首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several chemical and microbial properties of mine soils need to be measured for comprehensive assessment of the reclamation success. The objective of this study was to evaluate the ability of NIR spectroscopy to predict organic C (Corg), total N (Nt), and several microbial properties of mine soils reclaimed for forestry. Soils samples (n = 154) were collected at two reclaimed areas in central and S Poland, and their spectra in the NIR region (including the visible range, 400–2500 nm) were recorded. A half of the samples was used to develop calibration equations, and another half was used for validation. The modified partial least squares regression was applied to build calibration equations using the whole spectrum (0 to 2nd derivative). The best predictions were obtained for Corg and Nt (ratio of standard deviation to standard error of prediction in the validation stage [RPD] = 3.4 and 4.1; the regressions coefficients [a] of linear regression [measured against predicted values] = 0.94 and 0.96; correlation coefficients [r] = 0.96 and 0.97, respectively). Very well predictive models applicable for quantitative measurements were obtained also for microbial biomass, basal respiration, and the activities of dehydrogenase and acid phosphatase (RPD = 2.3–2.5, a = 0.90–0.99, r = 0.90–0.92). Prediction of urease activity was slightly worse (RPD = 2.1, a = 0.88, r = 0.87) but sufficient for rough estimation. The obtained results indicated the ability of NIR spectroscopy to predict complex soil microbial properties. Therefore, application of this analytical method may improve the assessment of recovery of microbial functions in reclaimed post‐mining barrens.  相似文献   

2.
Field application of six fungicides at twice the normal rate resulted in increases in bacterial and fungal numbers after 28 days. Members of the fungal genera Gliocladium. Penicillium and Trichoderma predominated. Fungicides when applied at the field rate decreased the concentration of NO3? -N in soils. while the level of exchangeable NH4+ -N, K, Mn and Na were generally increased. Addition of the fungicides to soil incubated in the laboratory consistently increased exchangeable Mn and K, and occasionally increased exchangeable Cu, Na and Zn. The results are discussed in relation to the microbial changes which occur, and in relation to soil fertility.  相似文献   

3.
Biochar is widely used as a soil amendment to increase crop yields. However, the details of its impact on soil properties have not been fully understood. A pot experiment was conducted using soybean (Glycine max (L.) Merr. cv. Toyoharuka) and sorghum (Sorghum bicolor (L.) Moench cv. Hybrid Sorgo) under four soil treatment combinations (cattle farmyard manure with or without biochar and rapeseed cake with or without biochar) to elucidate the mechanisms of its beneficial effects on plant growth in terms of the microbial community structure and mineral availability in soils with different types of organic manure application. The application of biochar significantly increased the growth of both species, particularly sorghum with rapeseed cake application by 1.48 times higher than that without biochar. Microbial activity in soil was also enhanced by biochar application in both species with rapeseed cake application, particularly in sorghum. Principal component analysis using Biolog EcoPlateTM data indicated that biochar application changed the microbial community structure in soil, particularly sorghum-grown soil. The changes in microbial community structure in sorghum were considered to be at least partly affected by changes in soil pH due to interaction between plant and biochar under organic manure application. Biochar application had little effect on the profile of ammonium-acetate-extractable mineral elements in soil including calcium, potassium, magnesium, sodium and sulfur with both types of manure application under soybean. Under sorghum, however, biochar with rapeseed cake manure application altered the profile. This alteration is attributable to an increase in the extractable concentration of certain metals in the soil including aluminum, cadmium and zinc, possibly caused by enhanced organic matter decomposition producing metal-chelating organic compounds. These different changes in the soil properties by biochar application may be directly or indirectly related to the different growth responses of different plant species to biochar application under organic manure application.  相似文献   

4.
海涂围垦区是陆海过渡带,围垦区土壤的传统洗盐和培肥技术易威胁近海生态环境,因此,探索新型、生态的盐土改良技术十分重要。该研究初步研究了新型微生物改良基质的盐土改良功能,结果表明微生物改良基质效果显著。相较于对照处理,微生物改良基质处理水稻产量增加了83.2%(P<0.05);土壤饱和含水率、田间持水量、总孔隙度、有机质、全氮、速效钾分别增加了13.80%、20.00%、6.80%、2.30倍、53.00%、31.00%(P<0.05);土壤容重降低了6.90%;土壤细菌、真菌和放线菌数量分别增加了10.30、11.20和3.18倍;水稻生育期累积灌溉水量减少了35.20%;0~10和>10~20cm土层可溶性盐质量分数分别降低了61.10%和54.40%。微生物改良基质能够在短期内加速盐分洗脱,提升土壤质量,是海涂新围垦区盐土改良的生态高效措施。  相似文献   

