首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黑河流域干旱指数的变化趋势及其多时间尺度特征   总被引:1,自引:0,他引:1  
【目的】研究黑河流域干旱指数的变化特征,为气候变化影响下该流域水资源的有效管理及农业发展提供依据。【方法】用参考作物蒸散量(ET0)与降水量(P)的比值表示干旱指数(AI),根据黑河流域内12个气象站及流域外3个气象站近50多年的逐日气象资料,采用Penman-Monteith公式计算ET0,利用Mann-Kendall趋势检验法和ArcGIS插值研究P、ET0及AI的变化趋势和空间分布,基于Morlet小波函数分析AI序列的多时间尺度特征。【结果】近50多年来,黑河流域P、ET0和AI均呈现出明显的南北差异;流域内12个气象站中,大部分站点的P、ET0呈上升趋势,且上游野牛沟站、托勒站上升趋势显著;AI呈下降趋势,仅野牛沟站下降趋势显著,流域趋于湿润,上、中、下游季AI最大值分别出现在秋冬季、春冬季、冬春季;流域AI的多时间尺度变化主要存在19~23年、14~15年的中长振荡周期和7~10年、4~5年的短振荡周期,中长周期与太阳黑子活动的周期基本一致,短周期与大气环流和厄尔尼诺事件的周期基本一致。【结论】黑河流域多年来逐渐趋于湿润,其干湿变化存在明显的短周期和中长周期。  相似文献   

2.
中国西北地区ET0多尺度分析   总被引:1,自引:0,他引:1  
基于西北地区1978~2008年30个典型气象站逐日观测资料,应用FAO-56分册推荐的Penman-Monteith公式,计算得出各站历年逐日参考作物蒸发蒸腾量ET0。应用Mann-Kendall检验法和小波变换方法分别分析西北地区ET0序列的变化趋势以及周期特性和突变特性。结果表明,西北地区该时期ET0序列主要存在尺度为27年、9年和4年的周期变化,其变化趋势达到显著水平,1978~1988年下降趋势明显,1998~2008年上升趋势明显。  相似文献   

3.
使用鲁南地区6个气象站1961-2010年逐日气象数据和Penman-Monteith方法计算了各站参考作物蒸散量,利用K-W检验、M-K突变检验、回归分析、相关分析等方法对鲁南地区ET0的时空分异特征和影响因子进行分析。结果表明:鲁南地区年ET0平均值在1 000~1 100mm之间,日照与内陆站差异显著;近50年微山、滕州、费县、枣庄年ET0呈极显著下降趋势,倾向率为-2.56~-3.48mm·a-1,临沂和日照变化趋势不显著;鲁南地区ET0夏季最大,春季次之,冬季最小;微山、滕州、枣庄、费县夏季ET0气候倾向率占年ET0气候倾向率的49%~67%。年ET0极显著减小的主导因子是平均风速或太阳辐射。夏季ET0极显著减小的主导因子是太阳辐射,内陆站春季、秋季、冬季ET0显著减小的主导因子是平均风速,日照站春季ET0极显著增大的主导因子是水汽压差。  相似文献   

4.
雒新萍  王可丽  江灏  孙佳  朱庆亮 《安徽农业科学》2011,39(25):15737-15738,15778
[目的]研究2000~2008年黑河流域潜在蒸散量的时空变化。[方法]利用2000~2008年黑河流域21个气象站的逐日气候资料,结合FAO Penman-Monteith模型,分析了黑河流域9年来潜在蒸散量(ET0)的时空变化特征,并对其主要气候影响因子进行了探讨。[结果]黑河流域春、夏、秋、冬四季和年的ET0序列变化呈现缓慢上升趋势,但并未达到显著性水平;多年平均ET0空间分异特征明显,表现为从东北荒漠向西南山区逐渐减少,且多年季节变化依照夏、春、秋、冬季的顺序递减,逐月变化呈单峰变化趋势,峰值出现在7月。相对湿度、平均风速和水汽压是影响研究区内ET0变化的主要气候因子,而平均气温对ET0的影响作用不显著。[结论]该研究为制定流域规划、地区水利规划及排灌工程提供理论依据。  相似文献   

