首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of canopy cover by forest harvesting generally increases the average surface runoff volume and sediment. Selective cutting (single and group selection method) is the most usual forest harvesting method in the Hyrcanian forests in the north of Iran. The purpose of this study is to find the effect of selective logging technique on the hydrological behavior of runoff and sediment in the Kheyrud forests located in northern Iran over 1 year. Four treatments were implemented: natural forest without harvesting (C), forest with selective harvesting (H) and area without canopy cover (WC) and skid trail (S). Three types of data were measured in each plot including soil chemical and physical properties, runoff and sediment load after each rainfall. The results indicate significant differences (P ≤ 0.05) in runoff generation and sediment production with respect to the treatments cover. The runoff in all treatments showed relatively similar response to rainfall, while the highest runoff and sediment were observed in skid trails, and the area without canopy cover (1.13 and 0.62 mm, and 1.2 and 0.51 g m?2), averagely. In contrast, the natural forest without harvesting and the forest with selective harvesting treatments exhibited the lowest amounts of runoff (0.2 and 0.44 mm) and sediment (0.1 and 0.17 g m?2), averagely. Implementation of low logging technique was useful to control the effects of logging on the runoff and sediment yield.  相似文献   

2.
Sesbania sesban (L.) Merr is a perennial N2-fixing tree with high potential for use in agricultural production systems as a green manure and livestock forage. We studied the interactive effects of soil type and water level on the growth, biomass allocation, nutrient and mineral content of S. sesban. Four-week old seedlings of S. sesban were grown for 49 days (n = 5) in a factorial mesocosm set-up with six soil types (sediment, sand, alluvial, acid-sulfate, saline and clay) and three water levels (drained, water-saturated and flooded). The soils tested represent the predominant alluvial soil types of the Mekong delta, Vietnam. Sesbania sesban grew well with relative growth rates (RGR) around 0.08 g g?1 d?1 in all studied soil types, except the saline soil where plants died. In the low-pH (3.9) acid sulfate soil, that constitute more than 40 % of the Mekong delta, the RGR of the plants was slightly lower (0.07 g g?1 d?1), foliar concentration of calcium was 3–6 times lower, and concentrations of iron and sodium up to five times higher, than in other soils. The nutrient and mineral contents of the plant tissues differed between the soils and were also affected by the flooding levels. Foliar concentrations of nitrogen (50–74 mg N g?1 dry mass) and phosphorus (5–9 mg P g?1 dry mass) were, however, generally high and only slightly affected by water level. The results show that S. sesban can grow well and with high growth rates on most wet soils in the Mekong delta, except saline soils where the high salt content prevents establishment and growth. The nutrient and mineral contents of the plants, and hence the nutritional value of the plants as e.g. fodder or compost crops, is high. However, soil type and water level interactively affect growth and tissue composition. Hence, optimal growth conditions for S. sesban differ in the different regions of the Mekong delta.  相似文献   

3.
A drying experiment with 36 mm thick softwood boards having an average initial moisture content of approximately 1.2 (dry basis) was performed. Drying temperatures of 40, 60 and 80°C were used. Relative humidity and superficial air velocity were maintained at 40% and 3.0 m s?1, respectively. Internal moisture content was monitored along the process in the single direction of the internal flux of water. Loss in mass of the entire timber board was also determined. An effective coefficient of mass transfer was tuned to internal experimental profiles of moisture content by involving the Fick’s second law. An explicit finite difference method for the numerical solution of the mass balance represented by the Fick’s equation was combined with the simplex method of optimization to obtain a mass transport parameter in the magnitude of 1.5–3.5 × 10?9 m2 s?1. A positive and significant effect of temperature on the effective diffusion coefficient, which was well described by an Arrhenius type expression, was deduced from this investigation. Although a negative effect of the average moisture content on the internal resistance to mass transfer was also observed, it was much less evident; mainly above the wood fiber saturation point. A negligible influence of the local moisture content on the investigated transport parameter was noticed when either a linear or a nonlinear model correlating these variables was adopted.  相似文献   

