首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four new C14-polyacetylene glycosides, namely coreosides A–D (1–4), were isolated from the capitula of Coreopsis tinctoria, a Snow chrysanthemum or Snow tea that is used as a folk tea for prevention of cardiovascular disease in southern Xinjiang, China. Coreosides A–D feature a long chain structure as its aglycon with two acetylenes on C-8 and C-10 and two olefinics on C-6 and C-12 sites, which construct a large conjugate system. The structures were elucidated on the basis of spectroscopic evidences and hydrolysis. Compounds 1–4 exhibited significant inhibition against cyclooxygenase-2 at the concentration of 1 × 10 6 mol/L, with its IC50 values of 0.22–8.8 × 10 2 μmol/L.  相似文献   

2.
Hispolon was the main antitumor active ingredient in Phellinus sensu lato species. In order to confirm the dual regulating estrogenic ingredient and obtain more effective natural estrogen replacement drugs, hispolon was separated from Phellinus lonicerinus (Bond.) Bond. et sing. Hispolon exhibited significant anti-proliferative effect against estrogen-sensitive ER (+) MCF-7 cells in the absence of estrogen, and exhibits antagonistic effects on 17β-estradiol (E2)-induced MCF-7 cell proliferation when E2 and the different concentrations of hispolon were treated simultaneously. Hispolon also inhibited the proliferation of estrogen-negative ER (−) MDA-MB-231 cells at the concentration of 5.00 × 10 5 M. The yeast two-hybrid experiments showed that hispolon had strong and non-selective effects on the estrogen receptor (ER) α and ERβ at a concentration of 1.00 × 10 6 M. The ERβ-binding ability of hispolon was larger than ERα in the concentration range of 1.00 × 10 9 M and 1.00 × 10 7 M. Hispolon could increase the body weight coefficient, serum E2 and progesterone contents in immature female mice at dose of 9.10 × 10 6 mol/kg, and increase coefficient of thymus and spleen in mice. The Gscores of hispolon-ERα and hispolon-ERβ docked complexes were − 7.93 kcal/mol and − 7.79 kcal/mol in docking simulations. Hispolon presented dual regulating estrogenic activities, which showed estrogenic agonist activity at low concentration or lack of endogenous estrogen, and the estrogenic antagonistic effect was stimulated at high concentrations or too much endogenous estrogen. Hispolon could be used for treating the estrogen deficiency-related disease with the benefit of non-toxic to normal cells, good antitumor effects and estrogenic activity.  相似文献   

3.
Studies on basic density of woody species in Amazonian savannas are needed to convert data on woody volume to biomass. These ecosystems, which have large carbon stocks, emit greenhouse gases annually due to frequent burnings. Basic density (g cm−3: oven-dry weight/wet volume), measured from complete sample disks (bark, sapwood and heartwood), was calculated for the most abundant woody species in three types of open savannas (Sg: grassy-woody savanna; Sp: savanna parkland; Tp: steppe-like parkland) in Roraima, a state in the northern part of Brazil’s Amazon region. The species selected represent 90–95% of the woody biomass estimated in these ecosystem types. Seven additional species were lumped in an “others” group. In total, we sampled 107 trees: 40 in Sg, 37 in Sp and 30 in Tp. Bowdichia virgilioides (0.516 ± 0.021 (S.E.) g cm−3) was the species with the highest basic density, followed by the “others” group (0.485 ± 0.057 g cm−3), Curatella americana (0.413 ± 0.028 g cm−3), Byrsonima crassifolia + B. coccolobifolia (0.394 ± 0.019 g cm−3), Himatanthus articulatus (0.375 ± 0.020 g cm−3) and B. verbascifolia (0.332 ± 0.020 g cm−3). Basic density of the species with the greatest woody biomass in Roraima’s open savannas (C. americana and B. crassifolia + B. coccolobifolia) did not differ significantly at the 5% level (ANOVA) among the three ecosystem types studied. Wood basic density in these savannas (weighted mean = 0.404 ± 0.025 g cm−3) is lower than that in Amazonian forests (weighted mean = 0.680 g cm−3). These results reduce uncertainty in calculations of carbon stocks and of greenhouse gas emissions from clearing and burning tropical savanna.  相似文献   

