首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
因为即使是不添加微生物型植酸酶,干酒糟副产品中的磷也可被猪充分地消化,所以添加植酸酶对提高这些成分中磷的消化率仅能产生极为有限的作用,因此并不经济。  相似文献   

2.
Fifty-four pigs, weaned at 26 days of age at an average body weight of 7.74 kg were used in a 26-day experiment to assess the zinc requirement of piglets, using diets based on maize and soybean meal, with or without microbial phytase. The nine experimental diets were the basal diet containing 33 mg of zinc/kg supplemented with 10, 25, 40, 60 or 80 mg of zinc as sulphate (ZnSO(4), 7H(2)O)/kg and the basal diet supplemented with 0, 10, 25 or 40 mg of zinc as sulphate/kg and 700 units (U) of microbial phytase (Natuphos)/kg. Pigs were fed the basal diet for a 7-day adjustment period prior to the 19-day experimental period. Microbial phytase enhanced plasma alkaline phosphatase (AP) activity, plasma zinc and bone zinc concentrations. These parameters increased linearly with zinc intake, with a similar slope with and without phytase. The response of bone zinc-to-zinc added did not plateau. Without microbial phytase, plasma AP activity and zinc concentration were maximized when dietary zinc reached 86 and 92 mg/kg respectively. With microbial phytase they were maximized when dietary zinc concentration reached 54 and 49 mg/kg respectively. Accounting for a safety margin, the recommended supply of zinc for weaned piglets up to 16 kg fed maize-soybean meal diets supplemented with zinc as sulphate is thus of 100-110 mg/kg diet. This supply may be reduced by around 35 mg if the diet is supplemented with 700 U of microbial phytase.  相似文献   

3.
An experiment was conducted to determine the effects of phytase addition, reduced Ca and available P (aP), and removing the trace mineral premix (TMP) on growth performance, plasma metabolites, carcass traits, pork quality, and tissue mineral content in growing-finishing swine. One hundred twenty cross-bred pigs (initial and final BW of 22 and 109 kg, respectively) were allotted to five dietary treatments on the basis of weight within gender in a randomized complete block design. There were three replications of barrows and three replications of gilts, with four pigs per replicate pen. The dietary treatments were as follows: 1) corn-soybean meal (C-SBM), 2) C-SBM with reduced Ca and aP, 3) C-SBM with reduced Ca and aP plus 500 phytase units/kg of diet, 4) Diet 1 without the TMP, and 5) Diet 3 without the TMP. The Ca and aP were reduced by 0.10% in the low Ca and aP diets and the diets with added phytase. Daily gain, hot carcass weight, dressing percent, kilograms of carcass lean, bone ash percent, and bone strength were decreased (P = 0.10), but liver and kidney weight were increased (P = 0.10) in pigs fed diets with reduced Ca and aP; adding phytase reversed these responses (P = 0.10). The Commission Internationale de I'Eclairage L* was decreased (P = 0.09) in pigs fed the low Ca and aP diet plus phytase relative to those fed the control diet. Removing the TMP had no effect on overall growth performance, but it increased (P = 0.03) 10th-rib backfat thickness and fasting glucose and decreased (P = 0.03) carcass length and ham weight. Liver weight and liver weight as a percentage of final BW were not affected when phytase was added to the control diet, but removing the TMP increased liver weight and liver weight as a percentage of final BW; adding phytase reversed these responses (phytase x TMP, P = 0.06). Removing the TMP decreased (P = 0.08) Zn concentrations in the bone, muscle, and liver, and Cu and Fe concentrations in the bile but increased (P = 0.08) Mn concentrations in the bile and liver of pigs. The addition of phytase reversed the negative effects of the reduced Ca and aP diets. These data indicate that removing the TMP in diets for growing-finishing pigs has no negative effects on growth performance or pork quality, but it had negative effects on carcass traits and had variable effects on tissue mineral content.  相似文献   