4.
In the Northern and Baltic countries, grey alder is a prospective tree species for short-rotation forestry. Hence, knowledge about the functioning of such forest ecosystems is critical in order to manage them in a sustainable and environmentally sound way. The 17-year-long continuous time series study is conducted in a grey alder plantation growing on abandoned agricultural land. The results of above- and below-ground biomass and production of the 17-year-old stand are compared to the earlier published respective data from the same stand at the ages of 5 and 10 years. The objectives of the current study were to assess (1) above-ground biomass (AGB) and production; (2) below-ground biomass: coarse root biomass (CRB), fine root biomass (FRB) and fine root production (FRP); (3) carbon (C) and nitrogen (N) accumulation dynamics in grey alder stand growing on former arable land. The main results of the 17-year-old stand were as follows: AGB 120.8 t ha?1; current annual increment of the stem mass 5.7 t ha year?1; calculated CRB 22.3 t ha?1; FRB 81 ± 10 g m?2; nodule biomass 31 ± 19 g m?2; fine root necromass 11 ± 2 g m?2; FRP 53 g DM m?2 year?1; fine root turnover rate 0.54 year?1; and fine root longevity 1.9 years. FRB was strongly correlated with the stand basal area and stem mass. Fine root efficiency was the highest at the age of 10 years; at the age of 17 years, it had slightly reduced. Grey alder stand significantly increased N and Corg content in topsoil. The role of fine roots for the sequestration of C is quite modest compared to leaf litter C flux.  相似文献   

5.
H. T. Tate  T. Page 《New Forests》2018,49(4):551-570
Developing methods for routine clonal propagation of sandalwood (Santalum austrocaledonicum) is important for its domestication and development as a commercial agroforestry species. The amenability of this species to propagation by leafy stem cuttings in low-cost non-mist propagators was assessed in four separate experiments. These experiments evaluated the effects of (1) genotype (15 genotypes from two island provenances), (2) cutting position on the stock plant (apical, medial and basal), (3) cutting size (1-node/400 mm2 and 2-node/800 mm2 leaf area), (4) three propagation media [scoria (5 mm, air-filled porosity (AFP)—29%), vermiculite and perlite (1:1 v/v, AFP—46%) and vermiculite, perlite and peat (2:2:1 v/v/v, AFP—42%)], (5) indole-3-butyric (IBA) (3000, 4000 and 8000 ppm) and (6) irradiance in the propagator [daily light integral (DLI) 5.3, 3.9, 2.6, 2.2 mol m?2 day?1]. IBA, propagation media and cutting size had no significant effect on rooting percentage, root number or root growth. Evidence of provenance-based variation in rooting capacity was recorded with greater rooting success for genotypes from the island of Erromango compared with Tanna. Variation in adventitious root induction was also recorded between individual genotypes from Erromango across all four experiments. Cuttings collected from the apical and medial parts of the shoot on the stock plant had higher rooting percentage than those collected from the base. Differences in rooting capacity between apical and medial shoots were variable between experiments and may be attributed to different levels of hardening. The use of artificial shade (~?70%) to achieve a mean DLI of between 2.6 and 3.9 mol m?2 day?1 increased rooting percentage compared to both lower (2.2 mol m?2 day?1 or?~?90% shade) and higher (5.3 mol m?2 day?1 or?~?50% shade) irradiance treatments. Leaf retention of cuttings in the propagator was positively associated with the percentage of cuttings with adventitious roots, with highest percentage in cuttings with full leaf retention, regardless of original cutting size. This study demonstrated S. austrocaledonicum seedlings can be successfully propagated by cuttings provided the propagation conditions are optimized for each genotype.  相似文献   