5.
采用太子河流域内8个气象站1960~2005年间气象资料,应用penman-montieth公式计算了46年间逐月参考作物腾发量(ET0),对参考作物腾发量及气象因素的年际变化特征、月际变化特征及趋势进行了分析,应用统计检验方法分析了影响流域参考作物腾发量变化的主要气象因素。结果表明:近46年间太子河流域ET0值呈现缓慢下降趋势,年内ET0值分布以5~6月份最高,1月份最低,影响ET0的主要气象因素按影响程度强弱依次为日照、风速、温度、相对湿度。  相似文献   

6.
选取漳河灌区1974—2014年逐日气象数据,运用Excel软件和SPSS 24.0软件对4项主控因子和参考作物蒸发蒸腾量(ET0)进行趋势分析和通径分析。结果表明,多年平均气温(T)和平均相对湿度(RH)均呈显著性上升趋势,多年日照时数(n)和ET0呈不显著性下降趋势,多年平均风速(u)呈显著性下降趋势。日平均相对湿度(RH)与ET0呈负相关,其余主控因子与ET0均为正相关,日照时数(n)和平均风速(u)的相关性最高。日照时数(n)的决定系数、对回归方程R2的贡献和对ET0的直接效果均为各主控因子中最大,是影响ET0的决策变量。  相似文献   

7.
石羊河流域参考作物蒸发蒸腾量空间分布规律的研究   总被引:1,自引:0,他引:1  
根据甘肃省石羊河流域及周边的17个站近50年的观测资料,应用1998年FAO灌溉排水丛书第56分册最新推荐的Penman-Monteith公式计算各站历年参考作物蒸发蒸腾量ET0,分析了海拔高度与ET0的相关性.石羊河流域ET0值空间变化比较大,从山区到绿洲平原ET0多年平均值呈递增趋势.同时借助地理信息系统软件MapGIS6.5和Arcyiew3.1建立了石羊河流域参考作物蒸发蒸腾量的空间分布式模型,本研究只考虑了海拔高度对参考作物蒸发蒸腾量的空间分布的影响,暂未对坡地上的辐射及温度进行校正.  相似文献   

8.
【目的】分析陕西省参考作物蒸发蒸腾量(ET0)的时空特征,并对未来的ET0进行预测,为制定该地区作物灌溉制度、水资源规划提供参考依据。【方法】根据陕西省陕北、关中和陕南3个地区18个气象站1961-2000年历年逐日气象资料,采用世界粮农组织(FAO)推荐的Penman-Monteith公式计算历年逐日ET0;依据NCEP再分析数据以及大气环流模式HadCM3输出的大尺度气候要素资料,采用统计降尺度模型(SDSM)对未来A2和B2排放情景下的ET0进行预测。【结果】1961-2000年,陕西省ET0值在空间上自南至北呈递增趋势,除了7个气象站ET0呈上升趋势外,其余11个气象站平均ET0均呈下降趋势。在A2排放情景下,2011-2040、2041-2070、2071-2099年陕西省ET0的平均值较基准期(1961-2000年)分别增加2.7%,4.9%和8.9%,增幅最大的地区分布在陕南的安康、石泉、略阳和关中华山站以及陕北地区,关中地区增幅较小。2071-2099年陕西省ET0值四季变幅不均匀,其中以冬季的增幅最大。【结论】ET0的持续增长会导致陕西省水资源短缺问题恶化,将进一步影响该地区未来的作物需水量和农业灌溉需水量。  相似文献   

