首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 758 毫秒
1.
Gonadotropin releasing hormone and its receptor (GNRHR) play a critical role in sexual differentiation and reproduction. Available evidence shows a strong genetic component in the timing of puberty. In bovines, there are significant differences within and among beef breeds in the time when bulls reach puberty. Despite its economic importance, there are not many SNPs or genetic markers associated with this characteristic. The aims of the study were to identify DNA polymorphism in the bovine GNRHR by re-sequencing analysis, determine haplotype phases, and perform a population study in a selected tag SNP in six breeds. Eight SNPs were detected, including: one in the Upstream Regulatory Region (URR), five in the coding regions, and two in non-coding regions. This polymorphism level corresponds to one variant every 249.4 bp and a global nucleotide diversity of 0.385. Two haplogroups comprising nine haplotypes and two linkage blocks were detected. Despite 5 tag SNPs were required to capture all variability, just one SNP allowed to define both haplogroups, and only two SNPs were needed to differentiate the most common haplotypes. An additional taq SNP was necessary to identify both URR variants. Allele-frequency analysis of a selected taq SNP among breeds showed a geographical cline. European Bos taurus breeds had lower frequencies of the C allele than B. indicus type cattle, while Creole cattle and Wagyu breeds had intermediate frequency. There was a significant correlation between frequency profile and timing of puberty among the studied breeds, which seems to suggest that genetic variation within bovine GNRHR gene could explain at least part of the reported variability.  相似文献   

2.
Different alleles of the human and ovine prion protein gene correlate with a varying susceptibility to transmissible spongiform encephalopathies. However, the pathogenic implications of specific polymorphisms in the bovine prion protein gene (PRNP) are only poorly understood. Previous studies on the bovine PRNP gene investigated common European and North American cattle breeds. As a consequence of decades of intensive breeding for specific traits, these modern breeds represent only a small fraction of the bovine gene pool. In this study, we analysed PRNP polymorphisms in the native Brazilian Caracu breed, which developed in geographical isolation since the 16th century. A total of 10 single nucleotide polymorphisms (SNPs) were discovered in the coding region of the Caracu PRNP gene. Eight of the SNPs occurred at high frequencies in Caracu cattle (variant allele frequencies = 0.10–0.76), but were absent or only rarely observed in European and North American breeds. One of the Caracu SNPs was associated with an amino acid exchange from serine to asparagine (f = 0.17). This SNP was not detected in Holstein–Friesian, Simmental and German Gelbvieh and was only rarely detected in beef cattle (f = 0.01). We found 17 haplotypes for PRNP in the Caracu breed.  相似文献   

3.
Fibroblast growth factor 21 (FGF21) is a hepatic hormone that regulates peripheral glucose tolerance, energy balance and lipid metabolism. Prior evidence suggests that FGF21 may have the potential to favorably reduce obesity. The objective of the present study was to identify single nucleotide polymorphisms (SNPs) of bovine FGF21 using 1255 animals representing the five main Chinese breeds and to investigate the effect of these SNPs on economic traits in Nanyang cattle. Four significant SNPs were identified, one was a synonymous mutation and the other three were in intronic regions. The polymorphism information content (PIC) analysis showed that four beef cattle populations (NY, JX, LX and QC) had a moderate genetic diversity at the four loci while the beef and dairy population (CRS) had a low level. Additionally, allele and genotype frequencies for the beef breeds were significantly different from CRS, implying that these mutations are possibly associated with some quantitative traits. Moreover, linkage disequilibrium analysis and haplotype frequencies were also reported. Seven different haplotypes were identified and haplotype TCCC was predominant in all five cattle breeds. Association analysis suggested that SNPs g.297C>G and g.940C>T of bovine FGF21 were associated with higher body weight at 18 months within NY cattle, which would contribute to cattle breeding and genetics through marker-assisted selection (MAS).  相似文献   