6.
ABSTRACT

Despite near-extinction in the nineteenth century, after efficient restoration measures the population of Eurasian beaver (Castor fiber L.) in Latvia currently is viable and growing. While the ecological effect of the species on water quality and biodiversity is generally positive, the high number of animals in production forests often creates challenges for management. Drainage ditches are among the most favoured habitats of beavers resulting in flooded stands, reduced tree growth and economical losses. The aim of the study was to evaluate the chemical properties of water in forest drainage ditches, affected by beaver activity, and their changes after the dam removal. Chemical composition of surface water in ditches was analysed in sampling points above dam, below dam and in the ditch itself after removal of the dam; results compared to pristine beaver site nearby on a small stream. Results did not show significant differences between concentrations above and below dams. After removal of the dams, significant increase in DOC, N-NO3 -, N-NH4 + and TSS concentrations and significant decrease in TP concentrations were observed in some of the sites. Observed concentrations of all measured parameters were significantly lower in pristine beaver site than in beaver sites on drainage ditches.  相似文献   

7.
The decomposition of harvest residues (brash) in managed forests has an important influence on the carbon (C) and nitrogen (N) stocks of these ecosystems. The brash input from thinning events in a 25-year-old Sitka spruce plantation was determined. A litter-bag method was used to determine the mass loss and decomposition rate of brash left on the forest floor. The changes in C and N concentrations and the C:N ratio of the needles and branches were also monitored as decomposition progressed for 2.5 years. Using the decomposition rate (k b) and estimated brash inputs, we then determined the total cumulative stock of C that the brash could supply to the deadwood pool over a 41-year rotation period. The three thinning events resulted in the addition of 37.99 t C ha?1 and 0.61 t N ha?1 to the forest floor. A significant mass loss of 44 % was recorded from brash decomposition bags after 2.5 years, with a rapid loss of 35 % in the first year, after which the rate of decomposition slowed. The k b-value and residence time (95 % decomposition) were 0.311 year?1 and 9.6 years, respectively. There was a 69 % increase in the N concentration of needles after 1.5 years, while an increase of 185 % in the N concentration of branches was recorded after 2.5 years. The C concentration (48.55 ± 0.20 %) did not differ significantly between the needles and branches over time. The accumulated C stock from decomposing brash at clearfell was estimated at 18.51 t C ha?1.  相似文献   

8.
The concentrations and protonation constants of the functional groups like carboxyl and phenolic hydroxyl groups in spruce bark were determined by a potentiometric acid–base titration method. The non-cellulosic carbohydrates in spruce bark were also characterized by acid methanolysis and GC, including determination of the uronic acid units, which are the key units involved in metal sorption. Sorption of metal ions to bark takes place by ion exchange, mainly by complexation to these functional groups. The sorption equilibrium time, studied by using a batch method, was approximately 5 min. The metal sorption capacity of spruce bark and the affinity order of metal ions were studied with four different metal ion mixtures using a column chromatographic method. Because a method of competition was used, concentration of metal ions adsorbed to bark depends on the metal ions present in the mixtures studied. In the sorption experiments with same metal ion mixtures, inner bark of spruce exhibited higher sorption capacity than outer bark. By combination of the results from several experiments, the following affinity order was obtained Fe3+ ? Pb2+ ? Cu2+ ? Cd2+ > Zn2+ > Ni2+ > Ba2+ > Ca2+ > Sr2+ > Mn2+ > Mg2+ ? K+ ~ Na+ ~ Li+. Bark has a great potential as an effective and inexpensive sorbent for removal of metal ions from, e.g., waste water.  相似文献   

9.
There is growing interest in using ecosystem services to aid development of management strategies that target sustainability and enhance ecosystem support to humans. Challenges remain in the search for methods and indicators that can quantify ecosystem services using metrics that are meaningful in light of their high priorities. We developed a framework to link ecosystems to human wellbeing based on a stepwise approach. We evaluated prospective models in terms of their capacity to quantify national ecosystem services of forests. The most applicable models were subsequently used to quantify ecosystem services. The Korea Forest Research Institute model satisfied all criteria in its first practical use. A total of 12 key ecosystem services were identified. For our case study, we quantified four ecosystem functions, viz. water storage capacity in forest soil for water storage service, reduced suspended sediment for water purification service, reduced soil erosion for landslide prevention service, and reduced sediment yield for sediment regulation service. Water storage capacity in forest soil was estimated at 2142 t/ha, and reduced suspended sediment was estimated at 608 kg/ha. Reduced soil erosion was estimated at 77 m3/ha, and reduced sediment yield was estimated at 285 m3/ha. These results were similar to those reported by previous studies. Mapped results revealed hotspots of ecosystem services around protected areas that were particularly rich in biodiversity. In addition, the proposed framework illustrated that quantification of ecosystem services could be supported by the spatial flow of ecosystem services. However, our approach did not address challenges faced when quantifying connections between ecosystem indicators and actual benefits of services described.  相似文献   