4.
选取初始体重为25kg的杜×大×长三元健康生长猪176头及初始体重为50kg的杜×大×长三元健康育肥猪144头。采用单因子设计,分为对照组和试验组;对照组中日粮按照NRC(1998)营养需要量推荐配制,试验组在NRC推荐的日粮粗蛋白质水平上降低4个百分点探讨低蛋白质日粮对生长猪和育肥猪生长性能的影响。结果表明:生长猪试验组日增重比对照组增加了46g,提高幅度为6.82%:料肉比比对照组低10.96%:增重成本节约0.89元/kg体重。育肥猪试验1组日增重较高.比对照组增加23g.提高幅度为3.09%。试验2组与对照组日增重相当;试验1组、试验2组料肉比分别比对照组降低1.15%和3.2%;试验1组、试验2组增重成本分别比对照组节约0.44元/kg体重和0.49元/kg体重;试验组瘦肉率与对照组相比没有显著差异。从各指标的趋势上看.试验组的生长表现和经济效益均优于对照组.  相似文献   

5.
The effect of high levels of microbial phytase supplementation in diets for growing pigs was studied in a 2‐week performance and nutrient digestibility trial involving 28 growing pigs weighing 16.4 ± 1.06 (mean ± SD) kg. Seven corn‐barley‐soybean meal‐based diets consisting of a positive control (PC) formulated to meet or exceed NRC nutrient requirements; a negative control (NC) with non‐phytate P reduced by 0.1% unit from NRC requirement and fed without or with 500 or 1000 U/kg; a doubled negative control (DNC) with no added inorganic P and fed without or with 2000 or 4000 U/kg. Chromic oxide was added as an indigestible marker and all diets were fed as mash. Pigs fed the PC diet had a higher P digestibility compared with those fed the NC (P < 0.02) and the DNC (P < 0.001) diets. Supplementing the NC diet with pyhtase tended to improve P digestibility (P < 0.10). However, addition of phytase to the DNC diet resulted in linear (P < 0.001) and quadratic (P < 0.03) increases in P digestibility with an overall improvement of 8% and 121% at 4000 phytase U/kg of diet, respectively, compared with the PC and DNC diets. Apparent total tract digestibility of N, OM and DM were higher (P < 0.05) in the PC diet compared with the DNC diet, but not the NC diet (P < 0.10). No effect of phytase addition to NC was observed on Ca, N, DM and OM digestibility. Phytase addition to the DNC diet resulted in a linear increase (P < 0.05) in N, DM and OM digestibility but not Ca. Increasing the levels of phytase supplementation in the NC and the DNC diets linearly decreased fecal P (P < 0.05) content by 45 and 42%, respectively. Adding phytase at 1000 or 4000 U/kg increased P retention (P < 0.05) by 14.3 or 15.6% units, respectively, compared with the PC diet. Urinary P excretion was higher in the group fed the PC diet compared with those fed the NC and DNC diets (P < 0.05). The results of this study show that complete removal of inorganic P from growing pig diets coupled with phytase supplementation improves digestibility and retention of P and N, thus reducing manure P excretion without any negative effect on pig performance.  相似文献   

6.
选用48头长白×荣昌杂交仔猪进行2个2×2因子的生长试验,试验期2周,每个试验均设2个有效磷水平(0.36%、0.26%)、2个植酸酶添加水平(0、750FTU/kg),共4个处理组,每个处理组设6个重复,每个重复1头仔猪。试验1为高能水平(DE:14.27MJ/kg),试验2为低能水平(DE:12.8MJ/kg)。结果表明:在试验1饲粮中添加植酸酶,仔猪平均日增重(ADG)、增重/代谢体重(GPW)、G/F分别提高8.1%、6.4%、3.6%;每千克增重的饲粮成本(CPG)降低3.1%;降低饲粮有效磷水平后,ADG、GPW、G/F分别降低1.5%、6.1%、3.5%;CPG增加0.4%(P>0.05)。在试验2饲粮中添加植酸酶,仔猪ADG、GPW、G/F、分别提高10.6%、7.2%、7.9%;每千克增重的饲粮成本(CPG)降低6.6%;降低饲粮有效磷水平后,ADG、GPW、G/F分别降低3.8%、3.3%、3.2%;CPG增加3.0%(P>0.05)。由此表明,在本试验条件下,饲粮中添加植酸酶能够提高仔猪的生长性能,降低仔猪生长的饲粮成本。  相似文献   

7.
1. In a 42-d feeding trial, 264 one-d-old, as hatched, Cobb 400 broiler chickens (6 pens per group, n = 11 per pen in a 2?×?2 factorial arrangement) were fed on two concentrations of dietary calcium (Ca) (9.0 and 7.5 g/kg in starter, 7.5 and 6 g/kg in grower phases) and supplemental phytase (0 and 500 U/kg diet).