4.
In 1984, a liming experiment with a surface application of 4 t ha−1 of dolomitic limestone was started at the acidic N-saturated Norway spruce forest “Höglwald” in southern Germany and monitored until 2004. The decay of surface humus due to the accelerated mineralisation accounted for 18.5 ± 2.7 t ha−1 C or 50% of the initial pool and 721.6 ± 115.0 kg ha−1 N or 46% for N. Due to some translocation of organic material to the mineral soil the values to 40 cm depth are slightly lower (13.5 ± 4.4 t ha−1 C or 15% of the initial pool and 631.6 ± 192.8 kg ha−1 N or 13% for N). In the control plot NO3 concentrations at 40 cm depth were above the European level of drinking water (0.8 mmolc l−1 or 50 mg NO3 l−1) for nearly the whole investigation period. Liming increased NO3 concentrations in seepage water for approximately 15 years, and accelerated leaching losses by 396.2 NO3–N kg ha−1 from 1984 to 2003. The increase in pH of the soil matrix was more or less restricted to the humus layer and the upper 5 cm of the mineral soil during the whole time span, while the base cations Ca and Mg reached deeper horizons with seepage water. From 1984 to 2003, an amount that nearly equalled the applied Mg, was leached out of the main rooting zone, while most of the applied Ca was retained. The time series of the elemental concentrations in needles showed minor changes. Ca concentrations in needles increased with liming, while Mg remained nearly unchanged, and P decreased in older needles.  相似文献   

5.
Reforestation and afforestation have been suggested as an important land use management in mitigating the increase in atmospheric CO2 concentration under Kyoto Protocol of UN Framework Convention on climate change. Forest inventory data (FID) are important resources for understanding the dynamics of forest biomass, net primary productivity (NPP) and carbon cycling at landscape and regional scales. In this study, more than 300 data sets of biomass, volume, NPP and stand age for five planted forest types in China (Larix, Pinus tabulaeformis, Pinus massoniana, Cunninghamia lanceolata, Pouulus) from literatures were synthesized to develop regression equations between biomass and volume, and between NPP and biomass, and stand age. Based on the fourth FID (1989–1993), biomass and NPP of five planted forest types in China were estimated. The results showed that total biomass and total NPP of the five types of forest plantations were 2.81 Pg (1 Pg = 1015 g) and 235.65 Mg ha−1 yr−1 (1 Mg = 106 g), respectively. The area-weighted mean biomass density (biomass) and NPP of different forest types varied from 44.43 (P. massoniana) to 146.05 Mg ha−1 (P. tabulaeformis) and from 4.41 (P. massoniana) to 7.33 Mg ha−1 yr−1 (Populus), respectively. The biomass and NPP of the five planted forest types were not distributed evenly across different regions in China. Larix forests have the greatest variations in biomass and NPP, ranging from 2.7 to 135.37 Mg ha−1 and 0.9 to 10.3 Mg ha−1 yr−1, respectively. However, biomass and NPP of Populus forests in different region varied less and they were approximately 50 Mg ha−1 and 7–8 Mg ha−1 yr−1, respectively. The distribution pattern of biomass and NPP of different forest types closely related with stand ages and regions. The study provided not only with an estimation biomass and NPP of major planted forests in China but also with a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

