首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
为探究黄河源区湿地和相邻草地土壤的有机碳和全氮状况,采用野外调查与室内分析相结合,对其理化性质和碳氮组成及其稳定同位素特征进行测定和分析。结果表明,湿地土壤含水量为21.08%~48.95%,容重为0.57~1.46g/cm3,pH为6.4~9.0,全磷含量为34.6~123.44mg/kg,有效磷含量为7.8~71.48mg/kg,有机碳含量为0.53%~16.57%,全氮含量为0.05%~1.47%,δ13 C丰富度介于(-26.65‰)~(-22.10‰)之间,δ15 N丰富度介于1.15‰~5.49‰之间,Corg/N在8.20~11.53之间变化。与湿地邻近的草地土壤含水量变化为13.97%~48.47%,容重变化为0.68~1.42g/cm3,pH为6.1~8.9之间,全磷含量为57.84~143.62mg/kg,有效磷含量为9.74~60.19mg/kg,有机碳含量为0.88%~9.79%,全氮含量为0.09%~0.88%,δ13 C丰富度介于(-25.80‰)~(-21.42‰),δ15 N丰富度介于2.64‰~6.81‰之间,Corg/N在8.60~12.00之间变化。无论是湿地还是草地土壤含水量均50%,但草地土壤的含水量变异范围大于湿地;源区土壤绝大多数呈弱碱性,少部分近中性或呈弱酸性;有机碳和全氮随湿地类型和采样点的不同也存在很大的差异。总体上,湿地土壤的容重、全磷、有效磷、δ13 C、δ15 N、Corg/N低于草地土壤。土壤有机碳氮及其稳定同位素相互间有显著的相关性,土壤有机质的δ13 C表明源区没有C4植物。  相似文献   

2.
次瑞敏  王莉  可宇娜 《水土保持学报》2020,34(1):371-379,384
为探究汾河临汾段湿地土壤及沉积物的理化性质、养分含量,评价土壤状况、预测水体的生态环境质量。共采集98个土壤及沉积物样本,分析了理化性质及养分等11项指标。结果表明:土壤pH在7.0~8.4,容重在1.04~1.44 g/cm^3,含水率在5.9%~17.5%,电导率在0.167~0.747 mS/cm,质地类型包括壤黏土和黏壤土;有机质、全氮、全磷含量分别为8.7~39.8,0.354~1.046,0.389~1.444 g/kg,碱解氮、速效磷、速效钾含量分别为12.9~50.3,2.6~31.2,86.4~329.2 mg/kg。经相关性分析可知,土壤各指标与物理性质相关性较强;沉积物各指标与质地显著相关,且有机质、全氮、碱解氮、速效钾两两相关;养分评价中,有机质、全磷、速效磷处于4级水平,全氮在3~6级均有分布,碱解氮分布在5,6级,速效钾分布在2,3级;沉积物在有机污染评价中表现中度污染,综合污染评价表现重度污染。  相似文献   

3.
通过河北雾灵山5种人工纯林的土壤养分分析,研究了不同林分类型对土壤pH值、有机质、全量养分和速效养分的变化,并对不同土壤养分进行了主成分分析。结果表明:5种不同林分类型的土壤pH值均为弱酸性,其变化范围为4.61~6.31;不同土层土壤有机质表现为:表层(0—10 cm)> 中层(10—20 cm)> 下层(20—40 cm),有机质均值在2.53~9.60 g/kg之间;土壤全磷含量均值为0.20~0.70 g/kg;土壤全氮含量均值为2.38~3.45 g/kg;土壤速效钾含量均值为67.54~169.88 mg/kg;土壤速效磷含量均值在0.84~6.84 mg/kg之间;土壤碱解氮含量均值在65.68~147.88 mg/kg之间;不同林分类型土壤养分综合效应评价,白桦纯林最大,为1.122;落叶松纯林最小,为-0.819。综合来看,随土层厚度增加土壤养分含量减少;阔叶林土壤养分含量大于针叶林。  相似文献   

4.
以秦岭典型林地土壤为对象,分析了夏、秋两季锐齿栎、油松、华山松、云杉4种典型林分下林地不同土层土壤的生态化学计量学特征。结果表明:5个林地腐殖质层(O层)、表层(A层)土壤有机碳含量分别在76.23~260.70,26.60~44.81g/kg之间;全氮含量在4.19~8.76,1.46~3.29g/kg之间;全磷含量分别在0.38~0.61,0.33~0.63g/kg之间。5个林地O层、A层C/N范围分别为16.48~29.76,12.31~19.39;C/P范围分别为144.93~465.52,44.63~107.42;N/P范围分别为7.97~18.37,2.58~6.23。土壤有机碳和全氮及C/N,C/P,N/P均表现为O层大于A层,且O层碳氮含量动态变化较大。阔叶林地土层间差异小于针叶林地。华山松林地土壤碳氮磷含量及C/N、C/P均高于其他林地。土壤C/P和N/P的空间变异性较大,C/N相对稳定。土壤碳氮磷含量及化学计量比值大多表现为夏季高于秋季。  相似文献   

