUSRC) values. WSRC, SUSRC, and SOSRC showed significant positive correlations with farinograph water absorption (WA), alveograph P (tenacity), and P/L (ratio of tenacity to extensibility). Cookie diameter was significantly correlated with wet gluten (r = –0.491, P < 0.05), WSRC (r = –0.882, P < 0.001), SUSRC (r = –0.620, P < 0.01), SOSRC (r = –0.712, P < 0.001), P (r = –0.787, P < 0.001), L (r = 0.616, P < 0.01), P/L (r = –0.766, P < 0.001) and WA (r = –0.620, P < 0.01), respectively. SRC values were effective predictors of cookie quality in Chinese soft wheat. Alveograph parameters were more closely correlated to cookie quality than were farinograph parameters.  相似文献   

11.
Canada Western Red Spring (CWRS) wheat exhibits consistent positive relationships between kernel weight and farinograph and baking water absorption. These relationships are sufficiently robust to be statistically significant (P < 0.05) for historical Canadian Grain Commission harvest survey data generated one year apart for 17 years, and for historical data on individual cultivars in advanced Canadian wheat breeding trials, also generated annually. Verification of the relationships were obtained by analyzing different kernel size fractions obtained by sieving CWRS harvest survey samples and pure CWRS cultivars from various origins. In all cases, highly significant positive relationships were observed between kernel size and water absorption. The relationships were evident for individual streams from pilot‐scale millings of sized fractions from CWRS harvested in two different years. Strong correlations of kernel weight to farinograph and baking absorption also were shown for sized fractions from commercial samples of American Dark Northern Spring and Australian Prime Hard wheat. The strong statistical association between kernel size and water absorption could not be explained on the basis of wheat hardness (flour starch damage), protein content, or dough strength. In view of the importance of flour water absorption to bakers, further investigation is warranted to identify the cause for the association between large kernel size and high water absorption.  相似文献   

12.
This study applied the use of a new small‐scale apparatus, the micro Z‐arm mixer, which has analogous mixing action to that of the traditional valorigraf and farinograph. A novel methodology has been developed for prediction of water absorption replacing the traditional titration method. The basis of this technique is a common characteristic of wheat flour samples: a reasonably constant slope (20–25.7 BU%) of the relationship between dough resistance and the amount of water present during mixing. Using an average slope value, prediction of water absorption was possible from a single measurement using a simple equation and with a standard error of 1.65%. Applications of the new mixer to cereal research are highlighted, including investigation of the effects of flour protein content and protein composition on mixing properties and water absorption. When protein content and protein composition have been systematically altered by the addition of isolated proteins into the flour, both dough development time (DDT) and water absorption increased when protein content was increased by glutenin addition and decreased when protein content was decreased by starch addition. Gliadin addition decreased DDT; gluten addition slightly increased DDT; glutenin addition significantly increased DDT. Water absorption was not affected by altering the glutenin‐to‐gliadin ratio, but it changed in proportion to the amount of protein added. The effect of HMW‐GS composition on the mixing requirement obtained with the micro Z‐arm mixer and with the 2‐g mixograph was also investigated using a set of single‐, double‐, and triple‐null lines for HMW‐GS coding genes. While subunits coded on the GluD1 locus were most important for determining the mixing requirement in both cases, the sample ranking was different in the two mixing actions. A better differentiation ability of the micro Z‐arm mixer was established for triple‐ and double‐null lines.  相似文献   

13.
A new fractionation procedure based on differential solubility was applied to wheat flour proteins to evaluate the relationship between protein fractions and functionality for breadmaking. Flour was initially extracted with 50% 1-propanol. Monomeric proteins (mainly gliadins) and soluble glutenin contained in the 50% propanol soluble extract were fractionated by selective precipitation of the glutenin by increasing the concentration of 1-propanol to 70%; monomeric proteins remain in the supernatant. Insoluble glutenin in the 50% propanol insoluble residue was extracted using 50% 1-propanol containing 1% dithiothreitol (DTT) at 60°C. Protein in the final residue was extracted using SDS with or without DTT. It comprised mainly Glu-1D high molecular weight glutenin subunits and nongluten polypeptides. For seven Canadian cultivars of diverse breadmaking quality, there was relatively little variation in the percentage of flour protein corresponding to monomeric proteins (48–52%) and residue protein (14–18%). In contrast, intercultivar variation in soluble and insoluble glutenin was substantial, with contents of 10–20% and 12–28% of flour protein, respectively. Soluble and insoluble glutenin were also highly correlated with physical dough properties, accounting for 83–95% of the variation of individual dough rheological parameters (except dough extensibility), and ≈ 74% of the variation in loaf volume. In contrast, monomeric and residue protein fractions were poorly associated with breadmaking quality. However, among the four protein fractions, only residue protein was significantly correlated (r = -0.79) with dough extensibility. The flour sample with the highest and lowest concentrations of insoluble and soluble glutenin, respectively, as well as marginally the lowest concentrations of monomeric and residue proteins was Glenlea, a cultivar of the Canada Western Extra Strong Red Spring wheat class which characteristically possesses distinctly strong dough mixing properties.  相似文献   

