首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Allele mining in starch synthesis-related genes (SSRGs) has facilitated the discovery of desired natural sequence variations for eating quality in rice. This study investigated the sequence variations from 10 SSRGs, and further evaluated their relationship with the amylose content (AC) and rapid viscosity analysis profiles in a global collection of rice accessions by association mapping (AM). In total, 83 sequence variations were found in 10 sequenced amplicons, including 73 single nucleotide polymorphisms (SNPs), eight insertion-deletions (InDels) and two polymorphic simple sequence repeats (SSRs). Four subpopulations were identified by population structure analysis based on 170 genome-wide SSR genotypes. AM revealed 11 significant associations between three phenotypic indices and three sequence variations. One SNP with a g/c transversion at the 63rd nucleotide downstream of the OsBEIIb gene termination codon on rice chromosome 2 was significantly associated with multiple trait indices in both the general linear and mixed linear models (GLM and MLM), including the final viscosity (p < 0.001, R2 = 23.87%) in both 2009 and 2010, and AC (p < 0.01, R2 = 11.25%) and trough viscosity (p < 0.01, R2 = 20.43) in 2010. This study provides a new perspective of allele mining for breeding strategies based on marker-assisted selection.  相似文献   

2.
Multigenic glutelins and monogenic globulin are major storage proteins accumulating in vacuole-derived protein body (PB-II) of rice (Oryza sativa L.) seeds. Because their interplay in PB-II formation was scarcely known, the effect of globulin-less mutation on glutelin accumulation was investigated. In globulin-less mutants, no phenotypic defect was found in seed and plant growth, while PB-II was deformed and apparent glutelin composition was changed, producing new glutelin α polypeptides X1–X5. 2D-PAGE of different combinations of globulin-less and glutelin subunit mutations suggested that the X1/X2, X3, and X4/X5 were derived from glutelin GluB1/GluB2/GluB4, GluA3, and GluA1/GluA2 subunits, respectively. Western blot with glutelin GluB4 subunit-specific and its variable region discriminable antibodies indicated at least in part the new spots X1/X2 are partially degraded products of GluB4 α polypeptides by the removal of 2–39 residues from C-terminus. Time course experiments with maturing seeds indicated the partial degradation of GluB4 occurred earlier (from 7 days after flowering) and higher than that of GluA1/GluA2. Considering the above results together with the fact that globulin accumulates at the periphery of PB-II and its absence produces deformed PB-II, globulin protects glutelins from proteinase digestion and thereby facilitates stable glutelin accumulation.  相似文献   

3.

Background

Although the genetic structure of rice germplasm has been characterized worldwide, few studies investigated germplasm from Thailand, the world’s largest exporter of rice. Thailand and the International Rice Research Institute (IRRI) have diverse collections of rice germplasm, which could be used to develop breeding lines with desirable traits. This study aimed to investigate the level of genetic diversity and structures of Thai and selected IRRI germplasm. Understanding the genetic structure and relationships among these germplasm will be useful for parent selection used in rice breeding programs.

Results

From the 98 InDel markers tested for single copy and polymorphism, 19 markers were used to evaluate 43 Thai and 57 IRRI germplasm, including improved cultivars, breeding lines, landraces, and 5 other Oryza species. The Thai accessions were selected from all rice ecologies such as irrigated, deep water, upland, and rainfed lowland ecosystems. The IRRI accessions were groups of germplasm having agronomic desirable traits, including temperature-sensitive genetic male sterility (TGMS), new plant type, early flowering, and biotic and abiotic stress resistances. Most of the InDel markers were genes with diverse functions. These markers produced the total of 127 alleles for all loci, with a mean of 6.68 alleles per locus, and a mean Polymorphic Information Content (PIC) of 0.440. Genetic diversity of Thai rice were 0.3665, 0.4479 and 0.3972 for improved cultivars, breeding lines, and landraces, respectively, while genetic diversity of IRRI improved and breeding lines were 0.3272 and 0.2970, respectively. Cluster, structure, and differentiation analyses showed six distinct groups: japonica, TGMS, deep-water, IRRI germplasm, Thai landraces and breeding lines, and other Oryza species.

Conclusions

Thai and IRRI germplasm were significantly different. Thus, they can be used to broaden the genetic base and trait improvements. Cluster, structure, and differentiation analyses showed concordant results having six distinct groups, in agreement with their development, and ecologies.  相似文献   

4.