2. During d 0–21, the high Ca + phytase diet improved body weight. During d 0–42, feed intake was increased by the low Ca diet and decreased by phytase supplementation. Feed conversion ratio during d 0–21 was improved by the high Ca + phytase diet.

3. At d 42, Ca in duodenal digesta was reduced by low dietary Ca and supplemental phytase. High dietary Ca reduced P in duodenal and jejunal digesta. Phytase reduced digesta P and increased serum P concentration.

4. Relative tibia length decreased with low dietary Ca and increased with phytase. The robusticity index of tibia was improved by the low Ca diet and phytase supplementation. Phytase supplementation increased tibia ash and concentrations of Ca, magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn) and iron (Fe) in tibia. The low Ca diet increased Mg, Mn and Fe and reduced Cu and Zn in tibia.

5. It was concluded that 7.5 g Ca/kg during weeks 0–3 and 6 g Ca/kg during weeks 3–6 sustained broiler performance and bone ash, while phytase supplementation facilitated tibia mineralisation, particularly during the grower phase.  相似文献   

8.
Ten crossbred barrows (48.3 +/- 2.3 kg of initial BW) fitted with steered ileo-cecal valve cannulas were used to investigate the effects of supplemental microbial phytase on the apparent ileal digestibilities (AID) of AA, Ca, P, N, and DM, and the apparent total tract digestibilities of Ca, P, N, and DM. All diets were corn-soybean meal-based, and contained 0.44% Ca and 0.40% total P. Diets 1, 2, and 3 contained 12.0, 11.1, and 10.2% CP, respectively. Diets 4 and 5 had the same ingredient composition as diet 3, plus 250 and 500 U/kg phytase (Natuphos), respectively. Pigs were randomly allotted to 1 of 5 dietary treatments in a paired 5 x 5 Latin square with an extra period to test for carryover effects. Each 14-d period consisted of a 7-d adjustment followed by a 3-d total collection, a 12-h ileal digesta collection, a 3-d readjustment, and a second 12-h ileal digesta collection. Pigs were housed individually in metabolism pens (1.2 x 1.2 m). Water was supplied ad libitum, and feed was supplied at a level of 9% of the metabolic BW (BW(0.75)) per day in 2 equal daily feedings. As the dietary CP concentration increased, the AID of CP and all AA measured increased linearly (P < 0.05) with the exception of proline. In addition, the apparent total tract digestibilities (grams per day) and retention of N (grams per day) increased linearly (P < 0.01) with increasing CP levels. Supplementing diets with phytase increased the AID of Ca (P < 0.01), P (P < 0.001), CP (P = 0.07), and the AA (P < 0.10) Gly, Ala, Val, Ile, Thr, TSAA, Asp, Glu, Phe, Lys, and Arg. Protein and phytase response equations were generated for those AA affected (P < 0.10) by both CP level and phytase supplementation. Based on these equations, 500 U/kg of phytase can replace 0.52 percentage units of the dietary CP, which includes a 0.03 percentage unit improvement in Lys AID. The results of this study show that supplementing pig diets with microbial phytase improves CP and AA digestibilities in addition to Ca and P digestibilities.  相似文献   