10.
Some land-use systems in Saskatchewan, Canada include the nitrogen-fixing trees buffaloberry (Shepherdia argentea Nutt.), caragana (Caragana arborescens Lam.) and sea buckthorn (Hippophae rhamnoides L.). These species provide various ecological functions such as ameliorating soil moisture, light and temperature but little work has been done quantifying biological nitrogen fixation by these species. Greenhouse experiments were conducted to quantify N2-fixation using the 15N natural abundance and the 15N dilution methods. Buffaloberry failed to form nodules in all but one of the four replicates in the natural abundance experiment. Using the 15N dilution method, the percentage of N derived from atmosphere (%Ndfa) in the shoot of buffaloberry averaged 64 %. For caragana, the mean  %Ndfa was 59 and 65 % and seabuckthorn was 70 and 73 % measured using the natural abundance and dilution methods, respectively. Because of large variability in biomass production between plants grown in the natural abundance experiment and the dilution experiment, the amounts of N2 fixed also were very variable. Buffaloberry fixed an average of 0.89 g N m?2; the average for caragana ranged from 1.14 to 4.12 g N m?2 and seabuckthorn ranged from 0.85 to 3.77 g N m?2 in the natural abundance and dilution experiments, respectively. This corresponds to 16 kg N ha?1 year?1 for buffaloberry; an average of 15–73 kg N ha?1 year?1 in caragana and 11–67 kg N ha?1 year?1 in seabuckthorn. The substantial amounts of N2 fixed by these species indicate that they have the potential to contribute to the overall N balance in land-use systems in which they are included.  相似文献   

11.
The mixture of beech (Fagus sylvatica L.) and oak (sessile oak, Quercus petraea (Matt.) Liebl., and pedunculate oak, Q. robur L.) is of considerable importance in Europe and will probably become even more important under climate change. Therefore, the performance of oak and beech in mixture was compared with the species’ growth in pure stands. Data from 37 long-term mixing experiments in Poland, Germany and Switzerland were pooled for analysis of mixing effects on stand productivity and possible interrelationships with mixing portions or site conditions. We found that on average, mixed stands of oak and beech exceeded biomass productivity in pure stands by 30 % or 1.7 t ha?1 year?1, as the growth of both species was benefitted by the mixture. However, that the interaction actually ranged from facilitation and overyielding on poor sites to underyielding on fertile sites triggered by competition. An empirically derived interaction model showed volume and dry mass growth changing in mixed stands from gains of 50 % to losses of 10 % depending on site conditions. It is concluded that the analysed mixture grows in accordance with the stress-gradient hypothesis and that our results suggest a site-specific relationship between species mixture and biomass productivity. As a consequence, an adequate species mix should result in increased productivity under steady state as well as climate change.  相似文献   

