首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Because of their special behaviour, physiology and close relationship with humans, mosquitoes act as one of the most important vectors of human diseases, such as filariasis, Japanese encephalitis, dengue and malaria. The major vector mosquitoes are members of the Culex, Aedes and Anopheles genera. Insecticides play important roles in agricultural production and public health, especially in a country with a huge human population, like China. Large quantities of four classes of insecticides, organochlorines, organophosphates, carbamates and pyrethroids, are applied annually to fields or indoors in China, directly or indirectly bringing heavy selection pressure on vector populations. The seven major species of vector mosquito in China are the Culex pipiens L. complex, C. tritaeniorhynchus Giles, Anopheles sinensis Wied., A. minimus Theobald, A. anthropophagus Xu & Feng, Aedes albopictus (Skuse) and Ae. aegypti L., and all have evolved resistance to all the above types of insecticide except the carbamates. The degree of resistance varies among mosquito species, insecticide classes and regions. This review summarizes the resistance status of these important vector mosquitoes, according to data reported since the 1990s, in order to improve resistance management and epidemic disease control, and to communicate this information from China to the wider community.  相似文献   

2.
Changes in global temperature and humidity as a result of climate change are producing rapid evolutionary changes in many animal species, including agricultural pests and disease vectors, leading to changes in allele frequencies of genes involved in thermotolerance and desiccation resistance. As some of these genes have pleiotropic effects on insecticide resistance, climate change is likely to affect insecticide resistance in the field. In this review, we discuss how the interactions between adaptation to climate change and resistance to insecticides can affect insecticide resistance in the field using examples in phytophagous and hematophagous pest insects, focusing on the effects of increased temperature and increased aridity. We then use detailed genetic and mechanistic studies in the model insect, Drosophila melanogaster, to explain the mechanisms underlying this phenomenon. We suggest that tradeoffs or facilitation between adaptation to climate change and resistance to insecticides can alter insecticide resistance allele frequencies in the field. The dynamics of these interactions will need to be considered when managing agricultural pests and disease vectors in a changing climate. © 2019 Society of Chemical Industry  相似文献   

3.
Maize productivity is threatened by global climate change. Climate change scenarios suggest that north-western (NW) Europe will get warmer and drier during the main crop-growing period. In general, more northerly regions will benefit, whereas more southerly regions will suffer suboptimal rain-fed farming conditions. In these latter regions in particular, the resulting probable lower realized on-farm maize grain and biomass yields must be safeguarded. Breeding for resistance against already existing and emerging diseases and insect pests is one component to achieve yield stability across years. Durable multiple-disease resistance will become especially crucial. Herein, we focus on disease resistance breeding approaches in maize, especially related to northern corn leaf blight and Fusarium ear rots, although virus and bacterial diseases will become more important as well. Continuous adjustments of disease resistance breeding strategies will be required. Insect pest resistance breeding must be improved considerably, as in a warmer world insects will thrive, probably causing detrimental direct (feeding, sucking, etc.) and indirect (vectors of pathogens, feeding wounds creating gateways for many pathogens, passive transport of inoculum across maize plants) effects. Four case studies on insects that are already prevalent in NW Europe or may be expected in the near future are covered in this review. Maize cultivars need to combine both durable multiple-disease and multiple-insect resistance, although the implementation of many different effective resistance resources in breeding programmes will be challenging, particularly if trade-offs among breeding goals appear.  相似文献   

4.
Tomato is the most economically important fruit/vegetable crop grown worldwide. However, viral diseases remain an important factor limiting its productivity, with estimated quantitative and qualitative yield losses in tomato crops often reaching up to 100%. Many viruses infecting tomato have been reported, while new viral diseases have also emerged. The climatic changes the world is experiencing can be a contributing factor to the successful spread of newly emerging viruses, as well as the establishment of disease in areas that were previously either unfavourable or where the disease was absent. Because antiviral products are not available, strategies to mitigate viral diseases rely on genetic resistance/tolerance to infection, control of vectors, improvement in crop hygiene, roguing of infected plants and seed certification. Tomato brown rugose fruit virus (ToBRFV) is an emerging viral threat to tomato productivity and is currently spreading into new areas, which is of great concern to the growing global production in the absence of mitigation measures. This review presents the current knowledge about ToBRFV and future prospects for an improved understanding of the virus, which will be needed to support effective control and mitigation of the impact it is likely to cause.  相似文献   