5.
The aim of this study was to evaluate the influence of reclaimed scenarios on soil enzyme activities and microbial community in a reclaimed surface coal mine on the Northwest Loess Plateau of China. Soil samples were collected from a bare land (CK), and a plantation (PL) and four mixed forests (MF1-4). Soil physicochemical characteristics, four enzyme activities and microbial abundance and T-RFLP (terminal restriction fragment length polymorphism) profiles were measured. Effects of reclaimed scenarios on soil nutrients content, enzyme activities and microbial community were pronounced. Soil organic carbon could be well used to predict the major differences in enzyme activities, and microbial abundance and composition. Soil enzyme activities were more significantly correlated with fungal abundance than bacterial and archaeal ones. The higher soil nutrient content, enzyme activities, and microbial abundance and diversity were from mixed forests and the lowest ones were from CK, which suggested mixed forests would be feasible scenarios in semi-arid Loess Plateau. Soil bacteria, archaea and fungi evolved with reclaimed process, but the influences of reclaimed scenarios on each domain of microbial abundance, diversity and composition were different. These findings suggested that soil bacteria, archaea and fungi play different ecological roles during restoration process.  相似文献   

6.
为筛选适宜改良生地土壤的绿肥品种,选取适应性较强的毛叶苕子、箭筈豌豆、草木樨、荞麦和春油菜5种不同绿肥品种进行试验,研究不同绿肥根际与非根际以及翻压后土壤养分及转化酶活性的变化趋势。结果表明:不同品种的绿肥作物根系活动导致根际与非根际生地土壤化学性状及土壤酶活性产生差异,各品种绿肥对土壤有机质和氮磷钾的富集活化作用有所不同。豆科绿肥箭筈豌豆和毛叶苕子对根际土壤脲酶的活化作用较好,其根际效应分别为3.99和4.41;春油菜、毛叶苕子对根际土壤蔗糖酶、碱性磷酸酶的活化效果好,根际效应分别为13.17、13.19和2.84、2.87;春油菜、毛叶苕子处理翻压后对土壤4种酶活性的提高效果显著。综合灰色关联法对复垦土壤化学性状及酶活性的变化分析,毛叶苕子和春油菜两种绿肥对生地土壤的改良效果较好。  相似文献   

7.
To investigate the effects of individual plant species on microbial community properties in soils of differing fertility, a microcosm experiment was carried out using plant species representative of the dominant flora in semi-fertile temperate grasslands of northern England. Soil microbial biomass and activity were found to be significantly greater in the more fertile, agriculturally improved soil than in the less productive unimproved meadow soil. Differences in microbial community structure were also evident between the two soils, with fungal abundance being greater in the unimproved soil type. Individual plant species effects significantly differed between the two soils. Holcus lanatus and Anthoxanthum odoratum stimulated microbial biomass in the improved soil type, but negatively affected this measure in the unimproved soil. In both soil types, herb species generally had negative effects on microbial biomass. Patterns for microbial activity were less consistent, but as with microbial biomass, A. odoratum and H. lanatus promoted respiration, whereas the herbs negatively affected this measure. All plant species grown in the improved soil increased the abundance of fatty acids synthesised by bacteria (bacterial phospholipid fatty acid analysis) relative to bare soil, but they negatively impacted on this group of fatty acids in unimproved soil. Similarly, the abundance of the fungal fatty acid 18:26 was increased by all plants in the more fertile improved soil only, albeit non-significantly. Our data indicate that effects of plant species on microbial properties differ markedly in soils of differing fertility, making general predictions about how individual plants impact on soil properties difficult to make.  相似文献   

8.
Abstract

Cation exchange capacity increased with both air drying (25°C) and oven drying (105°C). The initial value of exchange acidity at field moisture determines whether exchange acidity increases or decreases after drying. Exchangeable bases, particularly calcium, increase with oven drying.  相似文献   