9.
An experiment was conducted to test the hypothesis that the apparent total tract digestibility (ATTD) and the standardized total tract digestibility (STTD) of P in fermented soybean meal (FSBM) are greater than in conventional soybean meal (SBM-CV) when fed to growing pigs. Four diets were formulated to contain FSBM or SBM-CV and either 0 or 800 units/kg of microbial phytase. The only sources of P in these diets were FSBM and SBM-CV. A P-free diet to estimate basal endogenous losses of P was also formulated. Thirty barrows (initial BW: 14.0 ± 2.3 kg) were placed in metabolism cages and allotted to 5 diets in a randomized complete block design with 6 pigs per diet. Feces were collected for 5 d after a 5-d adaptation period. All samples of ingredients, diets, and feces were analyzed for P, and values for ATTD and STTD of P were calculated. Results indicated that the basal endogenous P losses were 187 mg/kg of DMI. As phytase was added to the diet, the ATTD and STTD of P increased (P < 0.01) from 60.9 to 67.5% and from 65.5 to 71.9%, respectively, in pigs fed FSMB. Likewise, addition of phytase to SBM-CV increased (P < 0.01) the ATTD and STTD of P from 41.6 to 66.2% and from 46.1 to 71.4%, respectively. The ATTD and STTD of P were greater (P < 0.01) in FSBM than in SBM-CV when no phytase was used, but that was not observed when phytase was added to the diet (soybean meal × phytase interaction, P < 0.01). In conclusion, the ATTD and STTD of P in FSBM was greater than SBM-CV when no microbial phytase was added, but when phytase was added to the diets, no differences between FSBM and SBM-CV were observed in the ATTD and STTD of P.  相似文献   

10.
Ruminal samples were collected at slaughter from 364 unfasted steers fed different finishing diets to obtain information on numbers and species distribution of ciliated protozoa in feedlot cattle. Total numbers of protozoa averaged 1.59 X 10(5)/g of ruminal contents. A total of 47 steers (12.9%) were defaunated, but 4.1% of the steers possessed numbers of protozoa greater than 10(6)/g. Entodinium species did not always dominate the protozoan populations; 41 faunated steers (11.2%) were devoid of entodinia, and 79 additional steers (21.7%) possessed populations dominated (greater than 50%) by other genera. Isotricha was the most commonly occurring genus supplanting Entodinium, but Polyplastron and Epidinium were frequently present in high concentrations. Tallow and soybean soapstock supplementation reduced (P less than .05) numbers of protozoa in steers consuming wheat diets. However, yellow grease supplementation did not affect numbers of protozoa in steers fed either sorghum or corn diets. Average ruminal pH was 6.20 on the wheat diet, 6.05 on the corn diet, and 5.69 and 6.23 for the two sorghum diets, respectively. We found no correlation between ruminal pH and numbers of protozoa on any diet. The presence of relatively high protozoan concentrations and few defaunated animals in feedlot cattle necessitates reevaluation of the role that ciliated protozoa play in ruminal metabolism of animals fed processed, high-concentrate diets.  相似文献   

11.
蛋白质饲料是肉猪生产的重要物质基础,是决定生产成本的重要因素。为了探索饲粮蛋白质水平对生长肥育猪增重速度、饲料利用率及育肥猪肉品品质等的影响作用,确定肉猪合理的饲粮结构以获得更大的经济效益,进行了本试验。  相似文献   