14.
The Rheo Extrusion Meter (REM) measures the time for vertical upward extrusion of wheat flour dough (subsequently referred to as extrusion time, ET) as a measure of its consistency. ET evidently increases with dough consistency. ETs are highly reproducible and sensitive to differences in dough moisture content. A single REM analysis takes 20 min, and the measured ET can be converted into the correct baking absorption at a given temperature. The heights of the extruded dough pieces are negatively correlated with straight‐dough bread loaf specific volume, both when comparing different flour samples and when adjusting moisture content of dough prepared from a given flour sample. The REM also allows determination of the consistency of complex wheat flour based systems and the impact of vital wheat gluten or ascorbic acid thereupon. Furthermore, in contrast to the farinograph, it detects the impact of endoxylanases hydrolyzing water‐extractable arabinoxylan on dough consistency.  相似文献   

15.
《Cereal Chemistry》2017,94(5):909-915
Gluten aggregation behaviors of wheat flour were evaluated using a high‐shear‐based method with the GlutoPeak instrument and related to flour functional properties. GlutoPeak peak time (PT) and peak area (PA) were positively associated with gluten strength but negatively affected by farinograph absorption (FAB). GlutoPeak maximum torque (T max) was highly positively (P < 0.001) correlated with FAB regardless of gluten strength. PT and PA increased with the decrease of FAB. This could result in overestimation of gluten strength owing to water absorption. To account for the impact of FAB, a new parameter GlutoPeak strength index (GSI) was introduced for predicting gluten strength. GSI was obtained by multiplying T max and PA. This arithmetic product was found to provide greater correlation (r = 0.91) with dough strength than those of PA (r = 0.84) or PT (r = 0.57) based on the analysis of 56 advanced breeding lines with wide range of FAB. Moreover, significant relationships were found between GSI and flour mixing and baking properties. Using 8 g of flour and with a test time of less than 10 min, the GlutoPeak instrument shows great potential as a rapid tool for gluten strength selection.  相似文献   

16.
不同品种小麦粉的粉质特性对速冻熟制面条品质的影响   总被引:2,自引:3,他引:2  
为研究不同品种小麦粉与速冻熟制面条质构特性之间的关系,选取30种小麦制粉,用FOSS定氮仪、快速黏度仪、粉质仪和拉伸仪等测定面粉品质指标,制作速冻熟制面条,用质构仪测定质构特性。采用描述性统计、主成分和聚类分析方法对30种小麦面粉和速冻熟制面条的质构关系进行了分析。结果表明:不同品种小麦粉的湿面筋、糊化温度、弱化度、粉质质量指数与硬度呈极显著相关(P0.01);蛋白质、湿面筋、总淀粉含量、最终黏度、回生值、糊化温度、粉质吸水率、粉质曲线稳定时间、面团形成时间、弱化度、粉质质量指数、拉伸曲线面积、拉伸阻力、最大拉伸阻力与剪切力呈极显著相关(P0.01);小麦粉的粉质特性,除衰减值、峰值时间和延伸度外,均与拉伸力呈极显著相关(P0.01)。根据方差贡献率提取出可以反映原变量84.023%信息的5个因子,因子1主要反映面粉的粉质拉伸特性,因子2反映小麦粉糊化特性,因子3反映蛋白质特性,因子4和因子5共同反映小麦粉的淀粉特性。这些性状在小麦粉的评价方面起着重要作用,在加工中要注重对它们的选择。聚类分析将30种小麦粉分为4类,结果表明,不能仅凭小麦粉的指标数据和质构数据来选择制作速冻熟制面条的原料,还需考虑到感官评价的影响。该结论可为小麦粉在速冻熟制面条加工应用方面提供一定的理论参考。  相似文献   