9.
For two sites in the Black Forest, presence, extent and ecological significance of structure-dependent chemical. heterogeneity in the rhizosphere of acid forest soils is discussed. The heterogeneity is demonstrated by two independent methods. First, by comparison of soil solution composition in (quasi-) equilibrium with undisturbed soil cores and sieved soil samples. Water soluble K, Ca and Mg show a selective depletion on aggregate surfaces. Second, by comparison of cumulated amounts of exchangeable ions obtained from percolated homogenized soil samples and undisturbed soil cores. The release of exchangeable K, Ca and Mg is less, if soil structure is not destroyed. The finding that aggregate surfaces are more depleted of exchangeable and water-soluble K, Ca and Mg is common in aggregated acid forest soils. As aggregate surfaces bind soil water with low suction, that is where the roots preferentially grow. Consequently, a considerable underestimation of chemical stress in the rhizosphere is possible, if soil structure is destroyed for analysis.  相似文献   

10.
We measured soil chemical and microbial properties at a depth of 0–20 cm among mine tailings, abandoned mined land, contaminated cropland, and uncontaminated cropland around a magnesite mine near Haicheng City, Liaoning Province, China. The objective was to clarify the impact of Mg on the soils. We found that soluble Mg2+ concentration and pH were significantly higher in contaminated soils (266–345 mg kg−1 and 9·9–10·3, respectively) than in uncontaminated soils (140 mg kg−1 and 7·1, respectively). Soil nutrients (total N, total P, mineral N, available P and soluble Ca) and microbial biomass C and N decreased as pH and soluble Mg2+ concentration increased. In addition, an increase of microbial metabolic quotient and a decrease of N mineralization rate were found in contaminated soils. Soluble Mg2+/Ca2+ ratios in contaminated soils were 3·5–8·9‐times higher than in uncontaminated soils. Our results indicate that soil contamination in such magnesite mine regions is characterized by high pH, Mg2+ concentration and soluble Mg2+/Ca2+ ratio, and low microbial activity and N and P availability. Future soil amelioration in the magnesite regions should consider applying acid ameliorants to neutralize high pH and applying calcareous ameliorants to increase Ca2+ concentration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
The biological properties of soils forming on coalmine spoils composed of loose non-toxic rocks were studied. In ten years of observation, fungal biomass in the studied soils increased by 6 times; the population density of the main groups of bacteria, by 3–7 times, and the respiration intensity, by 5–6 times. The biochemical activity of the soils increased significantly; in particular, the enzymatic activity (especially, the hydrolase activity) increased by 3–8 times, and the processes of cellulose destruction and accumulation of ninhydrinpositive products intensified. The obtained results attest to colonization of the substrate by microorganisms and the development of microbial cenoses. This process is particularly active upon application of phytoameliorants.  相似文献   

12.
基于Citespace工具,对碳中和背景下的我国矿山生态修复的文献进行知识图谱可视化分析。在中国知网和Web of science网站中检索2000 ~ 2022年国内相关文献,应用Citespace 5.8 R3软件对作者、机构、关键词绘制知识图谱并进行分析。结果中英文文献分别纳入844篇和75篇,以寿立永等为代表的研究学者765位;研究机构以中国科学院为代表;生态修复为关键词频次最高的关键词。突现关键词显示,废弃矿山是人们关注的重点对象,“碳中和”是矿山生态修复的重要背景,绿色矿山是未来矿山修复的目标之一。关键词时间图谱发现矿山的生态修复是一项因地制宜、政府企业合作的实现循环共赢的一项持久战。矿山生态修复的法律政策的改善、政府企业的加入、科技技术的创新和人民意识的强化是未来的研究趋势。  相似文献   