12.
Two experiments were conducted to determine the effect of phytase on energy availability in pigs. In Exp. 1, barrows (initial and final BW of 26 and 52 kg) were allotted to four treatments in a 2 x 2 factorial arrangement. Corn-soybean meal (C-SBM) diets were fed at two energy levels (2.9 and 3.2 x maintenance [M]) with and without the addition of 500 phytase units/kg of diet. The diets contained 115% of the requirement for Ca, available P (aP), and total lysine, and Ca and aP were decreased by 0.10% in diets with added phytase. Pigs were penned individually and fed daily at 0600 and 1700, and water was available constantly. Eight pigs were killed and ground to determine initial body composition. At the end of Exp. 1, all 48 pigs were killed for determination of carcass traits and protein and fat content by total-body electrical conductivity (TOBEC) analysis. Six pigs per treatment were ground for chemical composition. In Exp. 2, 64 barrows and gilts (initial and final BW of 23 and 47 kg) were allotted to two treatments (C-SBM with 10% defatted rice bran or that diet with reduced Ca and aP and 500 phytase units/kg of diet), with five replicate pens of barrows and three replicate pens of gilts (four pigs per pen). In Exp. 1, ADG was increased (P < 0.01) in pigs fed at 3.2 x M. Based on chemical analyses, fat deposition, kilograms of fat, retained energy (RE) in the carcass and in the carcass + viscera, fat deposition in the organs, and kilograms of protein in the carcass were increased (P < 0.10) in pigs fed the diets at 3.2 vs. 2.9 x M. Based on TOBEC analysis, fat deposition, percentage of fat increase, and RE were increased (P < 0.09) in pigs fed at 3.2 x M. Plasma urea N concentrations were increased in pigs fed at 3.2 x M with no added phytase but were not affected when phytase was added to the diet (phytase x energy, P < 0.06). Fasting plasma glucose measured on d 28, ultrasound longissimus muscle area (LMA), and 10th-rib fat depth were increased (P < 0.08) in pigs fed phytase, but many other response variables were numerically affected by phytase addition. In Exp. 2, phytase had no effect (P > 0.10) on ADG, ADFI, gain:feed, LMA, or 10th-rib fat depth. These results suggest that phytase had small, mostly nonsignificant effects on energy availability in diets for growing pigs; however, given that phytase increased most of the response variables measured, further research on its possible effects on energy availability seems warranted.  相似文献   

13.
1. A 3-week feeding trial with 96 sexed d-old broiler chickens was conducted to examine the effects of microbial phytase supplementation (Natuphos 5000) at 2 dietary energy concentrations on their performance, and the utilisation of nitrogen (N), phosphorus (P), calcium (Ca) and zinc (Zn) and on tibiae ash, Ca, P and Zn concentrations. Four replicate pens (6 birds per pen) of a completely randomised design were used in a 2x2 factorial arrangement of treatments with 2 contents of metabolisable energy (11.72 and 12.55 MJ ME/kg) and 2 additions of phytase (0 and 500 U of microbial phytase/kg). 2. Phytase supplementation significantly improved the utilisation of N, P, Ca and Zn (as a percentage of intake) and increased the concentration of Ca and Zn in the tibiae (P<0.05) because of higher intakes of dry matter, N, P, Ca and Zn. Phytase also significantly reduced the amount of P in the excreta (P<0.05). 3. The AME content of the diet influenced significantly (P<0.05) the excretion of N, P, Ca and Zn and the concentration of P and Ca in tibiae with the birds fed on the high AME diet excreting more minerals and having a smaller percentage of these minerals in their tibiae. However, there were strong interactions between phytase addition and AME in tibia ash and P, with the phytase supplementation producing a higher ash content at the higher AME a and a lower P content at the lower AME.  相似文献   

14.
To compare the effectiveness of 2 phytase enzymes (Phyzyme and Natuphos), growth performance, fibula ash, and Ca and P digestibilities were evaluated in 4 studies. The first 3 studies used 832 pigs (i.e., 288 in the nursery phase, initial BW 8.1 kg; 288 in the grower phase, initial BW 24.2 kg; and 256 in the finisher phase, initial BW 57.8 kg) and were carried out over periods of 28, 42, and 60 d, respectively. Dietary treatments in each study consisted of a positive control [available P (aP) at requirement level]; negative control (Ca remained as in the positive control, and aP at 66, 56, and 40% of the requirement for the nursery, grower, and finisher studies, respectively); negative control plus graded levels of Phyzyme [250, 500, 750, or 1,000; measured as phytase units (FTU)/kg] or Natuphos (250 and 500 FTU/kg for the nursery and grower studies, or 500 and 1,000 FTU/kg for the finisher study) plus a very high dose of Phyzyme (tolerance level, at 10,000 FTU/kg) in the nursery and grower experiments. Across the 3 studies, there was no effect of any dietary treatment on ADFI, but the negative control reduced ADG (10%), G:F (7%), and bone ash (8%) compared with the positive control. In the nursery study, phytase addition increased G:F and bone ash linearly (P < 0.01). In the grower study, phytase increased ADG, G:F, and bone ash linearly (P < 0.01). In the finisher study, phytase addition increased ADG and bone ash linearly (P < 0.01) and increased G:F quadratically (P < 0.05); G:F was, on average, 5% greater (P < 0.05) with Phyzyme than with Natuphos. The fourth study was conducted to investigate the P-releasing efficacy of the 2 phytases. The apparent fecal digestibility of P, measured with chromic oxide as an external marker in 35 pigs (55.9 kg of BW), showed that aP increased (P < 0.001) by 0.17 and 0.06 g (+/- 0.023) per 100 FTU consumed for Phyzyme and Natuphos, respectively. Also, Phyzyme at 10,000 FTU/kg was not detrimental to animal health or growth performance. At doses intended for commercial conditions, Phyzyme proved to be effective in releasing phytate bound P from diets, with an efficacy superior to a commercially available enzyme.  相似文献   