5.
Application of Rhizobacteria for Induced Resistance   总被引:6,自引:0,他引:6  
This article provides a review of experiments conducted over a six-year period to develop a biological control system for insect-transmitted diseases in vegetables based on induced systemic resistance (ISR) mediated by plant growth-promoting rhizobacteria (PGPR). Initial experiments investigated the factors involved in treatment with PGPR led to ISR to bacterial wilt disease in cucumber caused by Erwinia tracheiphila. Results demonstrated that PGPR-ISR against bacterial wilt and feeding by the cucumber beetle vectors of E. trachiphiela were associated with reduced concentrations of cucurbitacin, a secondary plant metabolite and powerful beetle feeding stimulant. In other experiments, PGPR induced resistance against bacterial wilt in the absence of the beetle vectors, suggesting that PGPR-ISR protects cucumber against bacterial wilt not only by reducing beetle feeding and transmission of the pathogen, but also through the induction of other plant defense mechanisms after the pathogen has been introduced into the plant. Additional greenhouse and field experiments are described in which PGPR strains were selected for ISR against cucumber mosaic virus (CMV) and tomato mottle virus (ToMoV). Although results varied from year to year, field-grown tomatoes treated with PGPR demonstrated a reduction in the development of disease symptoms, and often a reduction in the incidence of viral infection and an increase in tomato yield. Recent efforts on commercial development of PGPR are described in which biological preparations containing industrial formulated spores of PGPR plus chitosan were formulated and evaluated for use in a transplant soil mix system for developing plants that can withstand disease attack after transplanting in the field.  相似文献   

6.
BACKGROUND: Phytophagous mites such as the European red mite, Panonychus ulmi (Koch), are serious pests in European fruit tree orchards, and a number of acaricides are frequently used to control them. Spirodiclofen (Envidor®) has been a commonly used acaricide for several years. In the present study, European field populations collected in 2009 and 2010 were checked for their susceptibility to spirodiclofen by using discriminating dose and full dose response bioassays. RESULTS: In 2009 and 2010, a total of 63 field populations (including winter eggs) of European red mites were collected in different European countries, and in several populations from south‐western Germany a shifting in susceptibility against spirodiclofen was observed. Full dose response bioassays on different developmental stages of field‐collected strains suggested an age‐dependent expression of resistance because eggs remain fully susceptible to spirodiclofen. Artificial selection with spirodiclofen of one of the field strains resulted in resistance ratios of > 7000. Synergism studies suggest a possible role of cytochrome‐P450‐dependent monooxygenases in spirodiclofen detoxification. Most of the other acaricides from different chemical classes displayed no or low cross‐resistance in a spirodiclofen‐selected strain. CONCLUSION: In order to preserve spirodiclofen as an important tool in spider mite resistance management, the efficacy situation should be continuously monitored, and it is suggested that spirodiclofen be alternated with acaricides coming from different mode‐of‐action classes. An observed age‐specific expression of resistance revealed full susceptibility of eggs, so targeting spirodiclofen particularly against eggs is likely to reduce the selection pressures imposed on other life stages. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
科学施用杀菌剂是植物病害综合治理的重要措施之一, 然而由于杀菌剂的长期使用, 病菌抗药性问题逐渐加重, 严重影响药剂的防治效果和使用寿命。近年来, 随着分子生物学技术的快速发展, 人们对杀菌剂抗性机制有了更深入的理解, 并开发出了病菌抗药基因型快速检测的方法。本文总结了植物病原真菌对苯并咪唑类杀菌剂(BZD)、肌球蛋白合成抑制剂、甾醇脱甲基抑制剂(DMI)、QoI类抑制剂、琥珀酸脱氢酶抑制剂(SDHI)和二甲酰亚胺类杀菌剂(DC)的抗药性现状与抗性机制。在此基础上, 介绍了聚合酶链反应(PCR)、限制性片段长度多态性(RFLP)、等位基因特异性PCR和环介导等温扩增(LAMP)技术在杀菌剂抗性快速检测方面的研究进展。此外, 对抗药性治理对策进行了讨论和展望。  相似文献   

8.