4.
Single nucleotide polymorphism (SNP) arrays are widely used for genetic and genomic analyses in cattle breeding; thus, data derived from SNP arrays have accumulated on a large scale nationwide. Commercial SNP arrays contain a considerable number of unassigned SNPs on the chromosome/position on the genome; these SNPs are excluded in subsequent analyses. Notably, the position‐unassigned SNPs, or “buried SNPs” include some of the markers associated with genetic disease. In this study, we identified the position of buried SNPs using the Basic Local Alignment Search Tool against the surrounding sequences and characterized the relationship between SNPs and genetic diseases in Online Mendelian Inheritance in Animals based on the genomic position. We determined the position of 285 buried SNPs on the genome and surveyed the genotype and allele frequencies of these SNPs in 5,955 individual Japanese Black cattle. Eleven SNPs associated with genetic disease, which contained five buried SNPs, were found in the population with the risk allele frequency ranging from 0.00008396 to 0.46. These results indicate that buried SNPs in the bovine SNP array can be utilized to identify associations with genetic disorders from large scale accumulated SNP genotype data in Japanese Black cattle.  相似文献   

5.
The objectives of this study were to detect effective genetic polymorphisms of bovine growth hormone (bGH) gene associated with calf weight in Japanese Black cattle. Fifty‐eight sires and 47 breeding cows were used to detect the polymorphisms in exons by single‐strand conformation polymorphism (SSCP). Four homozygous and six heterozygous SSCP genotypes were identified in exon 5. Although each single nucleotide polymorphism (SNP) had been reported, these genotypes were caused by three SNPs at the nucleotide positions 2141, 2277 and 2291. Four haplotypes C‐C‐A, G‐C‐A, C‐C‐C and G‐T‐A were newly identified. It was suggested that other haplotypes not detected in this study may not exist, considering the allele frequencies reported in Bos taurus and Bos indicus, and the migrating process of native Japanese cattle. Thereafter, we examined associations between the detected polymorphic sites in exon 5 by PCR – restriction fragment length polymorphism and calf weight using 53 breeding dams and 135 calves. The birth weights of calves with haplotype G‐C‐A are significantly lighter and calves' weights produced by cows with such haplotype are also lighter at 30 days old, using regression analysis. Although further research is necessary, these results may serve as a useful criterion to select breeding stocks, especially in maternal abilities.  相似文献   

6.
Polymorphisms in the prion protein gene ( PRNP ) are known to be associated with transmissible spongiform encephalopathies in human, sheep and goats. There is tentative association between PRNP promoter polymorphism and bovine spongiform encephalopathy (BSE) susceptibility in cattle. In this study, we genotyped for six bovine PRNP polymorphic sites including a 23-bp indel in the promoter, a 12-bp indel in the intron 1, two nonsynonymous single nucleotide polymorphisms (SNPs), octapeptide repeats in the coding region and a 14-bp indel in the 3'-untranslated region in 178 animals representing Japanese Brown, Kuchinoshima feral, Mishima, Japanese Shorthorn and Holstein. In 64 Japanese Brown cattle, three indel sites were polymorphic. All of the six sites were monomorphic in Kuchinoshima. The 23-bp and 12-bp indel sites were polymorphic in Mishima cattle. The 23-bp and 14-bp indel sites were polymorphic in Japanese Shorthorn cattle. Both SNP sites were monomorphic in all cattle examined in this study. At the 23-bp indel site, the genotype frequencies of Japanese Brown and Holstein breeds were similar to that of BSE affected cattle. We estimated 12 different haplotypes from these genotypic data. A '23-12-K6S14+' haplotype was the major haplotype in all populations, whose frequencies ranged from 0.50 to 1.00.  相似文献   