17.
Five rye lines exhibiting a wide range of extract viscosities were evaluated for the rheological and baking properties of their flours, individually and in blends with hard red spring wheat flour. Commercial cultivars of rye and triticale were included in the study as controls. Extract viscosities of rye flours were higher than those of corresponding wholemeals, indicating shifting of water-extractable arabinoxylan into flour during roller milling. Falling numbers of the rye flours correlated positively with their extract viscosities in the presence (r = 0.73, p < 0.05) or absence (r = 0.65, p < 0.05) of an enzyme inhibitor. Farinograms revealed the weakness of rye and triticale flours compared to wheat flour. Extract viscosities of rye flours were negatively correlated (r = -0.65, p < 0.05) with mixing tolerance index and positively correlated (r = 0.64, p < 0.05) with dough stability, suggesting a positive impact of extract viscosity on dough strength. Extract viscosity was negatively correlated (r = -0.74, p < 0.05) with loaf volume and specific volume (r = -0.73, p < 0.05) and positively correlated (r = 0.73, p < 0.05) with loaf weight of rye/wheat bread. Overall, the results indicated that 30% of flour from high or low extract viscosity rye could be incorporated into rye/wheat breads without seriously compromising bread quality. Inclusion of rye, particularly high extract viscosity rye, in chick diets seriously impeded growth performance and feed efficiency. Part of the arabinoxylan survived bread-making and exerted an effect on chicks, although substantially lower digesta viscosities were observed in chicks fed rye bread diets than in those fed rye wholemeals.  相似文献   

18.
Twenty-four einkorns were evaluated for agronomic traits in Italy and in Germany in replicated plot trials. After dehulling and milling, the harvested kernels, flour protein content, sedimentation volume, falling number, carotenoid, and dry gluten content were determined. Farinograph profiles were obtained with a farinograph and baking and cookie quality were evaluated with standard microtests. Significant differences in yield potential were observed between the two locations, with a three-fold increase in Germany as compared with Italy. One of the einkorn lines (ID529) had farinograph stability and degree of softening indices better than those of the control bread wheat. All the samples analyzed for breadmaking aptitude showed some degree of stickiness, but it was possible to handle the dough during the different steps of breadmaking. On average, cookies produced with einkorn flour were larger in diameter and thinner than those produced with soft wheat flour. The composition in α-, β- and γ-gliadins and in high molecular weight glutenin subunits was similar in all the lines. In contrast, the pattern exhibited in low molecular weight glutenin subunits correlated strictly with baking quality. In particular, the lines with bands arbitrarily designated a and b showed a high breadmaking potential, while the lines lacking these bands had an ample range of variability but, on average, a much lower baking potential. Our data point to a simple genetic control of the breadmaking aptitude and indicate einkorn not only as a promising source of specialty foods but also as an ideal species for genetic investigations on wheat quality.  相似文献   

19.
The rheological properties of 17 pure European wheat cultivars were analyzed and evaluated in relation to the bread volume. Rheological testing included two empirical rheological methods, farinograph and alveograph, and more fundamental creep‐recovery experiments at shear stresses of 100 and 250 Pa. Principal component analysis on the farinograph and alveograph results showed that a wide range of rheological properties was present among the wheat cultivars. Correlation analysis pointed out that creep‐recovery parameters showed significant correlations with protein content, Zeleny sedimentation value, farinograph water absorption, alveograph extensibility, and bread volume. Among the rheological parameters, maximum recovery strain at a shear stress of 250 Pa showed the highest significant correlation with the bread volume (r = 0.790**). Variables were combined to predict the bread volume by multiple linear regression. A combination of protein content, farinograph water absorption, and alveograph P/L showed the best prediction (r2 = 0.80). When taking into account the creep‐recovery parameters, the best prediction of the bread volume (r2 = 0.74) was obtained for a combination of the maximum recovery strain at a shear stress of 250 Pa with one other quality parameter (Zeleny sedimentation value, farinograph water absorption, or alveograph W).  相似文献   

20.
《Cereal Chemistry》2017,94(4):752-759
The effect of salt (NaCl) on the breadmaking quality of 37 varieties of Canadian Western Red Spring wheat (Triticum aestivum L.) was investigated along with dough stickiness for a 20 variety subset. A principal components analysis indicated that dough development time (DDT), mixing tolerance index (MTI), and stability (STA) were highly correlated. DDT showed an inverse relationship with MTI (r = –0.73) and a positive relationship with STA (r = 0.89). STA was also negatively related to MTI (r = –0.76). A reduction of salt from 2.0 to 1.1% (based on flour weight) was considered from a practical perspective. Each variety responded differently to salt reduction. Obtaining an optimal dough consistency with less salt required less work input and shorter mixing time. Overall, decreasing loaf volume with reducing salt content was observed, although certain varieties produced the opposite effect. This suggests that for a particular flour, depending on the inherent flour strength, there is a level of NaCl that produces an optimum between gluten strength and gas‐holding capacity of the dough, resulting in a loaf with good crumb texture and an even distribution of bubble sizes. A stickiness test was performed on selected varieties to evaluate the dough handling properties at 1.1 and 2.0% salt levels. The overall trend showed an increase in stickiness with a decrease in the salt content; however, certain varieties showed no change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号