BACKGROUND

With no effective drugs or widely available vaccines, dengue control in Bangladesh is dependent on targeting the primary vector Aedes aegypti with insecticides and larval source management. Despite these interventions, the dengue burden is increasing in Bangladesh, and the country experienced its worst outbreak in 2019 with 101 354 hospitalized cases. This may be partially facilitated by the presence of intense insecticide resistance in vector populations. Here, we describe the intensity and mechanisms of resistance to insecticides commonly deployed against Ae. aegypti in Dhaka, Bangladesh.

RESULTS

Dhaka Ae. aegypti colonies exhibited high-intensity resistance to pyrethroids. Using CDC bottle assays, we recorded 2–24% mortality (recorded at 24 h) to permethrin and 48–94% mortality to deltamethrin, at 10× the diagnostic dose. Bioassays conducted using insecticide–synergist combinations suggested that metabolic mechanisms were contributing to pyrethroid resistance, specifically multi-function oxidases, esterases, and glutathione S-transferases. In addition, kdr alleles were detected, with a high frequency (78–98%) of homozygotes for the V1016G mutation. A large proportion (≤ 74%) of free-flying and resting mosquitoes from Dhaka colonies survived exposure to standard applications of pyrethroid aerosols in an experimental free-flight room. Although that exposure affected the immediate host-seeking behavior of Ae. aegypti, the effect was transient in surviving mosquitoes.

CONCLUSION

The intense resistance characterized in this study is likely compromising the operational effectiveness of pyrethroids against Ae. aegypti in Dhaka. Switching to alternative chemical classes may offer a medium-term solution, but ultimately a more sustainable and effective approach to controlling dengue vectors is required. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

9.
彭烨  康厚祥 《植物保护》2022,48(6):193-206
麦瘟病是1985年在南美洲出现的一种小麦真菌病害,目前已成为南美洲的主要小麦病害之一。在麦瘟病发病严重区域该病害可导致小麦减产高达100%,抗麦瘟病的小麦资源和基因少,且麦瘟病菌对甲氧基丙烯酸酯(QoIs)类杀菌剂具有较强的耐受性,监测、延缓、抑制其传播对有效控制麦瘟病意义重大。2016年和2018年发生了两次重要的麦瘟病扩散事件,受到广泛关注,两次扩散事件导致麦瘟病分别蔓延至亚洲孟加拉国和非洲赞比亚,麦瘟病的持续蔓延对全球小麦生产安全带来严重威胁。我国科学家与世界同行一道,在病害监测、小麦抗病资源和基因发掘、抗病品种的培育、病原菌生物学等方面的研究均取得了进展。本文从麦瘟病的传播历史、防控方法、国际国内开展麦瘟病相关研究工作进展等方面对麦瘟病进行综述;同时,也为我国应对麦瘟病威胁提供了策略、提出了应对建议。  相似文献   

10.
The past 40 years have seen insect resistance to insecticides develop from a scientific curiosity to an immense practical problem that threatens man's ability to control not only the insect pests of agriculture but also the insect vectors that transmit major human and animal diseases. The spread of genes for cross and multiple resistance among insect pests has rendered most of our present insecticides obsolescent and very few novel insecticides are under development as substitutes. The most feasible strategy to maintain adequate control of insect pests is integrated pest management or I P M, in which insecticide management is a useful component. However, much of our present planning for the future of insect control is carried out in ignorance of past failures. We must learn from the past if we are to retain the use of chemical insecticides as a viable component of IPM.  相似文献   