9.
气候变化对河西地区参考作物蒸发蒸腾量的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】探讨气候变化对参考作物蒸发蒸腾量(ET0)的影响程度,为节水农业的区域发展及水资源科学利用提供参考。【方法】根据河西地区18个气象站点的长系列气象资料月值数据,利用Penman-Monteith公式计算河西地区历年ET0值;用相关法分析各站ET0与地理位置、气象要素的关系,并应用相关法结合Penman-Monteith公式预测2010-2019年和2020-2029年ET0的年代均值。【结果】河西走廊西段、中段、东段和祁连山地的平均ET0值分别为1 265.1,1 078.6,1 058.5和984.5mm;海拔每升高100m,河西地区中部和东部各站年均ET0值约减少19mm,西部各站则约减少12.4mm;河西地区年ET0值与年平均相对湿度、年平均风速、年日照时数、年降水量、年平均气温的相关系数分别为0.634 1,0.597 3,0.421 3,0.356 6和0.191 9;预测的每10年变化量,西部的安西、玉门镇,中部高台、临泽及祁连山地的肃北站点年ET0值减少20mm以上,西部的马鬃山增加20mm以上,东部的古浪及祁连山地的天祝站点增加10mm以上,其他站点变化小于10mm。【结论】截至2009年,河西地区的年ET0值呈先减小后增大的趋势;其分布地域性比较明显,表现为河西走廊西段高于中段,中段高于东段,祁连山地最小,海拔高度是其决定因素;气象要素对于年ET0值的影响表现为年平均相对湿度>年平均风速>年日照时数>年降水量>年平均气温;未来20年河西地区东段年ET0值呈增加趋势,中段和西段多呈减少趋势,且各站差异明显。  相似文献   

10.
为研究扬州地区参考作蒸发蒸腾量(ET0)不同时间尺度的变化特征,采用1960-2017年气象数据,利用Penman-Monteith公式计算了ET0,发现1—12月ET0表现为先增加后减小的趋势。夏季ET0最大,其次为春季、秋季、冬季。趋势分析显示1960—2017年春季ET0表现为显著增加的趋势,其他季节变化趋势不显著;年ET0表现为显著增加的趋势。小波分析显示扬州地区的年ET0存在20~28、29~42、43~64年变化周期;其中29~42、43~64年的变化周期具有全局性,周期变化最明显。研究结果可为扬州地区灌溉排水规划和防灾减灾提供参考依据。  相似文献   

11.
潜在蒸散量(ET0)是大气蒸发的估计值,已经广泛应用于灌溉管理和无实测蒸发资料地区的估算.分析ET0的时空变化是研究水资源对气候变化响应的基础工作,同时对于农业水资源的优化利用也具有重要意义.根据秦岭南北47个气象站1960-2011年逐日数据,利用FAO Penman-Monteith公式计算出各站的潜在蒸散量(ET0),研究了气温、降水与ET0之间的长期变化趋势关系,对导致ET0下降的主要原因进行了讨论,着重对秦岭南北地区是否存在“蒸发悖论”进行验证.结果表明:(1)秦岭南北整体气温经历了先降后升的变化过程,1993年为突变年份,1960-1993年的降温速率和1994-2011年的升温速率均表现出由南向北递减的规律,1960-2011年整体升温速率由北向南递减.(2)1979年和1993年是ET0变化的转折点,以1979和1993为界ET0经历了“升—降—降”的变化阶段.1960-1979年仅汉水流域和巴巫谷地存在“蒸发悖论”现象,1980-1993、1994-2011和1960-2011年3个时段区域整体和各子区均发现了“蒸发悖论”现象.秋季后18a和52a整体以及冬季前34a和52a整体均存在“蒸发悖论”现象,冬季最为明显.(3)近52年整体降水表现出不显著的下降趋势,相较于年尺度,夏季降水与ET0逆向变化趋势更为明显.(4)年尺度上,太阳辐射(日照时数)下降引起的潜热通量减少是造成ET0下降即“蒸发悖论”现象的主要原因.季节尺度,春季ET0下降的主导因素为风速,其它季节均为太阳辐射(日照时数).  相似文献   

12.
抚顺地区参考作物需水量与气候变化的关系分析   总被引:1,自引:1,他引:0  
根据抚顺地区3个气象站1995~2004年的气象资料,应用FAO推荐的Penman-Monteith公式计算了10年来每年(5~9月)各月的参考作物需水量ET0,分析了ET0的月际变化和年际变化特征。抚顺地区的ET0月际和年际变化都较大,但ET0的变化趋势十分相似。同时分析了各气象因素对ET0的影响,对清源气象站的年均ET0的影响较大的气象因素是:最高气温(Tmax)、相对湿度(RH)、实测风速(U)以及日照时数(H),其中相对湿度(RH)与ET0呈负相关性;对章党气象站的年均ET0的影响较大的气象因素是:相对湿度(RH)和日照时数(H),其中相对湿度(RH)与ET0呈负相关性;对新宾气象站的年均ET0影响较大的气象因素是:大气压(P)和日照时数(H),与ET0均呈负相关性。日照时数(H)是影响抚顺地区参考作物需水量ET0最主要因素。抚顺地区ET0空间变化也较大,从山区到绿洲平原ET0多年平均值呈递增趋势,ET0与海拔高度呈显著负相关。  相似文献   