Background

Root system architecture is an important trait affecting the uptake of nutrients and water by crops. Shallower root systems preferentially take up nutrients from the topsoil and help avoid unfavorable environments in deeper soil layers. We have found a soil-surface rooting mutant from an M2 population that was regenerated from seed calli of a japonica rice cultivar, Nipponbare. In this study, we examined the genetic and physiological characteristics of this mutant.

Results

The primary roots of the mutant showed no gravitropic response from the seedling stage on, whereas the gravitropic response of the shoots was normal. Segregation analyses by using an F2 population derived from a cross between the soil-surface rooting mutant and wild-type Nipponbare indicated that the trait was controlled by a single recessive gene, designated as sor1. Fine mapping by using an F2 population derived from a cross between the mutant and an indica rice cultivar, Kasalath, revealed that sor1 was located within a 136-kb region between the simple sequence repeat markers RM16254 and 2935-6 on the terminal region of the short arm of chromosome 4, where 13 putative open reading frames (ORFs) were found. We sequenced these ORFs and detected a 33-bp deletion in one of them, Os04g0101800. Transgenic plants of the mutant transformed with the genomic fragment carrying the Os04g0101800 sequence from Nipponbare showed normal gravitropic responses and no soil-surface rooting.

Conclusion

These results suggest that sor1, a rice mutant causing soil-surface rooting and altered root gravitropic response, is allelic to Os04g0101800, and that a 33-bp deletion in the coding region of this gene causes the mutant phenotypes.  相似文献   

5.
Glabrous rice is characterized by its smoothand hairness leaves and husks,mainly dis- tributed in America,Africa,and Yunnan andGuizhou provinces of China.It has the charac- teristics of strong stem,high endurance tolodging,good compatibility,high grain quali-ty,and high yield,and is propitious to themachanized harvest.The Glabrous rice hasbeen proved to be plant population of superior- ity,which could be used as germplasm re-  相似文献   

6.
7.
Weedy rice is a great threat to rice production in Sri Lanka. Selective herbicides to manage weedy rice in conventional rice cultivars are not available in Sri Lanka. In the absence of appropriate chemical control measures, cultural approaches may help to achieve effective control of weedy rice. A study was conducted in two consecutive seasons in farmers' fields at three sites (Atalla, Samanthurai, and Girithale villages) in Sri Lanka to evaluate the effect of different establishment methods (farmers' practice, random broadcast, row seeding, seedling broadcast, and transplanted rice) on weedy rice infestation and rice yield. The farmers' practice had a higher number of weedy rice panicles (60–80 m−2) than the random broadcast (39–48 panicles m−2), seedling broadcast (3–15 panicles m−2), and transplanted rice (1.3–3.0 panicles m−2) methods. The use of clean rice seeds in the random broadcast method reduced weedy rice seed production by 29–41% compared with the farmers' practice (0.6–2.0 t ha−1). Compared with the farmers' practice, the seedling broadcast method reduced weedy rice seed production by 71–87% and transplanted rice by 95–98%; and increased rice yield by 27–49% (7.5–9.1 t ha−1). At all three sites, the farmers' practice resulted in the lowest grain yield (5.1–6.7 t ha−1). Compared with the farmers' practice, the random broadcast and row seeding methods increased rice yield by up to 21% and 31%, respectively. The findings suggest that the use of clean rice seeds, the use of a row-seeded crop, and the adoption of different rice planting methods may help to suppress the spread of weedy rice.  相似文献   

8.
9.
By crossing homologuos triploid plants derivedfrom twin-seedlings with diploid plants,manykinds of aneuploid were produced as expectedbecause the abnormal chromosome pairing oc- curred in triploid itself and F_1.In the mean- time,we also obtained a few normal developeddiploid F_1 plants.The self progeny(F_2)showed agronomic stability,checked withSSLP and RFLP markers.It was found thatthe F_1 was non-segregated hybrid.In thisstudy,the triploid served as male parent andthe diploid indica rice variety R725 served as  相似文献   