6.
This paper examines carbon (C) pools, fluxes, and net ecosystem balance for a high-elevation red spruce–Fraser fir forest [Picea rubens Sarg./Abies fraseri (Pursh.) Poir.] in the Great Smoky Mountains National Park (GSMNP), based on measurements in fifty-four 20 m × 20 m permanent plots located between 1525 and 1970 m elevation. Forest floor and mineral soil C was determined from destructive sampling of the O horizon and incremental soil cores (to a depth of 50 cm) in each plot. Overstory C pools and net C sequestration in live trees was estimated from periodic inventories between 1993 and 2003. The CO2 release from standing and downed wood was based on biomass and C concentration estimates and published decomposition constants by decay class and species. Soil respiration was measured in situ between 2002 and 2004 in a subset of eight plots along an elevation gradient. Litterfall was collected from a total of 16 plots over a 2–5-year period.The forest contained on average 403 Mg C ha−1, almost half of which stored belowground. Live trees, predominantly spruce, represented a large but highly variable C pool (mean: 126 Mg C ha−1, CV = 39%); while dead wood (61 Mg C ha−1), mostly fir, accounted for as much as 15% of total ecosystem C. The 10-year mean C sequestration in living trees was 2700 kg C ha−1 year−1, but increased from 2180 kg C ha−1 year−1 in 1993–1998 to 3110 kg C ha−1 year−1 in 1998–2003, especially at higher elevations. Dead wood also increased during that period, releasing on average 1600 kg C ha−1 year−1. Estimated net soil C efflux ranged between 1000 and 1450 kg C ha−1 year−1, depending on the calculation of total belowground C allocation. Based on current flux estimates, this old-growth system was close to C neutral.  相似文献   

7.
Two field experiments, located in Central and Northern Sweden, were used to study the influence of standing volume on volume increment and ingrowth in uneven-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinnings. Each experiment had a 3 × 2 factorial block design with two replications. Treatments were thinning grade, removing about 45, 65, and 85% of pre-thinning basal area, and thinning type, removing the larger or the smaller trees, respectively. Each site also had two untreated control plots. Plot size was 0.25 ha. Volume increment was 0.5–6.8 m3 ha−1 year−1 for the plots, and significantly positively (p < 0.01) correlated with standing volume. Within treatment pairs, plots thinned from Above had consistently higher volume increment than plots thinned from Below. Ingrowth ranged from 3 to 33 stems ha−1 year−1, with an average of 14 and 21 stems ha−1 year−1 at the northern and southern site, respectively. At the southern site ingrowth was significantly negatively (p < 0.01) correlated with standing volume, but not at the northern site. Mean annual mortality after thinning was 2 and 7 stems ha−1 year−1at the northern and southern site, respectively.  相似文献   

8.
Pre-marked skid trails, directional felling and climber cutting when logging in tropical rainforests may be important ways of reducing damage to the forest, thus creating a healthier stand and improving future yields.This study, carried out in a virgin dipterocarp rainforest in the south of Sabah, Malaysia, compared two types of logging (both with and without pre-cutting climbers): conventional selective logging (CL) and supervised logging (SL). The latter is a selective logging system in which both pre-marked skid trails and directional felling were implemented. The pre-marked skid trails were aligned parallel to each other, spaced 62 m apart. A randomised complete block 2 × 2 factorial design was used in the experiment, consisting of 16 gross treatment plots, each of 5.76 ha with a 1 ha net plot in the centre.Fewer trees tended (0.050 < P  0.100) to be logged in SL plots than in CL plots (on average 9.4 and 13.0 trees ≥60 cm diameter breast height ha−1). Pre-felling of climbers resulted in four more dipterocarp trees being logged ha−1, compared with no climber cutting: a statistically significant difference (P  0.050). The basal areas lost of both large trees (≥ 60 cm dbh) and small dipterocarp trees (10–29 cm dbh) tended to differ between the logging systems, with CL leading to greater losses.There were significant differences in the residual stands left by the logging systems, with respect to the number of dipterocarps and their basal area in the diameter class 10–29 cm; ca 30% more stems being found after SL. No significant differences (or tendencies) in these variables were found in the residual stands in other diameter classes, or when trees of all species were considered.  相似文献   