7.
The genetic identification of the population of origin of individuals, including animals, has several practical applications in forensics, evolution, conservation genetics, breeding and authentication of animal products. Commercial high‐density single nucleotide polymorphism (SNP) genotyping tools that have been recently developed in many species provide information from a large number of polymorphic sites that can be used to identify population‐/breed‐informative markers. In this study, starting from Illumina BovineSNP50 v1 BeadChip array genotyping data available from 3711 cattle of four breeds (2091 Italian Holstein, 738 Italian Brown, 475 Italian Simmental and 407 Marchigiana), principal component analysis (PCA) and random forests (RFs) were combined to identify informative SNP panels useful for cattle breed identification. From a PCA preselected list of 580 SNPs, RFs were computed using ranking methods (Mean Decrease in the Gini Index and Mean Accuracy Decrease) to identify the most informative 48 and 96 SNPs for breed assignment. The out‐of‐bag (OOB) error rate for both ranking methods and SNP densities ranged from 0.0 to 0.1% in the reference population. Application of this approach in a test population (10% of individuals pre‐extracted from the whole data set) achieved 100% of correct assignment with both classifiers. Linkage disequilibrium between selected SNPs was relevant (r2 > 0.6) only in few pairs of markers indicating that most of the selected SNPs captured different fractions of variance. Several informative SNPs were in genes/QTL regions that affect or are associated with phenotypes or production traits that might differentiate the investigated breeds. The combination of PCA and RF to perform SNP selection and breed assignment can be easily implemented and is able to identify subsets of informative SNPs useful for population assignment starting from a large number of markers derived by high‐throughput genotyping platforms.  相似文献   

8.
This study aimed to investigate the ability of single nucleotide polymorphism (SNP) haplotypes in chicken mtDNA for presumption of the origins of chicken meat. We typed five SNPs of the D‐loop region in mtDNA by allele‐specific PCR (AS‐PCR) in 556 hens, that is 233 White Leghorn (WL), 50 Dekalb‐TX35 (D‐TX), 140 Barred Plymouth Rock (BPR) and 133 Rhode Island Red (RIR) kept in the National Institute of Livestock and Grassland Science (NILGS, Tsukuba, Japan). Five haplotypes were observed among those chickens by AS‐PCR. WL, D‐TX, BPR and RIR displayed three, two, one and four SNP haplotypes, respectively. By a combination of the haplotypes by AS‐PCR and the breeds, these chickens were classified into 10 groups. After the D‐loop was sequenced in two chickens from every group (20 individuals), 15 SNP sites (including one insertion) and eight sequence haplotypes were observed. In conclusion, haplotype variation was observed in and among the layer breeds of the NILGS. This study demonstrates that SNP haplotypes in mtDNA should be appropriate for the presumption of the origins of chicken meat.  相似文献   

9.
10.
[目的]通过Y-SNP分子标记方法研究湘西黄牛的遗传多样性、群体遗传结构及父系起源。[方法]采用PCR扩增、测序与生物信息学方法,对24头湘西黄牛的2个Y-SNPs(UTY-19和ZFY-10)标记进行多态性分析。[结果]结果表明,湘西黄牛有Y1和Y3两种单倍型组,频率分别为12.5%和87.5%,表明湘西黄牛可能有普通牛和瘤牛2个父系起源。湘西黄牛的Y-SNP遗传多样度为0.2283±0.0978,表明湘西黄牛具有较低的父系遗传多样性,品种纯度较高。[结论]湘西黄牛的父系起源为瘤牛Y3单倍型组,其Y1单倍型组为国外肉牛杂交所致。  相似文献   