13.
Seven agroforestry tree species were grown in a clay loam soil treated with different levels of selenate‐Se, viz. 0, 1.25, 2.5 and 5.0 mg/kg supplied through sodium selenate. After 1 year of growth, a progressive decrease in dry matter of leaves, stem and roots was observed with increasing levels of applied Se. However, a significant decrease in dry matter yield was observed only at or above 2.5 mg Se per kg soil and shisham (Dalbergia sissoo) proved to be highly sensitive to the presence of selenate‐Se in the soil. On average, the largest above‐ground and below‐ground biomass was accumulated by arjun (Terminalia arjuna) and the lowest by the acacia tree (Acacia tortillas). The selenium content of leaves, stem and roots of all the tree species increased significantly with increasing levels of applied Se, although a large variation within species was observed. In the stem portion of different trees, the highest concentration of Se was found in dek (Melia azedarach) (5.1 mg/kg) and the lowest in mulberry (Morus alba) (2.6 mg/kg). The efficiency of selenium removal (including leaves, stem and roots) was the highest in arjun followed by eucalyptus (Eucalyptus hybrid) – Clone 10, mulberry, jambolin (Syzygium cumini), dek, shisham and acacia. Effective removal of Se takes place through the stem portion of different trees where it constitutes 30–50% of total Se. Large variation in Se uptake by different tree species suggests that trees vary in their potential for phytoremediation of seleniferous soils. In one growing season, shisham aged 24 years, poplar (Populus deltoides)– Clone G 48 (10 years old) and eucalyptus – Clone 10 (10 years old) could remove 2385, 1845 and 1407 g Se per hectare respectively. Corresponding reductions in Se capital of the soil varied between 24 and 37, 19 and 29 and 14 and 32%, respectively, in the surface layer (0–15 cm) alone or 7–11, 6–9 and 4–7% for the whole soil profile (0–120 cm). Removal further increased to 4207 g Se per hectare under an agroforestry farming system of poplar–mentha/wheat with Se being reduced from 43 to 65% for the surface layer and from 13 to 20% for the whole profile.  相似文献   

14.
Atrazine is one of the most used herbicides worldwide; however, consequences of its long-term agricultural use are still unknown. A laboratory study was performed to examine changes in microbial properties following ethylamino-15N-atrazine addition, at recommended agronomic dose, to five acidic soils from Galicia (NW Spain) showing different physico-chemical characteristics, as well as atrazine application history. Net N mineralization was observed in all soils, with nitrate being the predominant substance formed. The highest values were detected in soils with low atrazine application history. From 2% to 23% of the atrazine-15N was found in the soil inorganic-N pool, the highest values being detected after 9 weeks in soils with longer atrazine application history and lower indigenous soil N mineralization. The application of atrazine slightly reduced the amount of soil N mineralized and microbial biomass at short term. Soluble carbohydrates and β-glucosidase and urease activity decreased with incubation time, but were not significantly affected by the single application of atrazine. Microbial community structure changed as consequence of both soil type and incubation time, but no changes in the phospholipid fatty acid (PLFA) pattern were detected due to recent atrazine addition at normal doses. The saturated 17- to 20-carbon fatty acids had higher relative abundance in soils with a longer atrazine history and fungal biomass, as indicated by the PLFA 18:2ω6,9, decreased with the incubation time. The results suggested that the PLFA pattern and soil N dynamics can detect the long-term impact of repeated atrazine application to agricultural soils.  相似文献   

15.
Summary Fluoride-induced changes of chemical properties and microbial activities in humus soils were investigated in 12-week lysimeter experiments. The mull soil showed the highest F-adsorption capacity, in which 94% of the fluoride added was retained after addition of 4.5 mg F/cm2 as NaF. The moder and mor soils only adsorbed 52% and 41%, respectively. F-additions induced leaching of organic matter, Fe, Al and P and increases in soil pH in the moder and mor. In contrast no Al, Fe and P was leached from the mull and only minor amounts of organic matter dissolved after a single application of 4.5 mg F/cm2. Treatments with NaF up to 3700 mg F/kg did not significantly reduce respiration in any of the humus forms. Dehydrogenase, alkaline phosphatase and arylsulfatase activities as well as nitrification were inhibited at much lower F-additions in the moder and mor soils. A significant decrease in ammonification was observed in the moder. In contrast, microbial processes in the mull soil were not inhibited. This is due to its high adsorption capacity and the relatively low toxicity of F-ions. According to computations using GEOCHEM, the F-ion was the most abundant species in mull lysimeter leachates. Leachates of moder and mor soils contained mainly AIF-complexes (90%–99%). The lack of any effects from NaF treatment on soil respiration is attributed to the observed positive effects, e.g. dissolution of organic matter, desorption of P and increases in soil pH.  相似文献   