9.
Nitrate in the soil water below the root zone is a pre-condition for nitrate leaching, and it indicates loss of nutrients from the forest ecosystem. Nitrate leaching may potentially cause eutrophication of surface water and contamination of ground water. In order to evaluate the extent of nitrate leaching in relation to land-use, a national monitoring programme has established sampling routines in a 7×7 km grid including 111 points in forests. During winters of 1986–1993, soil samples were obtained from a depth of 0–25, 25–50, 50–75 and 75–100 cm. Nitrate concentrations in soil solutions were determined by means of a 1 M KCl extraction. The influence of forest size, forest-type, soil-type, tree species and sampling time on the nitrate concentrations was analysed in a statistical model. The analysis focused on data from depth 75–100 cm, as nitrate is considered potentially lost from the ecosystem at this depth. The range of nitrate concentrations was 0–141 mg NO3–N dm−3 and the estimated mean value was 1.51 mg NO3–N dm−3. The concentration was influenced by (1) forest size (concentrations in forests <10 ha were higher than concentrations in forests >50 ha), (2) forest-type (afforested arable land had higher concentrations than forest-type `other woodland'), (3) soil-type (humus soils showed above average concentrations, and fine textured soils had higher concentrations than coarse textured soils), and (4) sampling time. Unlike other investigations, there was no significant effect of tree species. A few sites deviated radically from the general pattern of low concentrations. The elevated concentrations recorded there were probably caused by high levels of N deposition due to emission from local sources or temporal disruptions of the N cycle. The nitrate concentration in the soil solution below the root zone was mostly rather low, indicating that, generally, N saturation has not yet occurred in Danish forest ecosystems. However, median concentrations exceeding drinking water standards (11.3 mg NO3–N dm−3) were found at 7% of the sites. Furthermore, 30% of the sites had median concentrations above 2 mg NO3–N dm−3, suggested as an elevated level for Danish forest ecosystems, equalling annual N losses of more than 2–6 kg ha−1 year−1.  相似文献   

10.
We simulated loblolly pine (Pinus taeda L.) net canopy assimilation, using BIOMASS version 13.0, for the southeastern United States (1° latitude by 1° longitude grid cells) using a 44-year historical climate record, estimates of available water-holding capacity from a natural resource conservation soils database, and two contrasting leaf area indices (LAI) (low; peak LAI of 1.5 m2 m−2 projected, and high; 3.5 m2 m−2). Median (50th percentile) available water-holding capacity varied from 100 to 250 mm across the forest type for a normalized 1.25 m soil profile. Climate also varied considerably (growing season precipitation ranged from 200 to 1600 mm while mean growing season temperature ranged from 13° to 26°C). Net canopy assimilation ranged from 9.3 to 19.2 Mg C ha−1 a−1 for high LAI and the 95th percentile of available water-holding capacity simulations.We examined the influence of soil available water-holding capacity, and annual variation in temperature and precipitation, on net canopy assimilation for three cells of similar latitude. An asymptotic, hyperbolic relationship was found between the 44-year average net canopy assimilation and soil available water-holding capacity. Shallow soils had, naturally, low water-holding capacity (<100 mm) and, subsequently, low productivity. However, median available water-holding capacity (125–150 mm) was sufficient to maintain near maximum production potential in these cells.Simulations were also conduced to examine the direct affects of soil available water on photosynthesis (PN) and stomatal conductance (gS) on net canopy assimilation. In the absence of water limitations on PN and gS, net canopy assimilation increased by only 10% or less over most of the loblolly pine region (when compared to simulations for median available water-holding capacity with water influences in place). However, the production differences between high and low LAI, at the median soil available water-holding capacity, ranged from 30% to 60% across the loblolly pine range. Vapor pressure deficit was found to dramatically reduce productivity for stands of similar LAI, incident radiation, rainfall, and available water-holding capacity. Thus, these simulations suggest that, regionally, loblolly pine productivity may be more limited by low LAI than by soil available water-holding capacity (for soils of median available water-holding capacity or greater). In addition, high atmospheric forcing for water vapor will reduce net assimilation for regions of otherwise favorable available water and LAI.  相似文献   