11.
The aim of this study was to characterize the genetic diversity of domestic goat in China. For this purpose, we determined the sequence of the mitochondrial DNA (mtDNA) control region in 72 individuals of the Yangtze River delta white goat, and reanalysed 723 published samples from 31 breeds/populations across China. All goat haplotypes were classified into four haplogroups (A–D) previously described. The phylogenetic pattern that emerged from the mtDNA control region sequence was confirmed by the analysis of the entire cytochrome b sequence of eight goats representative of the four haplogroups. It appeared that in Chinese domestic goat, haplogroups A and B were dominant and distributed in nearly all breeds/populations, while haplogroups C and D were only found in seven breeds/populations. Four breeds/populations contained all four haplogroups. When grouping the breeds/populations into five geographic groups based on their geographic distributions and ecological conditions, the southern pasturing area had the highest diversity whereas the northern farming area had the lowest diversity. 84.29% and 11.37% of the genetic variation were distributed within breeds and among breeds within the ecologically geographical areas, respectively; only 4% of genetic variation was observed among the five geographic areas. We speculate that the traditional seasonal pastoralism, the annual long-distance migrations that occurred in the past, and the commercial trade would account for the observed pattern by having favoured gene flows.  相似文献   

12.
本研究旨在了解酪氨酸酶相关蛋白1(tyrosinase related protein 1,TYRP1)基因在中国地方绵羊群体内的遗传变异,以及TYRP1基因突变与不同毛色表型绵羊群体的相关性。通过直接测序法和PCR-RFLP技术对10个中国地方绵羊群体进行单核苷酸多态性(SNP)检测,利用Beagle、PLINK和POPGENE等软件对突变位点数据进行单倍型构建、连锁不平衡分析和遗传变异研究。突变位点检测结果表明,在绵羊TYRP1基因内识别了13个SNPs,其中位于TYRP1基因外显子上的10个SNPs位点,除个别位点在大尾寒羊、中国美利奴羊和岷县黑裘皮羊中没有发生突变外,其他突变位点在所有绵羊品种中均出现不同程度变异,说明中国地方绵羊群体具有较高的遗传多样性。单倍型分析结果表明,所有样本中共有42个单倍型,优势单倍型0000000000(245/918)、0100000001(91/918)在所有绵羊群体中均存在,除单倍型0101100000(93/918)在中国美利奴羊中没有出现,单倍型0001000001(69/918)在岷县黑裘皮羊、哈萨克羊群体中没有出现外,在其他群体中均存在。连锁分析结果表明,10个SNPs在所有样本中均存在2个连锁模块。群体遗传变异分析表明,中国地方绵羊群体具有较高水平的群体内遗传变异,各绵羊品种间存在明显的遗传分化模式,且各品种遗传关系与其品种传统分类结果基本一致。本研究为进一步研究TYRP1基因对绵羊毛色遗传性状的影响提供了参考依据。  相似文献   

13.
The aim of the present study was to identify and characterize polymorphisms within the 5′ flanking region, first exon and part of first intron of the bovine growth hormone gene among different beef cattle breeds: Nelore (n = 25), Simmental (n = 39), Simbrasil (n = 24), Simmental × Nelore (n = 30), Canchim × Nelore (n = 30) and Angus × Nelore (n = 30). Two DNA fragments (GH1, 464 bp and GH2, 453 bp) were amplified by polymerase chain reaction and then used for polymorphism identification by SSCP. Within the GH1 fragment, five polymorphisms were identified, corresponding to three different alleles: GH1.1, GH1.2 and GH1.3 (GenBank: AY662648 , AY662649 and AY662650 , respectively). These allele sequences were aligned and compared with bovine GH gene nucleotide sequence (GenBank: M57764 and AF118837 ), resulting in the identification of five insertion/deletions (INDELs) and five single nucleotide polymorphisms (SNPs). In the GH2 fragment two alleles were identified, GH2.1 and GH2.2 (GenBank: AY662651 and AY662652 , respectively). The allele sequences were compared with GenBank sequences ( M57764 , AF007750 and AH009106 ) and three INDELs and four SNPs were identified. In conclusion, we were able to identify six new polymorphisms of the bovine GH gene (one INDEL and five SNPs), which can be used as molecular markers in genetic studies.  相似文献   