12.
We investigated the effects of two commercial diatomaceous earth based insecticides (DE), Protect-It® and SilicoSec®, the nano-structured silica product AL06, developed by the section for Urban Plant Ecophysiology at Humboldt University Berlin, and the monoterpenoids, eugenol, and cinnamaldehyde on two stored product pests, Callosobruchus maculatus and Sitophilus oryzae. Protect-It® was more effective than SilicoSec® against C. maculatus while the reverse was true for S. oryzae. Generally C. maculatus was more sensitive towards DE and silica treatment than S. oryzae. Mortality rate of both pest species increased when DE’s were applied to food commodities previously treated with a monoterpenoid. In admixture experiments, the toxicity of SilicoSec® + cinnamaldehyde (LD50 = 42.73 ppm), SilicoSec® + eugenol (LD50 = 24.30 ppm), and Protect-It® + eugenol (LD50 = 2.60 ppm) was increased over DE alone against S. oryzae. Both substances showed a synergistic effect considering their co-toxicity coefficient relative to the LD50-value. In contrast, we could not find any synergistic effects in experiments with C. maculatus. Here only Protect-It® + cinnamaldehyde (LD50 = 20.84 ppm) showed an additive effect while all other combinations of monoterpenoid and DE indicated antagonistic effects. In addition to contact insecticidal effects both monoterpenoids showed a strong fumigant action. The presented results indicate that the natural product DE has great potential to replace synthetic pesticides commonly used in stored product pest management. Efficacy of DE can be improved by adding certain monoterpenoids against certain insect pests.  相似文献   

13.
Runoff and sediment loss from forest roads were monitored for a two-year period in a Pinus plantation in southeast Queensland. Two classes of road were investigated: a gravelled road, which is used as a primary daily haulage route for the logging area, and an ungravelled road, which provides the main access route for individual logging compartments and is intensively used as a haulage route only during the harvest of these areas (approximately every 30 years). Both roads were subjected to routine traffic loads and maintenance during the study. Surface runoff in response to natural rainfall was measured and samples taken for the determination of sediment and nutrient (total nitrogen, total phosphorus, dissolved organic carbon and total iron) loads from each road.Results revealed that the mean runoff coefficient (runoff depth/rainfall depth) was consistently higher from the gravelled road plot with 0.57, as compared to the ungravelled road with 0.38. Total sediment loss over the two-year period was greatest from the gravelled road plot at 5.7 t km−1 compared to the ungravelled road plot with 3.9 t km−1. Suspended solids contributed 86% of the total sediment loss from the gravelled road, and 72% from the ungravelled road over the two years. Nitrogen loads from the two roads were both relatively constant throughout the study, and averaged 5.2 and 2.9 kg km−1 from the gravelled and ungravelled road, respectively. Mean annual phosphorus loads were 0.6 kg km−1 from the gravelled road and 0.2 kg km−1 from the ungravelled road. Organic carbon and total iron loads increased in the second year of the study, which was a much wetter year, and are thought to reflect the breakdown of organic matter in roadside drains and increased sediment generation, respectively.When road and drain maintenance (grading) was performed runoff and sediment loss were increased from both road types. Additionally, the breakdown of the gravel road base due to high traffic intensity during wet conditions resulted in the formation of deep (10 cm) ruts which increased erosion.The Water Erosion Prediction Project (WEPP):Road model was used to compare predicted to observed runoff and sediment loss from the two road classes investigated. For individual rainfall events, WEPP:Road predicted output showed strong agreement with observed values of runoff and sediment loss. WEPP:Road predictions for annual sediment loss from the entire forestry road network in the study area also showed reasonable agreement with the extrapolated observed values.  相似文献   

14.
The small-scale harvesting equipment system has been and continues to grow in use in forestry operations in some regions in the world. This harvest system can include a range of equipment types, such as feller-bunchers or chainsaws, skidders or farm tractors, and chippers. These machines are generally smaller, lower cost and less productive than larger, more advanced forestry machines. The objective of this project was to investigate the feasibility of a small scale harvesting system that would produce feedstock for a biomass power plant. The system had to be cost competitive. A boom-type feller-buncher, a small grapple skidder and a chipper were tested as a small-scale system. In this study, feller-buncher and skidder productivity was determined to be 10.5 m3 per productive machine hour, and production for the chipper was determined to be 18 m3 per productive machine hour. Production from the system did not reach the desired levels of 4 loads/day (25 m3/load); however, the system was able to produce about 3 loads/day. The results showed that the system currently could fill a roadside van for $16.90/m3, but suggested machine modifications could potentially reduce the system cost to $12.73/m3. Residual stand damage was minimal, especially on flatter ground and not operating on a slash layer. Soil disturbance from the harvesting system was predominantly undisturbed or classified as a shallow disturbance.  相似文献   