11.
Although Darwin knew of plant diseases, he did not study them as part of his analysis of natural selection. Effective plant disease control has only been developed after his death. This article explores the relevance of Darwin's ideas to three problem areas with respect to diseases caused by fungi: emergence of new diseases, loss of disease resistance bred into plants and development of fungicide resistance. Darwin's concept of change through natural or artificial selection relied on selection of many small changes, but subsequent genetic research has shown that change can also occur through large steps. Appearance of new diseases can involve gene duplication, transfer or recombination, but all evidence points to both host plant resistance and fungicide susceptibility being overcome through point mutations. Because the population size of diseases such as rusts and powdery and downy mildews is so large, all possible point mutations are likely to occur daily, even during moderate epidemics. Overcoming control measures therefore reflects the overall fitness of these mutants, and much resource effort is being directed towards assessment of their fitness, both in the presence and in the absence of selection. While recent developments in comparative genomics have caused some revision of Darwin's ideas, experience in managing plant disease control measures clearly demonstrates the relevance of concepts he introduced 150 years ago. It also reveals the remarkable speed and the practical impact of adaptation in wild microorganism populations to changes in their environment, and the difficulty of stopping or delaying such adaptation. Copyright © 2009 Society of Chemical Industry  相似文献   

12.
Among oomycetes, Plasmopara viticola on grape and Phytophthora infestans on potato are agronomically the most important pathogens requiring control measures to avoid crop losses. Several chemical classes of fungicides are available with different properties in systemicity, specificity, duration of activity and risk of resistance. The major site-specific fungicides are the Quinone outside inhibitors (QoIs; e.g. azoxystrobin), phenylamides (e.g. mefenoxam), carboxylic acid amides (CAAs; e.g. dimethomorph, mandipropamid) and cyano-acetamide oximes (cymoxanil). In addition, multi-site fungicides such as mancozeb, folpet, chlorothalonil and copper formulations are important for disease control especially in mixtures or in alternation with site-specific fungicides. QoIs inhibit mitochondrial respiration, phenylamides the polymerization of r-RNA, whereas the mode of action of the other two site-specific classes is unknown but not multi-site. The use of site-specific fungicides has in many cases selected for resistant pathogen populations. QoIs are known to follow maternal, largely monogenic inheritance of resistance; they bear a high resistance risk for many but not all oomycetes. For phenylamides, inheritance of resistance is based on nuclear, probably monogenic mechanisms involving one or two semi-dominant genes; resistance risk is high for all oomycetes. The molecular mechanism of resistance to QoIs is mostly based on the G143A mutation in the cytochrome b gene; for phenylamides it is largely unknown. Resistance risk for CAA fungicides is considered as low to moderate depending on the pathogen species. Resistance to CAAs is controlled by two nuclear, recessive genes; the molecular mechanism is unknown. For QoIs and CAAs, resistance in field populations of P. viticola may gradually decline when applications are stopped.  相似文献   

13.
玉米病害发生现状与推广品种抗性对未来病害发展的影响   总被引:105,自引:2,他引:103  
 随着全球气候变化、耕作方式改变和新品种推广,我国玉米病害的发生也有所改变。在春玉米区,丝黑穗病仍然持续严重为害,大斑病呈加重趋势;在夏玉米区,局部地区小斑病发生较重,而矮花叶病普遍发生较轻;以往的次要病害已成为重要病害:如,南方锈病在夏玉米区南部严重发生,瘤黑粉病成为生产中的突出问题,土传病害日益加重,细菌性病害发生渐多。对玉米主要推广品种、近年国家和主产省份审定品种的抗病性分析表明,在北方春玉米区,由于品种抗性水平降低、个别感病品种的推广及病原菌致病力变异,大斑病在近年仍将呈现较重发生趋势;丝黑穗病的发生则由于推广抗病品种和种子包衣技术而有所减轻,但局部地区仍会严重发生;由于缺乏抗病品种,灰斑病和弯孢菌叶斑病的发生将主要取决于气候因素。在北方夏玉米区,小斑病暴发的可能性较小,但已有强致病力菌株出现;由于推广品种普遍对茎腐病抗性水平较低并受耕作制度的影响,茎腐病和苗枯病将成为主要病害;多数品种对南方锈病缺乏抗性,南方锈病发生面积将继续扩大,发病程度也将增加。  相似文献   