14.
Expression of the GH receptor (GHR) gene and its binding with GH is essential for growth and fat metabolism. A GT microsatellite exists in the promoter of bovine GHR segregating short (11 bp) and long (16 to 20 bp) allele sequences. To detect SNP and complete an association study of genotype to phenotype, we resequenced a 1,195-bp fragment of DNA including the GT microsatellite and exon 1A. Resequencing was completed in 48 familialy unrelated Holstein, Jersey, Brown Swiss, Simmental, Angus, Brahman, and Brangus cattle. Nine SNP were identified. Phylogeny analyses revealed minor distance (i.e., <5%) in DNA sequence among the 5 Bos taurus breeds; however, sequence from Brahman cattle averaged 27.4 +/- 0.07% divergence from the Bos taurus breeds, whereas divergence of Brangus was intermediate. An association study of genotype to phenotype was completed with data from growing Brangus bulls (n = 553 from 96 sires) and data from 4 of the SNP flanking the GT microsatellite. These SNP were found to be in Hardy-Weinberg equilibrium and in phase based on linkage disequilibrium analyses (r(2) = 0.84 and D'= 0.92). An A/G tag SNP was identified (ss86273136) and was located in exon 1A, which began 88 bp downstream from the GT microsatellite. Minor allele frequency of the tag SNP was greater than 10%, and Mendelian segregation was verified in 3 generation pedigrees. The A allele was derived from Brahman, and the G allele was derived from Angus. This tag SNP genotype was a significant effect in analyses of rib fat data collected with ultrasound when bulls were ~365 d of age. Specifically, bulls of the GG genotype had 6.1% more (P = 0.0204) rib fat than bulls of the AA and AG genotypes, respectively. Tag SNP (ss86273136), located in the promoter of GHR, appears to be associated with a measure of corporal fat in Bos taurus x Bos indicus composite cattle.  相似文献   

15.
Several single nucleotide polymorphisms (SNP) in the bovine CXCR1 gene have been implicated in resistance to mastitis and milk somatic cell counts in several sample populations of Holstein dairy cows. As such, a more thorough understanding of SNP present in and near the bovine CXCR1 gene is needed. This study identified 36 SNP in the coding region and surrounding sequences of CXCR1 in 88 Holstein dairy cows. Four SNP induced amino acid changes and 1 SNP an early stop codon. Two amino acid changes occur in the third intracellular loop and C-terminus in locations tied to intracellular signaling. The 36 SNP could be subdivided into 4 separate linkage groups. Using representative or 'tag' SNP from each linkage group, haplotypes or the combination of SNP found on a single allele were generated to increase the specificity of an animal's genetic background. Four haplotypes were identified that represented 99% of the sample population. The haplotypes generated using tag SNP agreed with haplotypes generated from SNP causing amino acid changes. In conclusion, the CXCR1 gene is highly polymorphic and has potential implications towards genetic selection and understanding host factors that increase the risk of infection.  相似文献   

16.
Oestrogen is an important regulator of reproduction and growth. The key enzyme of oestrogen biosynthesis, aromatase cytochrome P450, is encoded by the Cyp19 gene. In order to generate genetic markers for the sheep Cyp19 gene, two novel single nucleotide polymorphisms (SNPs), one located in promoter 2 (P2), the other one in intron 9 (I9), were identified by a comparative sequencing approach. The allele distributions of both SNPs were investigated by means of Polymerase chain reaction‐restriction fragment length polymorphism analysis (PCR‐RFLP) in five economically relevant sheep breeds (British Milk Sheep, Carranzana, Latxa Black Face, Latxa White Face, Merino) and three ancient Hungarian breeds kept as gene reserves (Cikta, Racka, Tsigai). In British Milk Sheep, only the intronic SNP was present whereas in Merino, Cikta, Racka, Tsigai, Carranzana, Latxa Black Face and Latxa White Face, both SNPs could be found. This indicates that the newly identified SNPs can be used as markers for the Cyp19 locus in various sheep breeds.  相似文献   