10.
We constructed a near isogenic line of rolled leaf gene Rl(t), which expressed incompletely dominance for the character of rolled leaf(RL), with genetic background of Zhenshan 97B. Using RL Zhenshan 97B and the original Zhenshan 97B as the female parents,and Minghui 63 and Yanhui 559 as the male parents, crosses of RL Shanyou 63 (RS63) and Shanyou 63(S63), RL Shanyou 559 ( RS559) and Shanyou 559 (S559) were made. Inheritance and effects of Rl(t) in hybrid rice were studied at the flowering and at the 20 d after flowering, respectively. Results were as follows:  相似文献   

11.
12.
Iron toxicity, a physiological disorder of rice, is widely spread in tropical and subtropical areas and causes severe rice yield reduction.  相似文献   

13.
Iron toxicity, a physiological disorder of rice, is widely spread in tropical and subtropical areas and causes severe rice yield reduction.  相似文献   

14.
Genotype by environment (G×E) interactions for grain yield were investigated in 14 rice genotypes across eight rainfed lowland field environments in Lao PDR, in order to identify stable adapted cultivars for improved farmer livelihood and food security. G×E accounted for 20.3% of the total variance, with three vectors from ordination analysis accounting for 75.1% of the G×E-SS, in 6 genotype?×?6 environment groups. PCA1 indicated water-limited yield potential, PCA2 pre-flowering stress and PCA3 post-flowering stress. Genotype groups (G1–G6) differed in adaptation to these environments. G5 (VT450-2 and TSN9) were widely adapted and high-yielding. G6 (TDK11 and TDK37) were also high-yielding, topping the rankings in three environment groups, but yielded less in Phalanxay 2012 and Phalanxay 2011, where their phenology was unstable under stress. Other genotype groups showed specific adaptations, but failed to exceed yields of G5 and G6. Hence, VT450-2 and TSN9 (G5) were the preferred genotypes for rainfed lowland in southern Lao PDR, due to their high and stable grain yields. Stability in flowering time and high yield in rainfall deficit were desirable traits for improved farmer livelihood and food security.  相似文献   

15.
16.
Developing more competitive rice cultivars could help improve weed management and reduce dependency on herbicides. To achieve this goal, an understanding of key traits related to competitiveness is critical. Experiments were conducted at Gelemen and Bafra districts of Samsun province in Turkey between 2008 and 2009 to measure the competitiveness of rice cultivars against Echinochloa crus-galli, a problematic weed in rice fields. Five rice cultivars (Osmancık, Kızılırmak, Karadeniz, Koral and Neğiş) and five E. crus-galli densities (0, 5, 10, 20, and 30 plants m−2) were used. Koral produced significantly more tillers than the other cultivars irrespective of E. crus-galli densities and reduced E. crus-galli tiller production by about 29.5% at Gelemen and 15.8% at Bafra at the highest weed density. E. crus-galli interference reduced rice height and there was a density dependent relationship. Koral was the most competitive cultivar; it maintained high biomass accumulation in early growth stages and suffered smaller reductions in plant height in the presence of E. crus-galli, compared to the other cultivars. In the absence of weed competition, Koral and Neğiş produced the highest yields at both locations. Stepwise regression analyses of the combined data from both years showed tillering capacity, early growth crop biomass, and plant height were critical traits related to competitiveness. These traits should be considered by plant breeders in their efforts to develop rice cultivars with enhanced competitiveness against weeds. Development of such cultivars could substantially reduce herbicide and labor inputs for rice production.  相似文献   

17.
ABSTRACT

Abscisic acid (ABA) is a key factor regulating starch biosynthesis genes and is involved in assimilate partitioning to individual spikelets. The objective of this study was to clarify the effects of high temperature and shading during grain filling on grain ABA content and the grain filling pattern of spikelets located at different positions in a panicle. We grew the rice cultivar ‘Koshihikari’ in pots in 2009 under two temperature regimes and two light conditions during grain filling. We periodically measured grain dry weight and grain ABA content (pmol per grain) and concentration (pmol per grain dry weight). Shading increased a grain weight difference between superior and inferior spikelets while high temperature decreased the difference regardless of light condition. High temperature decreased ABA content and concentration in grains. There was a close correlation between mean grain ABA content and mean grain-filling rate averaged over the first half of grain filling.  相似文献   