14.
Postharvest diseases cause considerable losses to harvested fruits and vegetables worldwide. In addition to various treatments to control postharvest losses caused by pathogens, the global trend is shifting toward more ecofriendly alternatives safer to human health. Thus far, the main approach to postharvest disease control has mostly relied on the use of chemicals. However, the intense use of chemical fungicides has caused side effects such as environmental issues and evolution of fungicide‐resistant isolates. With increasing demand for the use of non‐chemicals, ionizing radiation has been investigated for application in many aspects of postharvest treatment, especially as an approach with significant potential for the control of postharvest disease. Recently, a number of more or less technologically advanced methodologies, e.g. irradiation combined with other types of treatments and induced disease‐resistance, have been developed to control postharvest diseases as well as to increase the quality and storage life of fresh commodities. Challenges for future application of irradiation in fresh produce are the cost, lack of irradiation facilities, lack of knowledge about optimal conditions for different commodities, and lack of acceptance of irradiated fresh produce. This review aims to document the advances in understanding of the effects of irradiation on postharvest disease, the possible modes of action, and the perspectives in commercial use.  相似文献   

15.
选育和应用抗病品种是防治水稻细菌性病害最经济有效的措施。本研究采用苗期喷雾法和针刺法对黑龙江省42个水稻主栽品种进行抗性鉴定。结果表明,利用针刺法鉴定的各水稻品种中表现中抗以上的品种有14个,其中高抗品种2个,对接种水稻品种病斑长度进行差异显著性分析,42个水稻主栽品种间抗性存在显著差异;利用喷雾法鉴定各品种,病级表现1级的品种有7个,占16.7%。对数据进行比较分析,针刺法和喷雾法对抗病品种鉴定的结果基本一致。本研究鉴定的2个高抗稻种资源对于抗细菌性褐斑病生产实践提供重要价值。因此,加大对水稻品种资源的深入研究,对实现水稻细菌性褐斑病的可持续控制有着重要意义。  相似文献   

16.
蚜虫能够传播上百种植物病毒,是最重要的农业介体昆虫之一。蚜虫在刺探和取食植物过程中,唾液组分会连同附着在口针中的病毒粒子一同被分泌进入植物内,在调节植物诱导抗性、病毒侵染扩散、介体昆虫行为等过程中均有重要作用。本文围绕蚜虫传播病毒和获取病毒2个关键过程,总结分析了蚜虫独特的刺吸取食行为与传毒效率和获毒效率之间的联系;针对取食活动中关键的唾液蛋白在调控植物免疫抗性、帮助病毒侵染过程中的功能,阐述了蚜虫高效传播非持久病毒的分子基础;针对蚜虫的获毒过程,综述了病毒侵染植物间接调控蚜虫趋向和行为的作用方式。这些研究的开展将为解释蚜虫和病毒协同侵染的分子机制以及有效开展基于蚜虫取食行为调控的病虫害防控新技术提供思路。  相似文献   

17.
Resistance to three organophosphate and four pyrethroid insecticides was monitored from 1992 to 2000 in field populations of adult whiteflies, Bemisia tabaci, from Pakistan using a leaf-dip method. There was generally a very high resistance to dimethoate and deltamethrin, and a moderate resistance to monocrotophos during 1992 to 1996. From 1997 to 2000, resistance to these insecticides dropped to low levels because of less reliance on them for whitefly control, and introduction of new chemistries with novel modes of action that had no cross-resistance to conventional insecticides. Concurrently, whitefly resistance to acephate, fenpropathrin, lambda-cyhalothrin and bifenthrin mostly remained low. An insecticide resistance management strategy is recommended that particularly emphasizes the rotation of still-effective insecticides from different chemical classes along with the use of novel chemicals and other tactics of integrated pest management.  相似文献   