15.
Understanding the impact of plant litters on soil nitrogen(N) dynamics could facilitate development of management strategies that promote plantation ecosystem function.Our objective was to evaluate the effects of different litter types on N mineralization and availability,microbial biomass, and activities of L-asparaginase and odiphenol oxidase(o-DPO) in soils of a poplar(Populus deltoides) plantation through 24 weeks of incubation experiments.The tested litters included foliage(F), branch(B), or root(R) of poplar trees, and understory vegetation(U) or a mixture of F, B, and U(M).Litter amendments led to rapid N immobilization during the first 4 weeks of incubation, while net N mineralization was detected in all tested soils from 6 to 24 weeks of incubation, with zeroorder reaction rate constants(k) ranging from 7.7 to9.6 mg N released kg~(-1) soil wk~(-1).Moreover, litter addition led to increased microbial biomass carbon(C) 49–128% and increased MBC:MBN ratio by 5–92%,strengthened activities of L-asparaginase and o-DPO by14–74%; Up to about 37 kg N ha~(-1) net increase in mineralized N in litter added soils during 24 weeks of incubation suggests that adequate poplar and understory litter management could lead to reduced inputs while facilitate sustainable and economic viable plantation production.  相似文献   

16.
To gain better understanding of rates of decay of wooden check dams with different structures under different climate conditions, several dams of this type were examined under different environmental conditions over a 3 to 5-year period post-construction. Because a linear relationship was found between the mean (μ) and standard deviation (σ) of pilodyn penetration depth, mean penetration depth was taken as the indicator of deterioration, and relationships with check dam structural features and climate data recorded by AMEDAS were investigated. Multiple linear regression analysis revealed that temperature, climate index (CI) computed from rain days, warmth index computed from daily and annual mean air temperature, and altitude were the climate variables with the most effect on the rate of decay. With regard to dam structural features, factors such as specific discharge rate, water through width, dam length, and dam height had the most effect. Accordingly, in an effort to summarize the effects of climatic conditions and structural features, CI, altitude, and dam height were extracted as the most significant explanatory variables, and a formula for prediction of μ was obtained for each factor for up to 5 years post construction. The results showed that by taking into consideration regional conditions and calculating CI values from AMEDAS data, it is possible to predict the extent of decay of wooden check dams.  相似文献   

17.
With embryogenic callus of Larix olgensisis, we investigated the effects of inositol, glutamine, casein hydrolysate, carbohydrate, abscisic acid and silver nitrate concentration on the maturation of the somatic embryo. Three dominant factors emerged, and we developed a response surface model based on the Box–Behnken design. We defined the optimal conditions for the maturation of somatic embryos. The contents of abscisic acid, silver nitrate, sucrose and casein hydrolysis significantly affected the amount of maturing embryos, but inositol, maltose and glutamine had no effect. By establishing a response surface model with multiple factors, we predicted that the optimal number of L. olgensis somatic embryos was 204?±?4 g?1 on basal medium, containing 18.28 mg L?1 abscisic acid, 5.46 mg L?1 silver nitrate and 82.67 g L?1 sucrose. In the verification experiments, the addition of 20 mg L?1 abscisic acid, 5 mg L?1 silver nitrate and 80 g L?1 sucrose to BM yielded an average of 202.06 somatic embryos per gram. These results should guide large-scale breeding of L. olgensis.  相似文献   