5.
利用环境政策综合气候模型(EPIC模型),结合土壤有机质、全氮、全磷、全钾含量及其分布面积,研究了湖北省各土类的土壤可蚀性K值及其分布面积。结果表明:(1)湖北省平均土壤可蚀性K值为0.228 5,各土类土壤的K值在0.208~0.250之间,其中最大的是棕壤,为0.249 7,最小的是紫色土,为0.208 3。(2)湖北省中可蚀性土壤占绝大部分,占全省土地总面积的59.33%,而中低可蚀性土壤只占2.68%。(3)砂粒(2~0.02 mm)含量最少的是石灰土,为22.35%,最多的是潮土,为55.97%;粉粒(0.02~0.002 mm)含量最少的是紫色土,为27.40%,最多的是棕壤,为42.00%;黏粒(0.002mm)含量最少的是潮土,为13.95%,最多的是石灰土,为40.52%。(4)各土类土壤全氮含量为0.75~10.09 g/kg,全磷含量为0.32~1.10 g/kg,全钾含量为0.77~20.72 g/kg,有机质含量为11.80~255.30 g/kg。  相似文献   

6.
陕北石油污染对土壤理化性质的影响   总被引:7,自引:1,他引:7  
为了研究石油污染对土壤理化性质的影响,对安塞县8个类型油井井场周围土壤中的石油烃含量和理化性质进行分析测定。结果表明,井场周围土壤石油烃含量变化范围为0.08~71.49 g/kg,其中井场外0~5 m区域和5~20 m区域内土壤污染严重。石油污染导致土壤含水率、pH值、硝态氮、速效磷、全钾和速效钾含量显著降低,容重、有机质和铵态氮含量显著升高,全氮和全磷含量无显著变化;石油污染土壤中的石油烃含量与含水率、容重、有机质、铵态氮、速效磷和速效钾均呈极显著相关,与pH值和全钾呈显著相关,与全氮、硝态氮和全磷无显著相关关系。  相似文献   

7.
亚热带小流域土壤氮磷分布及其环境效应   总被引:3,自引:0,他引:3  
土壤氮磷积累是引起农业面源污染的主要原因。为探讨土壤氮磷含量的分布状况及其对环境的影响,选取位于长沙县金井镇的小流域为研究区域,以表层土壤(0-20cm)为采样对象,按不同的土地利用方式共采集样品1 118个。以土地利用类型为分析单元,分析说明了土壤全氮、全磷的分布特征及其环境效应。结果表明:土壤全氮和全磷含量的平均值分别为1.66,0.54g/kg,变异系数分别为34.9%和46.3%,均属于中等变异。菜地土壤全氮含量主要分布在1.8~2.4g/kg区间,旱地和水田为1.2~1.8g/kg,林地和茶园为0.6~1.2g/kg;菜地土壤全磷含量主要分布在大于1.0g/kg区间,旱地为0.6~0.8g/kg,水田为0.4~0.6g/kg,林地和茶园为0.2~0.4g/kg。结合地下水氮磷含量分析表明,土壤氮素含量与地下水铵态氮含量增加有关,对地下水水质产生影响,其中水田的影响尤为突出;土壤磷素的淋失可能具有季节性差异,还有待进一步验证。  相似文献   

8.
孔涛  张德胜  寇涌苹  刘民  何志明 《土壤》2014,46(5):793-798
河岸带是陆地生态系统和水生生态系统的过渡区,也是一个敏感和脆弱的生态区域。河岸带生态系统由于人类活动的干扰而严重退化,因而严重影响了河岸带土壤碳氮磷的循环过程。本文分析了浑河上游典型河岸带土壤有机碳、全氮和全磷含量及其空间分布特征,结果表明:1河岸带的灌丛草地、次生林、人工松林与玉米地相比,均能有效地提高0~40 cm土层的有机碳、全氮和全磷含量。2土壤有机碳、全氮和全磷含量随着土层的加深呈现降低的趋势,灌丛草地和次生林的土壤有机碳、全氮、全磷含量随着土层加深而降低的速率明显高于玉米地土壤。3在0~40 cm土壤剖面上,土壤有机碳平均含量从高到低依次为次生林(47.50 g/kg)、灌丛草地(44.50 g/kg)、人工松林(34.72 g/kg)、玉米地(15.09 g/kg);土壤全氮平均含量从高到低依次为次生林(2.53 g/kg)、灌丛草地(2.50 g/kg)、人工松林(2.40 g/kg)、玉米地(0.84 g/kg);土壤全磷平均含量从高到低依次为次生林(1.07 g/kg)、灌丛草地(1.05 g/kg)、人工松林(0.92 g/kg)、玉米地(0.65 g/kg)。  相似文献   