11.
A financial assessment of forest investments is comprehensive if the analysis includes reliable yield estimates, land expectation value (LEV) and risk calculation. All of these aspects were considered and applied to teak plantations in Colombia, an emergent economy where high forest productivity, low opportunity cost of land, and decreased financial/economic risk have substantially contributed to promote forest investments. The von Bertalanffy non-linear mixed effect model was used to estimate forest yields using data collected from 31 permanent sample plots, measured over a 17 year period. A stochastic version of LEV along with other financial criteria was calculated by using a computer algorithm and Monte Carlo simulation. Finally, probabilities obtained from stochastic financial calculations were used in logistic models to estimate probabilities of success for a forest plantation project, a measure of risk assessment, after changing land prices. Results suggest that the potential forest productivity (i.e., the biological asymptote) ranges from 93 to 372 m3 ha 1. The mean annual increment is 27.8 m3 ha 1 year 1, which is attained 6 years after the forest plantation is established. Profitability analyses for teak plantations in Colombia suggest a LEV of US$7000 ha 1. The risk analyses indicate negligible financial risk for forestlands whose prices are lower than US$2000 ha 1.  相似文献   

12.
We estimated gross photosynthetic production (GPP) of the forest floor vegetation in a 40-year-old Scots pine stand in southern Finland with three different methods: measurements of CO2 exchange of single leaves of field and ground layer species, measurement campaigns of forest floor net CO2 efflux at different irradiances with a manually operated soil chamber, and continuous measurements of forest floor net CO2 efflux with an automatic transparent chamber system. We upscaled the measured light response curves from the manual soil chambers using the biomass distribution of the forest floor species, a modelled seasonal pattern of photosynthetic capacity and a model of light extinction down the canopy. Leaf gas exchange measurements as well as measurements of net CO2 efflux with the manual chamber indicated saturation of photosynthesis at relatively low (50–400 μmol m−2 s−1) light levels. Leaf and patch level measurements gave similar rates of photosynthetic CO2 fixation per unit leaf biomass suggesting that reduction in photosynthetic production due to within-patch shading was small. Upscaling of photosynthetic production to the stand level and continuous measurements with the automatic soil chambers indicated that momentary photosynthetic production by the forest floor vegetation in the summer was typically about 2 μmol m−2 (ground) s−1. Cumulative upscaled GPP over the period of no snow (from 20 April to 20 November) in year 2003 was 131 g C m−2. Continuous measurements with the automatic soil chamber system were in line with the upscaling, the cumulative GPP being 83 g C m−2 and the seasonal pattern of photosynthetic rate similar to that of the upscaled photosynthesis.  相似文献   

13.
During the period 1976–1991, a combined experiment of acidification, liming and nitrogen addition in a mature spruce stand was conducted at Farabol in south-east Sweden. The aim of this study was to investigate the effects of these treatments on the ground vegetation 0, 1, 5 and 15 years after experimental establishment. The treatment regimes were nitrogen (200 kg N ha−1, repeated three times at 4–5-year intervals, totally 600 kg N ha−1), sulphur powder (50 and 100 kg S ha−1 a−1, totally 600 and 1200 kg ha−1), sulphur plus nitrogen (600+600 kg ha−1) and limestone (500 kg ha−1 a−1, i.e. totally 6000 kg ha−1). The results showed that nitrogen addition and liming promoted the abundance of the grass Deschampsia flexuosa, while acidification had a negative effect on D. flexuosa and herbs in the field layer. There was a negative reaction giving immediate damage to the bryophytes in connection with additions of nitrogen, sulphur powder and lime. The magnitude of damage and the capacity to recover varied among species as well as among treatments. The recovery from immediate damage after liming was much faster than after the treatments with sulphur powder and/or nitrogen. A negative interaction between sulphur powder and nitrogen was found for herbs and mosses where the combined effects were stronger than the effects of a single treatment alone. Acidification also had a negative effect on the total number of species. The results of this study showed that acidification and nitrogen deposition could negatively influence forest vegetation by changing the nutrient availability in the soils. Liming led to an improved growth of the forest ground vegetation and the flora changed towards a more nitrophilic species composition.  相似文献   