15.
Fermentation of cereal grains may degrade myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen phosphate) (InsP6) thereby increasing nutrient digestibility. Effects of chemical acidification or fermentation with Limosilactobacillus (L.) reuteri with or without phytase of high β-glucan hull-less barley grain on apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of nutrients and gross energy (GE), standardized ileal digestibility (SID) of crude protein (CP) and amino acids (AAs), and standardized total tract digestibility (STTD) of P were assessed in growing pigs. Pigs were fed four mash barley-based diets balanced for water content: 1) unfermented barley (Control); 2) chemically acidified barley (ACD) with lactic acid and acidic acid (0.019 L/kg barley grain at a ratio of 4:1 [vol/vol]); 3) barley fermented with L. reuteri TMW 1.656 (Fermented without phytase); and 4) barley fermented with L. reuteri TMW 1.656 and phytase (Fermented with phytase; 500 FYT/kg barley grain). The acidification and fermentation treatments occurred for 24 h at 37 °C in a water bath. The four diets were fed to eight ileal-cannulated barrows (initial body weight [BW], 17.4 kg) for four 11-d periods in a double 4 × 4 Latin square. Barley grain InsP6 content of Control, ACD, Fermented without phytase, or Fermented with phytase was 1.12%, 0.59%, 0.52% dry matter (DM), or not detectable, respectively. Diet ATTD of DM, CP, Ca, and GE, digestible energy (DE), predicted net energy (NE) value, and urinary excretion of P were greater (P < 0.05) for ACD than Control. Diet ATTD of DM, CP, Ca, GE, DE and predicted NE value, urinary excretion of P was greater (P < 0.05), and diet AID of Ca and ATTD and STTD of P tended to be greater (P < 0.10) for Fermented without phytase than Control. Diet ATTD of GE was lower (P < 0.05) and diet ATTD and STTD of P, AID and ATTD of Ca was greater (P < 0.05) for Fermented with phytase than Fermented without phytase. Acidification or fermentation with/without phytase did not affect diet SID of CP and AA. In conclusion, ACD or Fermented without phytase partially degraded InsP6 in barley grain and increased diet ATTD of DM, CP, and GE, but not SID of CP and most AA in growing pigs. Fermentation with phytase entirely degraded InsP6 in barley grain and maximized P and Ca digestibility, thereby reducing the need to provide inorganic dietary P to meet P requirements of growing pigs.  相似文献   