18.
Pseudomonas syringae pv. actinidiae (Psa) is a Gram‐negative bacterium that causes the bacterial canker of both green (Actinidia deliciosa) and yellow (Actinidia chinensis) fleshed kiwifruit. Since the emergence of an economically devastating Psa outbreak in Japan in the 1980s, the disease took a contagious turn causing severe economic loss to kiwifruit industries in Italy, South Korea, Spain, New Zealand and other countries. Research shows that the pathogenic strains isolated from different infected orchards vary in their virulence characteristics and have distinct genes coding for the production of different toxins. The global Psa outbreak has activated research around the world on developing efficient strategies to contain the pandemic and minimize loss to the kiwifruit industry. Chemical and biological control options, orchard management and breeding programmes are being employed in this global effort. Synergy between different disease control strategies has been recognized as important. Phytotoxicity, resistance development and regulatory measures in certain countries restrict the use of copper compounds and antibiotics, which are otherwise the mainstay chemicals against bacterial plant diseases. Therefore, because of the limitations of existing chemicals, it is important to develop novel chemical controls against Psa. Antimicrobial peptides, which are attractive alternatives to conventional antibiotics, have found promising applications in plant disease control and could contribute to expanding the chemical control tool box against Psa. This review summarizes all chemical compounds trialled so far against Psa and provides thoughts on the development of antimicrobial peptides as potential solutions for the future.  相似文献   

19.

BACKGROUND

Pyrethroids are among the most applied adulticides worldwide to control mosquito vectors for prevention of arboviral diseases transmission. However, pesticide resistance development in a mosquito population could lead to decreased control efficacy. While most studies investigate the resistant genotype (i.e. kdr, CYP450, etc.) as explanatory variables, few field efficacy studies have measured pesticide quantities deposited at different distances from the sprayer in association with observed mosquito mortality. The current study determined field delivered amounts of an applied ULV permethrin/PBO formulation (31% permethrin + 66% piperonyl butoxide) by GC/MS and estimated practical resistance ratios using caged mosquito females.

RESULTS

For field samples, the extraction method recovered 78 ± 3.92–108 ± 8.97% of the permethrin/PBO formulation when utilizing the peaks of PBO from GC/MS to estimate the concentrations of adulticide deposited near the mosquito cages. The field bioassay showed that the spatial distribution of permethrin/PBO formulation was heterogeneous among three pseudo-replicates within the same distance. Within the quantifiable permethrin/PBO range of 15.7–51.4 ng/cm2, field-collected mosquito mortalities started at 64% and linearly increased reaching 100% only in two areas, while all Sebring susceptible mosquitoes died. The field LC95 resistance ratio (RR) of F0 Cx. quinquefasciatus ranged from 2.65–3.51, falling within the 95% CI of RR95 estimated by laboratory vial assays. Tests with and without PBO indicated P450's enzymes contributed to field resistance.

CONCLUSION

Results showed the suitability of the collection and quantification method to estimate the field resistance ratio at the applied pesticide rate. Pesticide quantification would also allow the association of the known frequencies of resistance mechanisms (e.g. kdr, CYP450) with field mortalities to estimate the resistance level conferred by such mechanisms. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

20.
西花蓟马抗药性研究进展   总被引:5,自引:0,他引:5  
西花蓟马是世界范围内蔬菜和花卉上的重要害虫之一,使用化学药剂是防治西花蓟马的主要手段,目前西花蓟马已对有机氯、有机磷、氨基甲酸酯、拟除虫菊酯、阿维菌素和多杀菌素等多种杀虫剂产生了抗药性。本文从抗药性现状、抗性机制和抗性治理等几个方面介绍了国内外有关西花蓟马抗药性的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号