14.
The objective of the present study was to investigate arbuscular mycorrhizal status of five species of rhododendrons distributed in Kumaun region of the Indian Central Himalaya. Root and rhizosphere soil samples of all the five species of rhododendrons, namely, Rhododendron anthopogon, R. arboreum, R. campanulatum, R. barbatum and R. lepidotum were collected from temperate, sub-alpine to alpine location in altitudinal range from 1500 to 4500 m amsl. The arbuscular mycorrhizal colonization in root samples ranged from 28 to 42%; and maximum and minimum colonization was observed in R. arboreum and R. lepidotum, respectively. The highest number of intraradical vesicles (12.5 ± 2.8 cm−1 root segment) was recorded in R. arboreum and the lowest (7.0 ± 1.7 cm−1 root segment) in R. barbatum; vesicles were not observed in R. lepidotum. Spores were extracted from the rhizosphere soil by wet sieving to perform microscopic identification of the species. The maximum and minimum populations of spores were detected in the rhizosphere soil samples of R. anthopogon (52.0 ± 1.5 spores 25 g−1 soil) and R. lepidotum (32.0 ± 2.5 spore 25 g−1 soil), respectively. Spore populations were found to belong to five genera—Acaulospora, Glomus, Gigaspora, Sclerocystis and Scutellispora; genus Glomus was found to be dominant in the rhizosphere soil samples of all the rhododendron species. The most frequent and abundant species was G. fasciculatum, however, this species was not isolated from the rhizosphere soil of R. barbatum. Finger millet (Eleucine coracana) was used to cultivate the trap culture of arbuscular mycorrhizal fungi to confirm the species identity. Spores of Glomus pustulatum, not detected in the rhizosphere soil, were recovered from the trap culture. Contrary to this, genus Gigaspora, which was present in the rhizosphere soil, did not sporulate in the trap culture. Shannon and Wiener index of diversity and Simpson's index of dominance indicated that the species richness, dominance and diversity of arbuscular mycorrhizal fungi decrease with increasing altitude. In two species of rhododendrons, namely R. campanulatum and R. anthopogon, dark septate mycelium was also observed.  相似文献   

15.
A rapid, sensitive and selective high-performance liquid chromatography mass spectrometric method has been developed and validated for the simultaneous determination of oxymatrine and its active metabolite matrine in human plasma after administration of oxymatrine oral solution. Analytes were extracted from the plasma by liquid-liquid extraction with chloroform. The chromatographic separation was accomplished on a Venusil C18 column (150 mm × 4.6 mm, 5 μm) protected by a C18 guard column (4.0 mm × 2.0 nm; Phenomenex, Torrance, CA, USA). Analytes were detected on a single quadruple mass spectrometer by selected ion monitoring mode via electrospray ionization source. The assay had a lower limit of quantification of 1.5 ng · mL 1 for oxymatrine and 3 ng·mL 1 for matrine in plasma. The calibration curves were linear in the measured range. The overall precision and accuracy for all concentrations of quality controls and standards were within ± 15%. The proposed method enabled unambiguous identification and quantification of oxymatrine and its active metabolite matrine in vivo. The results provided a meaningful basis for evaluating the clinical applications of the oxymatrine oral solution.  相似文献   