16.
This experiment was conducted to study growth performance, carcass characteristics, meat quality and plasma constituents of Campbell drakes fed diets containing different levels of lysine with or without a microbial phytase. Basal vegetable duck all-mash diets were fed during the growing (1-35 d of age), and finishing period (36-56 d of age) and were formulated to contain 0.90% and 0.73% lysine (negative control), respectively. These diets were supplemented or not with L-lysine HCl, which resulted in a dietary lysine level of 0.90, 0.95, 1.01 and 1.06% and 0.73, 0.80, 0.87 and 0.94%, during the growing and finishing period, respectively. Furthermore, the diets were fed with or without 600 FTU phytase (Natuphos) except for those containing 1.06 and 0.94% lysine during the growing and finishing period, respectively (positive control). A lysine level of 1.01/0.87% in the growing/finishing diet significantly increased BWG and improved FCR of drakes by 2.1 and 1.8%, respectively. Phytase significantly increased BWG by 2.1% and 3.5% after feeding the basal diet and 1.01/0.87% lysine, respectively. Also, FCR was significantly improved by 2.2 and 1.8% of groups fed 0.95/0.80, and 1.01/0.87% lysine, respectively. Phytase as an independent variable increased BWG by 1.8, and improved FCR by 1.0%. Lysine and/or phytase did not affect carcass yield, and meat quality treats as well as plasma constituents of drakes. However, lysine level at 0.95/0.80% and 1.01/0.87% significantly decreased abdominal fat deposition compared to either the negative or the positive control. In conclusion, a lysine level of 1.01/0.87% in the growing/finishing diets for drakes is adequate. After phytase supplementation of the basal diet the BWG at a lysine level of 0.90/0.73% were similar to the positive control (1.06/0.94% lysine). However, the best FCR was obtained after feeding diets containing 1.01/0.87% lysine supplemented with phytase.  相似文献   

17.
A study involving nine research stations from the NCR-42 Swine Nutrition Committee used a total of 1,978 crossbred pigs to evaluate the effects of dietary ZnO concentrations with or without an antibacterial agent on postweaning pig performance. In Exp. 1, seven stations (IA, MI, MN, MO, NE, ND, and OH) evaluated the efficacy of ZnO when fed to nursery pigs at 0, 500, 1,000, 2,000, or 3,000 mg Zn/kg for a 28-d postweaning period. A randomized complete block experiment was conducted in 24 replicates using a total of 1,060 pigs. Pigs were bled at the 28-d period and plasma was analyzed for Zn and Cu. Because two stations weaned pigs at < 15 d (six replicates) and five stations at > 20 d (18 replicates) of age, the two sets of data were analyzed separately. The early-weaned pig group had greater (P < 0.05) gains, feed intakes, and gain:feed ratios for the 28-d postweaning period as dietary ZnO concentration increased. Later-weaned pigs also had increased (P < 0.01) gains and feed intakes as the dietary ZnO concentration increased. Responses for both weanling pig groups seemed to reach a plateau at 2,000 mg Zn/kg. Plasma Zn concentrations quadratically increased (P < 0.01) and plasma Cu concentrations quadratically decreased (P < 0.01) when ZnO concentrations were > 1,000 mg Zn/kg. Experiment 2 was conducted at seven stations (KY, MI, MO, NE, ND, OH, and OK) and evaluated the efficacy of an antibacterial agent (carbadox) in combination with added ZnO. The experiment was a 2 x 3 factorial arrangement in a randomized complete block design conducted in a total of 20 replicates. Carbadox was added at 0 or 55 mg/kg diet, and ZnO was added at 0, 1,500, or 3,000 mg Zn/ kg. A total of 918 pigs were weaned at an average 19.7 d of age. For the 28-d postweaning period, gains (P < 0.01), feed intakes (P < 0.05), and gain:feed ratios (P < 0.05) increased when dietary ZnO concentrations increased and when carbadox was added. These responses occurred in an additive manner. The results of these studies suggest that supplemental ZnO at 1,500 to 2,000 mg Zn/kg Zn improved postweaning pig performance, and its combination with an antibacterial agent resulted in additional performance improvements.  相似文献   