16.
Agrichemicals usually contaminate groundwater via preferential flow, therefore determination of the preferential flow characteristics of soil is needed. One model that predicts solute transport due to preferential flow is the mobile–immobile (MIM) solute-transport model, which partitions total water content (θ; m3 m?3) into mobile (θm) and immobile fractions (θim). In undisturbed soils, a method is proposed for determining the MIM model parameters, i.e. immobile water fraction (θim), mass transfer coefficient (α) and hydrodynamic dispersion coefficient (D h). Breakthrough curves were obtained for five different soil textures in three replicates, by miscible displacement of Cl? in undisturbed soil columns. Cl? breakthrough curves were evaluated in terms of the MIM model. Analysis suggests that the values of D h and α increased with lighter soil textures and θim increased with heavier soil textures. The values of θim ranged from 5.31 to 14.28% in different soil textures. Furthermore, values of θim were found to be related to soil clay content. Values of α ranged from 0.0257 to 0.32 h?1 and values of D h ranged from 0.36 to 11.2 cm2 h?1 in different soil textures. A significant linear correlation was obtained between α, θim, D h and soil saturated hydraulic conductivity (K s) and pore water velocity (v). A multivariate pedotransfer function was developed to estimate α, θim and D h based on the geometric mean (d g) and the standard deviation (σg) of the diameter of soil particles and soil organic matter content. The pedotransfer functions for D h, θim and α were validated by independent data sets from other investigators.  相似文献   

17.
Microbial biomass C, N, total organic C, N and mineralizable N were measured in newly reclaimed wetland sandy loam rice soil with a very low nutrient status. Microbial biomass C increased 5.4–10.4 times due to application of barnyard manure, but decreased drastically to 24–27% during rice cultivation. Organic C and N contents also decreased during cultivation, but to a lesser extent to 59–76%. At the tillering stage of the rice plant, microbial biomass N was highly correlated with mineralizable N (r=0.986).  相似文献   

18.
菌剂与肥料配施对矿区复垦土壤白三叶草生长的影响   总被引:2,自引:0,他引:2  
采用盆栽试验研究了矿区复垦土壤菌剂与肥料的不同配施对白三叶草(Trifolium repens Linn)生长的影响。结果表明: 双接种VA 菌根真菌(Glomus mossea)和根瘤菌(Rhizobium)能显著提高白三叶草根瘤数、根瘤鲜重和固氮酶活性, 根瘤数在有机肥双接种与无机肥双接种处理之间差异不显著, 而根瘤鲜重和固氮酶活性差异显著; 肥料与各菌剂组合处理中, 有机肥双接种处理的白三叶草分枝数、干物质重最大; 在白三叶草生长40 d 和150 d 时, 双接种处理的叶片数均为各处理中最大值; 接种VA 菌根真菌、根瘤菌和双接种均可增加白三叶草根系的菌根侵染率和土壤孢子数, 总体表现为双接种处理>接种VA 菌根真菌>接种根瘤菌, 有机肥相应处理>无机肥相应处理>对照; 肥料与菌剂的配合施用可有效提高植物对土壤氮、磷、钾养分的吸收。在矿区复垦土壤上有机肥与VA 菌根真菌和根瘤菌菌剂配施能显著促进白三叶草的生长, 是提高矿区复垦土壤植被恢复中比较适宜的组合方式。  相似文献   

19.
校园内不同树种行道树生态效应研究   总被引:3,自引:0,他引:3       下载免费PDF全文
绿化植树可美化环境给人以舒适和美的感受。炎夏季节树木还具有较强的降温、调节空气湿度和杀菌等多种功能。目前国内许多专家学者研究了森林和农田小气候的变化特征,但对校园行道树小气候的研究报道较少。校园是个比较特殊的场所,该场所中不仅有许多建筑、硬化的水泥地和密集的活动人群,而且有充满绿色的草坪、鲜花争奇斗艳的花园和高大挺拔、浓郁的行道树。  相似文献   

20.
The biomass of two groups of microorganisms was studied in gray forest soils under six tree species (spruce, Scotch pine, Arolla pine, larch, birch, and aspen) and in the soil of a layland (a clearing in the forest) using kinetic methods. The biomass was the highest in the soil of the layland. The lowest (19.4 μg C/g of soil) biomass of heterotrophic microorganisms was found in the soil under the birch trees, and the highest one (41.7 and 32.0 μg C/g), under the pine and spruce ones. The biomass of denitrifying microorganisms was lower by thirty times than that of the heterotrophic ones. In the soils under the pine and spruce trees (8.4 and 9.2 μg C/g, respectively), the biomass of the denitrifying microorganisms was the lowest; under the birch and larch trees, it was the highest (16.7 and 13.7 μg C/g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号