16.
Nothofagus antarctica (Forster f.) Oersted is a deciduous tree species, which naturally grows on poorly drained or drier eastern sites in the Andes Mountain near Patagonian steppe. Above- and below-ground biomass and nutrients pools were measured in pure even-aged stands at different ages (5–220 years) and crown classes. Functions were fitted for total biomass and nutrients accumulation, and root/shoot ratio of individual trees against age. Total biomass accumulated for mature dominant trees was eight times greater than mature suppressed trees. Biomass root/shoot ratio decreased with age from 1.8 to a steady-state of 0.5. All nutrients concentration (except Ca) decreased with age and varied according to the degree of crown suppression classes. Nutrient concentrations varied between biomass pool components following the order leaves > bark > small branches > fine roots > medium roots > rooten wood > coarse roots > sapwood > heartwood. Total nutrient accumulation followed the order dominant > codominant > intermediate > suppressed trees and its accumulation rate varied over time, e.g. P accumulation rate of dominant trees increased from 0.17 g tree−1 year−1 during regeneration to 1.39 g tree−1 year−1 in mature trees. Nutrients uptake reached a peak during the period of maximum biomass production, and root/shoot ratio of nutrients decreased from its maximum value at 5 years of age (0.6, 4.0, 0.9, 1.5, 1.0 and 2.6 for N, P, K, Ca, S and Mg, respectively) to a steady-state asymptote beyond 50 years of age. Thus, accumulation of nutrients in roots was greater during the regeneration phase of stand development, and nutrient accumulation increased in above-ground over time. Also, nutrient use efficiency increased in mature trees (111–220 years) and decreased in suppressed crown classes. The equations developed for individual trees have been used to estimate stand biomass and nutrient accumulation from forest inventories data. Total stand biomass varied from 62.5 to 133.4 t ha−1 and total nutrients accumulation ranged from 3 kg Mg ha−1 to 1235 kg Ca ha−1. Proposed equations can be used for practical purposes such as to estimate pasture nutrients requirement in a silvopastoral system based on nutrients supply from leaf litter returns, or to determine amelioration practices like debarking stems before harvesting.  相似文献   

17.
Phosphorus deficiency is widespread in the subhumid highlands of eastern Africa but there are few data on the effect of P deficiency on the growth of agroforestry tree species. We studied the effect of P application on growth, nutrient uptake and dry matter partitioning in young trees of Calliandra calothyrsus, Cedrela serrulata, Eucalyptus grandis, Grevillea robusta, Markhamia lutea, Senna spectabilis, and Sesbania sesban on a P-deficient soil (Kandiudalfic Eutrudox, bicarbonate-EDTA extractable P = 1 mg kg−1) in western Kenya. The trees were grown at two P levels (control and 500 kg added P ha−1) at 1 m2 spacing in a randomized complete block design with three replications. Leaf K concentrations were in the low range for all species (5–9 mg g−1) and K deficiency may have limited responses to P. Averaged over species, P addition increased aboveground shoot dry matter by a factor of 2.6 at 62 and 124 days, but the response decreased to 1.3 at 325 days. The increases at 62 days were large in sesbania (5.4) and eucalyptus (3.2) but small in calliandra (1.4) and markhamia (1.1). Relative response to P was more strongly correlated with shoot growth rate per unit root length among species than with shoot growth rate alone. Calliandra, which had high early growth rate but low response to added P, had an exceptionally high root length (6.0 km m−2) compared with the other species (0.3–2.1 km m−2). P addition increased N and P content but decreased final shoot K content in sesbania and calliandra, and had little effect on K content in the other species. The high-yielding species (eucalyptus, sesbania and calliandra) accumulated more than 30 g N and 2 g P m−2 in shoots in 325 days of growth. The proportion of total shoot N in wood (branch + stem) was in a higher range (67–75%) in the shrubby species (sesbania, calliandra, senna) than in the upperstorey tree species (38–43%). Slow early shoot growth relative to total root length, and high specific root length (root length per unit root mass) are proposed as criteria for the selection of species and provenances that are well adapted to P deficient soils.  相似文献   

18.
Four new lignans (1, 79), together with nine known ones, were isolated from the anti-osteoporosis fraction of the extract of Sambucus williamsii Hance which was eluted by 50% and 95% aqueous ethanol over D101 macroporous resin column. Their structures were elucidated by NMR spectroscopic analyses, and the absolute configurations of all compounds were determined by application of circular dichroism method. All the compounds were reported for the first time from the Sambucus genus and firstly studied for their proliferation effects on osteoblastic-like UMR 106 cell. The data showed that compounds 29 significantly promoted cell proliferation in some dose, especially compounds 2, 3, 4, 5, and 7 increased osteoblastic cell numbers by 31.3%, 28.3%, 25.6%, 25.1% and 26.0% at 10 10 M, 10 10 M, 10 7 M, 10 10 M and 10 10 M, respectively, which suggested that lignans were the components accounting for the bone protective effects of SWH.  相似文献   