18.
《Field Crops Research》2005,94(1):67-75
A study was conducted with the objective to determine the influence of (shallow water depth with wetting and drying) SWD on leaf photosynthesis of rice plants under field conditions. Experiments using SWD and traditional irrigations (TRI) were carried out at three transplanting densities, namely D1 (7.5 plants/m2), D2 (13.5 plants/m2) and D3 (19.5 plants/m2) with or without the addition of organic manure (0 and 15 t/ha). A significant increase in leaf net photosynthetic rate by SWD was observed with portable photosynthesis systems in two independent experiments. At both flowering and 20 DAF stages, photosynthetic rate was increased by 14.8% and 33.2% with D2 compared to control. SWD significantly increased specific leaf weight by 17.0% and 11.8% over the control at flowering and 20 DAF stages, respectively. LAI of D2 under SWD was significantly increased by 57.4% at 20 DAF. In addition, SWD with D2 significantly increased the leaf dry weight (DW) at both growing stages. At all the three densities, SWD increased the leaf N content and the increase was 18.9% at D2 density compared with the conventional control. In SWD irrigation, the leaf net photosynthetic rate was positively correlated with the leaf N content (R2 = 0.9413), and the stomatal conductance was also positively correlated with leaf N content (R2 = 0.7359). SWD enhanced sink size by increasing both panicle number and spikelet number per panicle. The increase in spikelet number per panicle was more pronounced in the 15 t ha−1 manure treatment than in the zero-manure treatment. Grain yield was also significantly increased by SWD, with an average increase of 10% across all treatments. SWD with D2 had the highest grain yield under the both cultivars with or without 15 t ha−1 manure treatment, which was 14.7% or 13.9% increase for Liangyoupeijiu and 11.3% or 11.2% for Zhongyou 6 over the control, respectively.  相似文献   

19.
Apparent amylose content is a key element for characterizing a rice (Oryza sativa L.) cultivar for cooking quality. However, cultivars with similar apparent amylose content can have widely varying quality attributes, including major parameters of flour paste viscosity. It has been postulated that the presence of a rice Waxy gene single nucleotide polymorphism (SNP) marker is associated with elevated Rapid Visco Analyser (RVA) properties in specific high amylose rice cultivars. A mapping population derived from a cross between two varieties, Cocodrie and Dixiebelle, having similar high apparent amylose contents, but with different paste viscosity properties and Waxy gene markers was analyzed for the genetic segregation of various pasting properties, measured with RVA instrumentation. Marker inheritance analyses revealed that the Waxy exon 10 SNP marker was associated with the proportion of soluble to insoluble apparent amylose and most RVA pasting measurements. Waxy gene markers can be used to efficiently improve the selection of rice with desirable characteristics, particularly for superior parboiling and canning quality.  相似文献   

20.
A new water-saving ‘Ground Cover Rice Production System’ (GCRPS) was evaluated in 2001 and 2002 near Beijing, North China. Using GCRPS, lowland rice was cultivated without a standing water layer during the entire growth period and plots were irrigated when soil water tension was below 15 kPa (approximately 90% water holding capacity). In order to prevent soil evaporation, the soil surface was covered with 14 μm thick plastic film (GCRPSPlastic) or mulched with straw (GCRPSStraw). In a third GCRPS treatment the soil was left uncovered (GCRPSBare). These treatments were compared with lowland rice cultivated under traditional paddy conditions (Paddy control). In an additional treatment with bare soil, one aerobic rice variety was cultivated. Compared to Paddy control, only 32–54% of irrigation water was applied in GCRPS treatments. Plants in GCRPS were smaller, developed fewer panicles and had a smaller leaf area index compared to Paddy control. Yield was significantly less in GCRPSBare and GCRPSStraw compared to Paddy control in both years, while yield in GCRPSPlastic was only 8% less than the Paddy control yield in 2002. Water-use efficiency (WUE, gram grain yield per litre water input) in GCRPSPlastic was higher (0.35) than in Paddy control (0.23). Grain yield was highly significantly correlated with maximum leaf area index and leaf area index duration. Among yield components, the number of productive tillers had the greatest positive effect on yield, while the number of grains per panicle, thousand-grain weight and harvest index remained almost unaffected. Under uncovered condition, the aerobic rice variety had a significantly higher harvest index (HI), yield, and WUE compared to the lowland rice variety (GCRPSBare). The experiment demonstrates that GCRPS has potential to save substantial amounts of water at relatively minor yield penalties, if stress factors such as low soil temperature, water deficit, and nutrient deficiencies during the vegetative growth stage are avoided by suitable management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号