18.
A number of agroforestry models have been developed to simulate growth outcomes based on the interactions between components of agroforestry systems. A major component of this interaction is the impact of shade from trees on crop growth and yield. Capability in the agricultural production systems simulator (APSIM) model to simulate the impacts of shading on crop performance could be particularly useful, as the model is already widely used to simulate agricultural crop production. To quantify and simulate the impacts of shading on maize performance without trees, a field experiment was conducted at Melkassa Agricultural Research Centre, Ethiopia. The treatments contained three levels of shading intensity that reduced incident radiation by 0 (control), 50 and 75% using shade cloth. Data from a similar field experiment at Machakos Research Station, Kenya, with 0, 25 and 50% shading were also used for simulation. APSIM adequately simulated maize grain yield (r2 = 0.97) and total above-ground biomass (r2 = 0.95) in the control and in the 50% treatments at Melkassa, and likewise in the control (r2 = 0.99), 25% (r2 = 0.90) and 50% (r2 = 0.98) treatments at Machakos. Similarly, APSIM effectively predicted Leaf Area Index attained at the flowering (r2 = 0.90) and maturity (r2 = 0.94) stages. However, APSIM under-estimated maize biomass and yield at 75% shading. In conclusion, the model can be reliably employed to simulate maize productivity in agroforestry systems with up to 50% shading, but caution is required at higher levels of shading.  相似文献   

19.
Nitraria sibirica Pall. is a shrub that grows in saline-alkali soil and has traditional medicinal value and potential commercial value. The objectives of this study include induction and multiplication of callus, establishment of a suspension cell line, and isolation of protoplasts from cell suspensions. Murashige and Skoog (MS) medium was used for callus induction from mature seeds of N. sibirica. Seed-derived calluses were further multiplied on MS medium augmented with 0.5 mg L?1 6-benzylaminopurine (6-BA) and 1.0 mg L?1 2,4-dichlorophenoxy (2,4-D) acetic acid. Suspension cultures of N. sibirica were initiated by transferring friable calli to the same liquid multiplication medium. Characterization of the suspension culture was assessed based on fresh mass, dry mass, cell viability and pH value of the culture. A typical growth curve was observed after inoculating 1.5 g of callus in 40 mL liquid medium, including a lag phase, an exponential growth phase, a stationary phase, and a negative acceleration phase. The effect of factors such as pre-plasmolysis, enzyme combination, enzymolysis time and mannitol concentration, on the isolation of cell-derived protoplasts were evaluated to determine the usefulness of suspension cultures. The maximum yield (9.79 × 106 cells/g) and highest viability (79.97%) of protoplast were reached when approximately 1 g of cell suspension (cultured for 6 days) was inoculated for 12 h in cell and protoplast washing solution made of 0.8 mol L?1 mannitol mixture solution, cellulose onozuka R-10 2% (w/v), hemicellulose 0.2%, macerozyme R-10 1%, and pectolyase Y-23 0.5%. Protoplast yield was significantly influenced by pre-plasmolysis and cellulose onozuka R-10 (P < 0.05).  相似文献   

20.
We used forest management records to estimate the annual supply potential and availability of timber and logging residue from profitable subcompartments for all the cities and towns in the Tochigi prefecture. Five log markets and three factories in the Tochigi prefecture were assumed to be the destination of timber and logging residue, and the forest operation systems were set on the basis of interviews with forestry cooperative officials. The results showed that the annual supply potential of timber and logging residue was 450,304 m3 and 549,957 tons, of which 6 % (26,304 m3) and 37 % (204,122 tons) were from precommercial thinning operations, 61 % (276,180 m3) and 50 % (276,276 tons) were from commercial thinning operations, and 33 % (147,820 m3) and 13 % (69,559 tons) were from final-felling operations, respectively. When the unit price of the logging residue was 10,000 yen/ton, the annual logging residue availability from profitable subcompartments could almost cover the annual demand of the three facilities that we considered in this study. Introduction of feed-in tariffs had a significant impact. However, the ratios of the availability to supply potential with unit prices of logging residue of 3,000, 6,000, and 10,000 yen/ton were estimated to be only 1.67, 2.06, and 4.09 %, respectively. Considering the subsidies, the ratios respectively increased to 5.79, 7.35, and 13.09 %. Furthermore, the annual logging residue availability with subsidy could meet 70 % of the annual woody biomass demand of the large-scale factory in Sano city, which is 100,000 tons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号