19.
Wood ash is recommended as a compensatory fertiliser to counteract the effects of acidic deposition on forest ecosystems. Spatial distribution of biomass, necromass and morphology parameters of the fine roots (diameter classes <1, 1–2, <2 mm) of Norway spruce (Picea abies (L.) Karst.) were analysed in response to fertilisation with granulated wood ash (GWA) in a long-term field experiment in SW Sweden. GWA was applied as a single dose of 3200 kg ha−1 and the fine roots were sampled 9 years later by soil coring. Soil cores were divided into 1-cm strata within the top 0–2.5 cm humus limits, the lower humus below 2.5 cm (with varying thickness) and the mineral soil to 50 cm depth (from ground surface). Total fine-root biomass in the control (C) and GWA treatment, 256 ± 20 and 258 ± 25 g m−2, respectively, and length 2072 ± 182 and 1800 ± 198 m m−2, respectively, did not differ statistically from each other. Total fine-root necromass in the 1–2 mm fraction was significantly higher in C than in the GWA treatment, 130 ± 12 and 80 ± 10 g m−2, respectively. Fine-root biomass in the <1 mm fraction was significantly greater in the lower humus in the GWA treatment, but this did not affect the total biomass in the <1 mm fraction in the whole soil profile. The biomass-to-necromass ratio (1–2 mm) was significantly higher in the GWA treatment in the 0–30 cm soil layer than in the corresponding layer of the control. Specific root length (SRL) was lower in the GWA treatment than in the control in the 0–5 cm soil layer. The lower necromass and SRL were more clearly related to the GWA treatment, whereas the difference in the vertical distribution of biomass may have been related to the thicker humus layer in the GWA plots.  相似文献   

20.
A gradient of increasing N deposition was identified in a southwestern to northeastern transect through the New Jersey pine barrens. The effect of this change in N deposition rate on soil chemistry and ectomycorrhizal morphotype community of pitch pine was studied by sampling from the field under mature pine trees, by planting bait seedlings into the field and in a greenhouse study where seedlings were given differential rates of N applications (0, 35, 140 kg ha−1 equivalent). The field transect showed a significant but small increase in N deposition from 0.35 to 0.72 kg N ha−1 (during the ca. 6 months of the study) equating to 7.84 ± 0.50 kg ha−1 year−1 at the northernmost site, 5.31 ± 0.70 at the middle and 3.66 ± 0.61 kg ha−1 year−1 N at the southwestern most site. Along this transect the ectomycorrhizal morphotype abundance and richness declined significantly under pitch pine. The decline in richness was significantly correlated with the N deposition rate. Bait pitch pine seedlings planted into one of the field sites and fertilized with increasing levels of N showed a reduction in ectomycorrhizal morphotype richness with increased N addition. In a greenhouse study, pine seedling biomass was inversely related to N addition. Nitrogen content of plants increased with increasing N supply, but P content of plants decreased, suggesting that P is a limiting nutrient in this ecosystem. Extractable N from the upper soil horizons increased in cores to which tree seedlings had been added as N addition increased. This indicates an approach to a critical loading of N for these oligotrophic soils, where N supply exceeds seedling N demand. In treeless cores N supply appears to exceed microbial immobilization potential even when no exogenous N is applied. As N supply to greenhouse seedlings increased, ectomycorrhizal morphotype richness declined. By combining data from the field and greenhouse studies, specific ectomycorrhizal morphotype groups were identified by their response to added N. Cortinarius- and Lactarius-like morphotypes were restricted to low levels of N availability. Suilloid- and Ascomycete-like morphotypes were more abundant as soil N availability increases, whereas Russula-like types showed an inverse relationship to N availability. We discuss the results from these oligotrophic sandy soils in comparison with European data derived from richer soils, where mycorrhizal fungal community responses appear to occur only at much higher levels of exogenous N. We attribute these differences to the evolved adaptations of pitch pine and their symbionts to growth in highly oligotrophic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号