13.
地形(坡度、坡向、地形遮蔽等)对太阳辐射的空间分布影响显著,并进而造成了参考作物腾发量(ET0)空间分布的巨大差异。基于淮河史灌河流域数字高程模型(DEM)对参考作物腾发量计算模型中所涉及的几个参数(包括气压、温度、辐射)进行地形校正,改进并建立了考虑地形影响的流域参考作物腾发量计算模型。结果表明,改进的参考作物腾发量计算模型的计算结果的空间分布差异显著,更好地反映了地形对于ET0空间分布的影响。辐射和ET0随着坡向的变化由南坡至北坡依次减少。该研究结果提高了起伏地形影响下ET0空间分布估算的精度,并为流域水资源综合规划和利用提供重要依据。  相似文献   

14.
为研究参考作物腾发量(ET0)在不同时间尺度振荡模态特征,以阜新市为例,依据阜新、彰武两气象站1954~2006年逐日气象资料,利用彭曼蒙特斯公式计算逐月ET0,并应用EMD方法对ET0和温度(T)、风速(WS)、相对湿度(RH)及日照时数(SN)等气象因子进行振荡模态特征分析。结果表明:ET0及其4个气象因子经EMD分解后,IMF均呈现振荡频率和振幅依次减小,周期依次增大,IMF逐步由非线性趋向线性的规律。T、WS、RH和SN以及ET0最大贡献率发生在IMF1(93.0%)、IMF2(35.0%)、IMF2(64.5%)、IMF2(40.0%)和IMF2(84.3%)分量,主要振荡周期依次为1.0,0.6,0.8,0.7,1.0年。EMD方法在ET0振荡模态规律中的研究,为ET0的基础研究提供了参考,为解析ET0规律研究提供了一种新的手段。  相似文献   

15.
【目的】研究黑河流域参考作物蒸散量(ET_0)与气象因素间及各气象因素间的相关关系,精确估算和预测黑河流域ET_0.【方法】基于黑河流域17个气象站点1960-2014年逐日气象资料,在利用Penman-Monteith公式计算逐日ET_0的基础上,分析ET_0与气象因素的年际变化特征,将通径分析法和主成分分析法相结合,从线性关系和方差贡献2个角度综合探讨ET_0与气象因素间及各气象因素间的相关关系.【结果】近55a间黑河流域年均ET_0、平均温度和降水量呈增加趋势,平均相对湿度、平均风速和日照时数呈递减趋势.平均温度和平均风速间以及平均相对湿度、日照时数和降水量间线性关系显著,平均相对湿度主要受平均温度的主导影响;线性关系和方差贡献分析气象因素影响程度结果基本一致,影响程度排序:平均相对湿度>降水量>平均风速>日照时数>平均温度.【结论】单因素作用方面平均相对湿度为影响ET_0变化的主要因素,平均温度主导平均相对湿度的变化,多因素共同作用方面日照时数与降水量相组合是ET_0波动性变化的主导因素,多方面的共同作用造成黑河流域ET_0呈上下波动式的增加趋势.从不同角度综合分析能更全面探寻ET_0与气象因素间及各气象因素间的相关关系,为ET_0的变化特征提供科学依据.  相似文献   

16.
通过对凌河流域代表水文站的实测径流量和输沙量分析,得出凌河流域的水沙变化规律.探讨了凌河流域典型水文站(朝阳水文站)流域径流量、输沙量和含沙量的年内和年际变化趋势,比较了不同水文站径流量、输沙量和含沙量的年际变化.同时,探讨了凌河流域径流量、输沙量的沿程变化规律,并对大、小凌河流域的径流量和输沙量等水沙特性进行了比较.结果表明,凌河流域径流量和输沙量年内分配不均,多集中于汛期(6~9月),且年际变化较大,径流量随沿程增大;而输沙量在山丘区随沿程增大,到达平原区随沿程减小.  相似文献   