18.
Three experiments were conducted to determine the effects of enzyme supplementation and particle size of wheat-based diets on growth performance and nutrient digestibility in nursery and finishing pigs. In Exp. 1, 180 weaned pigs (5.7 kg and 21 d of age) were fed diets in a 35-d growth assay without or with a Trichoderma longibrachiatium enzyme product (4,000 units of xylanase activity per gram of product) and with wheat ground to mean particle sizes of 1,300, 600, or 400 microm. Enzyme supplementation had no effect on ADG or gain/feed (P > 0.32), but there was a trend (P < 0.10) for greater digestibility of DM (d 6) in enzyme-supplemented diets. A particle size of 600 microm supported the greatest overall gain/feed (quadratic effect, P < 0.01). An interaction of enzyme supplementation with particle size occurred; gain/feed was improved (P < 0.01) with enzyme supplementation at the coarse (1,300 microm) particle size but not when the wheat was ground to 600 or 400 microm. In Exp. 2, 160 finishing pigs (67 kg) were fed a diet without or with the same enzyme used in Exp. 1 and wheat ground to 1,300 or 600 microm. No interactions occurred between enzyme supplementation and particle size of the wheat (P > 0.15). However, there were trends for greater gain/feed (P < 0.10) during the 67- to 93-kg phase of the experiment and for greater digestibility of DM (P < 0.10) and N (P < 0.07) with enzyme supplementation. When particle size was reduced from 1,300 to 600 microm, gain/feed was improved (P < 0.03) for the 93- to 114-kg phase of the growth assay, and digestibilities of DM (P < 0.02) and N (P < 0.04) were greater. In Exp. 3, 160 finishing pigs (63 kg) were given diets without or with the enzyme product and wheat ground to 600 or 400 microm. Enzyme supplementation improved ADG (P < 0.04) in the 90- to 115-kg phase but otherwise did not affect growth performance, carcass measurements, or stomach lesions. A particle size of 400 microm increased overall gain/feed (P < 0.04), digestibilities of DM and N (P < 0.01), and development of stomach lesions (P < 0.01). In conclusion, pigs did not benefit consistently from enzyme supplementation. However, wheat particle sizes of 600 and 400 microm supported the best overall performance in nursery and finishing pigs, respectively.  相似文献   

19.
In Experiment 1, a total of 100 growing pigs (Duroc × [Landrace × Yorkshire]) with an average initial body weight (BW) of 24.88 ± 1.57 kg were randomly allotted to 2 × 2 factorial arrangement with two concentrations of palm kernel expellers (PKE) in diets at 0% or 10%, and two concentrations of supplemental probiotics at 0 or 6.0 × 107 colony‐forming units/kg. There were five replicate pens per treatment with five pigs per pen. In Experiment 2, eight barrows with average initial BW of 25.78 ± 0.19 kg were allotted to a replicated 4 × 4 Latin square design with four diets and four periods per square. Four experimental diets were the same as Experiment 1. In Experiment 1, dietary probiotic supplementation improved (P < 0.05) the average daily gain (ADG), nutrient digestibility and the fecal Lactobacillus counts. Furthermore, interactive effects (P < 0.05) between PKE and probiotics were observed on ADG and growth‐to‐feed ratio. In Experiment 2, an interactive effect (P < 0.05) of PKE and probiotics was observed in apparent ileal digestibility of nitrogen and some amino acids. In conclusion, dietary probiotics did not improve PKE utilization and the use of probiotics in non‐PKE‐containing diet was more favorable than in PKE‐containing diet.  相似文献   

20.
本试验通过添加植酸酶、有机酸(柠檬酸、抗坏血酸)和维生素D3、木聚糖酶来减少无机磷的添加量,提高饲料中植酸磷的利用率,降低磷的排泄量。选择30 kg左右的"斯格"纯种猪70头,随机分成7组:常磷组、低磷日粮组(NC)、NC+600 U/kg植酸酶组、NC+600 U/kg植酸酶+10 g/kg的柠檬酸、NC+600 U/kg植酸酶+10 g/kg的柠檬酸+200 mg/kg抗坏血酸、NC+600 U/kg植酸酶+10 g/kg的柠檬酸+200 mg/kg抗坏血酸+100μg/kg的维生素D3、不添加磷酸氢钙。所有日粮中都添加50 mg/kg木聚糖酶。结果表明:低磷日粮添加植酸酶、有机酸(柠檬酸、抗坏血酸)和维生素D3,平均日采食量无显著影响(P0.05),日增重显著提高(P0.05),料重比显著降低(P0.05);养分消化率均显著提高;血液指标着中,白蛋白显著降低(P0.05),碱性磷酸酶、总蛋白、谷草、谷丙转氨酶无影响(P0.05)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号