9.
植被恢复对亚热带侵蚀红壤团聚体养分分布的影响   总被引:1,自引:2,他引:1  
为深入了解不同植被恢复年限下土壤团聚体养分分布特征,以典型红壤侵蚀区福建省长汀县河田地区恢复年限分别为0,5,10,15,30,80a的坡地土壤为研究对象,分别对0—20cm和20—40cm土层不同粒径团聚体养分含量进行测定,并分析了它们与不同团聚体的相关关系。结果表明:(1)植被恢复过程中,土壤团聚体有机碳、全氮、全磷、全钾、速效磷和速效钾含量的变化范围分别为2.06~27.71g/kg,0.54~2.12g/kg,0.034~0.171g/kg,2.20~6.89g/kg,0.31~3.30mg/kg和7.35~85.71g/kg;(2)有机碳、全氮、全磷和速效磷含量随着团聚体粒径的减小总体上表现出显著升高趋势(P0.05),全钾和速效钾含量无明显差异(P0.05);(3)随植被恢复年限增加,各粒径团聚体中有机碳、全氮、全磷、速效磷含量总体上呈显著升高趋势(P0.05),全钾含量先升高后降低,而速效钾含量表现出波动增加趋势;(4)恢复初期(0a和5a)不同土层间团聚体养分含量无明显变化(P0.05),其它恢复年限0—20cm土层团聚体有机碳、全氮、全磷、速效磷和速效钾含量显著高于20—40cm土层(P0.05);(5)团聚体对土壤养分的贡献率表现为(5mm)(2~5mm)(0.5~1mm)(1~2mm)(0.25~0.5mm)(0.25mm),2mm粒径养分贡献率达34.18%~49.93%,土壤养分含量与0.25mm粒径相关性较强(P0.01)。植被恢复在降低土壤侵蚀的同时,土壤团聚体养分含量明显增加,土壤结构得以改善,养分固持能力得到加强。  相似文献   

10.
元谋干热河谷不同土地利用类型雨季前后土壤养分变化   总被引:1,自引:0,他引:1  
为探讨各土地利用类型对土壤氮、磷、有机质等养分的拦蓄效果,对元谋干热河谷区那能小流域内草地、林地、坡耕地三种土地利用类型区雨季前后的土壤养分含量变化情况进行了分析。研究结果表明:①经过5个月的雨季,表层土壤(0—30 cm)中,草地和坡耕地全氮含量分别减少0.001、0.089 g/kg,林地全氮含量增加0.057 g/kg;草地与林地碱解氮含量分别增加10.466、1.305 mg/kg,坡耕地碱解氮含量减少25.833 mg/kg;林地与坡耕地全磷含量分别减少0.186、0.320 g/kg,草地全磷含量增加0.030 g/kg;草地与坡耕地速效磷含量分别减少1.540、2.186 mg/kg,林地速效磷含量增加2.161 mg/kg;林地与坡耕地有机质含量分别减少0.294、0.702百分点,草地有机质含量增加0.556百分点。②土壤全氮与碱解氮、全氮与有机质、有机质与碱解氮含量呈显著性相关,全磷与速效磷、有机质相关性不明显。③由于人为扰动,坡耕地雨季前后各土壤养分指标存在较大的差异性。  相似文献   

11.
Amazonia, the world's largest tropical rain forest, is often assumed to be a virtually untouched wilderness. The region is often referred to as a demographic void; there is on average only about one person per sq. km. Yet in response to international market forces, the hand of man has penetrated deep into the imposing forests. Since colonial times, wildlife, particularly along rivers, has been exploited on a large-scale basis for commercial purposes. This paper focuses on the effects of the trade on some aquatic animals.  相似文献   