17.
基于1959—2017年赣江流域13个站点逐日降水量数据,采用线性趋势分析、Morlet小波分析、克里金插值法等方法,分析了赣江流域7个极端降水指数的时间和空间变化特征.结果表明:在时间上,大雨日数(R25)均呈下降趋势,暴雨日数(R50)、日最大降水量(Rx1day)、极端降水量(P95)、极端强降水量(P99)、极端降水强度(I95)、极端降水强度(I99)均呈上升趋势.说明近59年来赣江流域虽然大雨发生的频率逐渐减少,但极端降水的强度逐渐增加;赣江流域极端降水事件含有16年和3年2个主振荡周期,且连续性较强;在空间上,赣江流域自西向东,自南向北,极端降水发生的频率在逐渐增加,但其降水强度逐渐减小.  相似文献   

18.
[目的]探究嫩江流域降水及季节性降水变化特征。[方法]选取该流域内10个气象站,基于1969—2010年逐日降水数据,计算年降水量及冬夏季降水量,采用Mann-Kendall趋势检验法分析流域降水变化趋势,采用Theil-Sen estimator来计算趋势幅度,并利用Mann-Kendall突变检测法确定流域降水量发生突变的关键节点,综合分析嫩江流域降水的时间变化特征。[结果]近42年来嫩江流域年降水量以4.7 mm/10 a的幅度不显著下降,夏季降水量下降幅度(10.1 mm/10 a)高于年降水量,冬季降水量则表现为显著上升趋势,变化幅度为1.3 mm/10 a。嫩江流域年降水量为373.1~507.8 mm,夏季降水量为231.7~309.4 mm,冬季降水量为3.6~11.4 mm,中上游的降水量高于下游,10个站点年降水量主要以下降趋势为主,夏季降水量均表现为下降趋势,除乾安站降水量不显著下降外,其他站点冬季降水量均表现为上升趋势。夏季降水变化与年降水表现为较高的相似性,两者的Mann-Kendall突变检验结果也在形态上非常相近,均出现3个阶段的趋势变化,且波峰相近;在2...  相似文献   

19.
随着经济快速发展和人们生活水平不断提高,河流水质污染已成为当前主要的环境问题。以水体质量为研究对象,选取大小凌河流域干支流12个典型断面,于汛前(5月)、汛中(6月)和汛后(10月)进行布点采样,监测水体溶解氧(DO)含量、化学需氧量(COD)、总氮(TN)含量、氨态氮(NH3-N)含量、总磷(TP)含量等指标,采用单因子污染指数法和模糊数学方法对流域水质进行评价。结果表明,凌河流域DO、NH3-N、TP含量属于轻污染水平,COD部分点位污染较重,部分指标(如TN、TP含量)呈现汛前高于汛中和汛后的趋势。模糊综合评价结果显示,凌河流域整体水质符合要求或中污染,且汛中和汛后的水质均优于汛前,主要污染物为TN,可能是由于农业氮肥的使用和生活污水的排入导致了水体营养元素升高。单一指数法对水质有"过保护"的倾向,结合多种方法综合评价水质,才能更准确地掌握水质状况。  相似文献   

20.
耿一风  黄永平 《安徽农业科学》2018,46(22):138-140,161
利用荆州站1955—2017年逐日气温资料,在研究四季长度和起始时间变化特征的基础上,利用Mann-Kendall检验等方法对季节的时间变化趋势进行研究。结果表明,季长变化上,荆州夏季季长有极显著的增加趋势(P0.01),秋、冬两季季长有极显著的缩短趋势(P0.01),即夏季以延长为主,秋、冬季主要表现为缩短,而春季季长无明显变化。季节起始日上,冬秋两季起始日期有极显著的推后趋势(P0.01),春、夏季则表现为极显著的提前趋势(P0.01)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号