17.
In the meat industry, correct labeling of beef origins or breed is required to assure quality and safety. This paper describes the development of discrimination markers between Japanese domestic and imported beef from the United States (US) and Australia (AUS) based on a bovine 50K single nucleotide polymorphism (SNP) array using a total of 110 samples: Japanese Black (n = 50), Japanese Holstein (n = 50) and US cattle (n = 10). Genotyping information revealed 1081 SNPs as candidate markers that were polymorphic only in US cattle. The genotyping results by PCR – restriction length polymorphism in Japanese Black (n = 300) and Holstein cattle (n = 146) revealed that 11 SNPs had alleles specific to US cattle. Their allelic frequencies in US cattle (n = 108) ranged from 0.097 to 0.250 with an average of 0.178 and the combined identification probability of US cattle was 0.987. In addition, we also verified the applicability of these US‐specific markers to AUS cattle. Their allelic frequencies in AUS cattle (n = 280) ranged from 0.063 to 0.224 with an average of 0.137 and the combined identification probability of AUS cattle was 0.963. In conclusion, a set of these markers could be useful for discriminating between Japanese domestic and imported beef and would contribute to identify origins and prevent falsified labeling of beef.  相似文献   

18.
Genomic selection using high‐density single nucleotide polymorphism (SNP) genotype data may accelerate genetic improvements in livestock animals. In this study, we attempted to estimate the variance components of six carcass traits in fattened Japanese Black steers using SNP genotype data. Six hundred and seventy‐three steers were genotyped using an Illumina Bovine SNP50 BeadChip and phenotyped for cold carcass weight, ribeye area, rib thickness, subcutaneous fat thickness, estimated yield percent and marbling score. Additive polygenic variance and the variance attributable to a set of SNPs that had statistically significant effects on the trait were estimated via Gibbs sampling with two models: (i) a model with the chosen SNPs and the additive polygenic effects; and (ii) a model with the polygenic effects alone. The proportion of the estimated variance attributable to the SNPs became higher as the number of SNP effects that fit increased. High correlations between breeding values estimated with the model containing the polygenic effect alone and those estimated by chosen SNPs were obtained. No fraction of the total genetic variance was explained by SNPs associated with the trait at P ≥ 0.1. Our results suggest that for the carcass traits of Japanese Black cattle, a maximum of half of the total additive genetic variance may be explained by SNPs between 100 several tens to several 100s.  相似文献   

19.
20.
ABSTRACT: Bovine mastitis remains the most common and costly disease of dairy cattle worldwide. A complementary control measure to herd hygiene and vaccine development would be to selectively breed cattle with greater resistance to mammary infection. Toll-like receptor 1 (TLR1) has an integral role for the initiation and regulation of the immune response to microbial pathogens, and has been linked to numerous inflammatory diseases. The objective of this study was to investigate whether single nucleotide polymorphisms (SNPs) within the bovine TLR1 gene (boTLR1) are associated with clinical mastitis (CM).Selected boTLR1 SNPs were analysed within a Holstein Friesian herd. Significant associations were found for the tagging SNP -79 T > G and the 3'UTR SNP +2463 C > T. We observed favourable linkage of reduced CM with increased milk fat and protein, indicating selection for these markers would not be detrimental to milk quality. Furthermore, we present evidence that some of these boTLR1 SNPs underpin functional variation in bovine TLR1. Animals with the GG genotype (from the tag SNP -79 T > G) had significantly lower boTLR1 expression in milk somatic cells when compared with TT or TG animals. In addition, stimulation of leucocytes from GG animals with the TLR1-ligand Pam3csk4 resulted in significantly lower levels of CXCL8 mRNA and protein.SNPs in boTLR1 were significantly associated with CM. In addition we have identified a bovine population with impaired boTLR1 expression and function. This may have additional implications for animal health and warrants further investigation to determine the suitability of identified SNPs as markers for disease susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号