12.
Nine stream sites in the Blackfoot River watershed in southeastern Idaho were sampled in September 2000 for water, surficial sediment, aquatic plants, aquatic invertebrates, and fish. Selenium was measured in these aquatic ecosystem components, and a hazard assessment was performed on the data. Water quality characteristics such as pH, hardness, and specific conductance were relatively uniform among the nine sites examined. Selenium was elevated in water, sediment, aquatic plants, aquatic invertebrates, and fish from several sites suggesting deposition in sediments and food web cycling through plants and invertebrates. Selenium was elevated to concentrations of concern in water at eight sites (>5 g/L), sediment at three sites (>2 g/g), aquatic plants at four sites (>4 g/g), aquatic invertebrates at five sites (>3 g/g), and fish at seven sites (>4 g/g in whole body). The hazard assessment of selenium in the aquatic environment suggested low hazard at Sheep Creek, moderate hazard at Trail Creek, upper Slug Creek, lower Slug Creek, and lower Blackfoot River, and high hazard at Angus Creek, upper East Mill Creek, lower East Mill Creek, and Dry Valley Creek. The results of this study are consistent with results of a previous investigation and indicate that selenium concentrations from the phosphate mining area of southeastern Idaho were sufficiently elevated in several ecosystem components to cause adverse effects to aquatic resources in the Blackfoot River watershed.  相似文献   

13.
The concentrations of Hg, Cu, Pb, Cd, and Zn accumulated by regional macrophytes were investigated in three tropical wetlands in Colombia. The studied wetlands presented different degrees of metal contamination. Cu and Zn presented the highest concentrations in sediment. Metal accumulation by plants differed among species, sites, and tissues. Metals accumulated in macrophytes were mostly accumulated in root tissues, suggesting an exclusion strategy for metal tolerance. An exception was Hg, which was accumulated mainly in leaves. The ranges of mean metal concentrations were 0.035?C0.953 mg g?1 Hg, 6.5?C250.3 mg g?1 Cu, 0.059?C0.245 mg g?1 Pb, 0.004?C0.066 mg g?1 Cd, and 31.8?363.1 mg g?1 Zn in roots and 0.033?C0.888 mg g?1 Hg, 2.2?C70.7 mg g?1 Cu, 0.005?C0.086 mg g?1 Pb, 0.001?C0.03 mg g?1 Cd, and 12.6?C140.4 mg g?1 Zn in leaves. The scarce correlations registered between metal concentration in sediment and plant tissues indicate that metal concentrations in plants depend on several factors rather than on sediment concentration only. However, when Cu and Zn sediment concentrations increased, these metal concentrations in tissues also increased in Eichhornia crassipes, Ludwigia helminthorriza, and Polygonum punctatum. These species could be proposed as Cu and Zn phytoremediators. Even though macrophytes are important metal accumulators in wetlands, sediment is the main metal compartment due to the fact that its total mass is greater than the corresponding plant biomass in a given area.  相似文献   

14.
Abstract

The seasonal patterns of foliage nutrient concentrations and contents were monitored for two growing seasons in an 11‐year—old Pinus el1iottii stand. In the first growing season after needle initiation, N, P, K, Mg, and Zn concentrations decreased, but this was followed by an increase in the fall and winter months. Another drop in concentration of all elements, except P, occurred in the second growing season. Decreases in total contents indicated that this drop was a result of translocation to other tissues. In contrast to the mobile elements, the concentration and fascicle contents of Ca, Mn, and Al increased with aging of the needles.

Between‐tree variability was least for N, P, and Zn and the N, K, Mg, Mn, and Zn in the current foliage had consistently lower variation than that in the 1‐year‐old foliage. Between‐tree variation for K was lower in the winter than the spring.

For pine foliage, recommended sampling period for N, P, Mg, and Zn is mid to late summer and for the other elements it is late fall to late winter.

There are several sources of variation that influence the level of nutrients in tree foliage. The most important of these, apart from the tree nutrient status, are seasonal fluctuations, variation between trees, and age of needles . Smaller sources of variation are associated with position of the needles within the crown, diurnal changes, year to year variation, and analytical errors1,2. These variables must be studied in order to develop suitable sampling techniques and in Pinus this has been undertaken for P. banksiana 1, P. taeda 3, P. strobus 4, P. resinosa 4, P. sylvestris 5, and P. radiata 6,7. However, foliage sampling has not been studied in detail for slash pine (Pinus elliottii Englem var. elliottii) and earlier studies with other pines have been largely confined to temperate or cool climates.

This study reports the variation in elemental concentrations with season, age of foliage, and between slash pine trees growing in a subtropical climate in Florida.  相似文献   

15.
16.
Rosas  I.  Belmont  R.  Armienta  A.  Baez  A. 《Water, air, and soil pollution》1999,112(1-2):133-149
Arsenic levels were determined in seventy three samples of well water, and in fifty samples of soil, forage and cow's milk collected at the most important dairy farms of the Comarca Lagunera located in Coahuila and Durango, Mexico, region naturally rich in As. The total inorganic arsenic concentration in well water ranged from 7 to 740 μg L-1 and about ninety percent of the total arsenic was found as As(V). The agricultural soil texture of the sampled area was sandy clay loam type with total arsenic levels up to 30 μg g-1, however, the extractable arsenic was not higher than 12% of the total and it was higher in the 0–30 cm depth horizon. In alfalfa, the most important crop, the total aresenic ranged from 0.24 to 3.16 μg g-1, with 40% of it accumulated at the root level. Significant correlations (p=0.05) were obtained between arsenic (III), (V) and total inorganic arsenic in groundwater with arsenic in soil (0–30 cm depth), and with arsenic in alfalfa (leaves and roots). It was also found a good correlation between extractable arsenic in soil with As concentrations in alfalfa (roots). Arsenic concentrations found in milk ranged from <0.9 to 27.4 ng g-1. The cow's milk biotransfer factor for arsenic was up to 6 × 10-4, applying a pharmacokinetic approach. It was associated with the exposure not only to food but also to water arsenic.  相似文献   

17.
18.
The literature on the fluxes of six heavy metals in temperate forest ecosystems is reviewed. Special attention is given to wet and dry deposition and internal flux, to metal budgets for ecosystems and soils, to concentrations in aqueous compartments of the ecosystem and to speciation in soil solutions. Metal fluxes are discussed in relation to pollution load, soil type, tree species and land use. The mobility of Cu and Pb is strongly dependent on the solubility of organic matter. These metals are commonly accumulated in forest soils. Zinc, Cd and Ni are greatly influenced by soil acidity and are often lost in considerable amounts from acidified soils. Chromium is often at balance in forest ecosystems. Implications for metal solubility and budgets in forest soils are discussed in connection with an increase in soil acidification.  相似文献   

19.
Anthocyanin pigments from a wide variety of edible and ornamental black, blue, pink, purple, red, and white wheat, barley, corn, rice, and wild rice were identified and quantified to evaluate their potential as natural colorants or functional food ingredients. The total anthocyanin contents varied significantly and exhibited a range of 7-3276 microg/g. Some grains, such as red rice and black rice, contained a limited number of pigments, whereas others, such as blue, pink, purple, and red corns, had complex anthocyanin profiles. Of the 42 anthocyanin compounds observed, 9 were characterized by comparison of the spectroscopic and chromatographic properties with those of authentic standards. The remaining compounds were tentatively identified on the basis of spectroscopic properties and electrospray ionization mass spectra. The most abundant anthocyanins were cyanidin 3-glucoside in black and red rices and in blue, purple, and red corns, pelargonidin 3-glucoside in pink corn, and delphinidin 3-glucoside in blue wheat.  相似文献   

20.
The distribution of zinc, manganese, copper, cobalt, and nickel in Andosols was investigated. Sixty nine soil samples were collected from different horizons of an Andosols profile in Miyakonojo Basin in south Kyushu, Japan, The total contents of heavy metals were determined by digestion and four extraction solutions, 1 M NH4Ac (ammonium acetate) pH 4.5, 0.1 M HCl, 0.01 M EDTA (ethylenediaminetetraacetic acid) pH 6.5, and 0.005 M DTPA (diethylenetri-aminepentaacetic acid) pH 7.3 were used to determine the contents of available Zn, Mn, Cu, Co, and Ni in Andosols in relation to the organic carbon content. The results of the extraction analysis showed that by the use of 0.1 M H Cl high value of extracted heavy metals in the upper layers of the humus horizons were obtained while EDTA extraction yielded a large amount of the above mentioned metals in the high humus horizons. The extractable heavy metals contents were high and these metals closely related to the organic carbon content mostly in the humus horizons in the profile. Where, biocycling process may play an important role in the concentration of heavy metals. Based on the study, it was found that the total content of Zn increased towards the C horizons or pumice layers in the soil profile. Such a trend was also found in the case of the Mn content. While the Cu content in the humus horizons was much higher in the upper part of each humus horizon. According to this study the distribution of heavy metals, Cu (organic matter complexes) in the Andosols profile was more stable than that of Zn (organic matter complexes) in soils. It was shown that Zn in the surface humus horizon was enriched but that some amount was leached under buried conditions. The same phenomenon was also observed in the distribution of Mn in the profile. The movement of Co and Ni in the soil profile was limited, as evidenced by the sharp reduction in the concentrations of these two metals in buried soils.

Hence, it is concluded that the distribution of Zn, Mn, Cu, Co, and Ni was considerably higher in the humus horizons of the Andosols profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号