首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1 农网线损管理存在的问题(1) 配电网布局和结构不合理:超供电半径线路较多,线路的空间距离超长,迂回和“卡脖子”供电线路多,配电线路上负荷点多分散,配变供电点离用电负荷中心较远,导线截面选择与载荷不匹配等。(2) 供电设备陈旧老化,损耗严重:高能耗配电变压器和用电设备仍在使用中,早期农村架设的10kV线路的线径较细,导线截面小,载流量大,线路损耗较为严重,农村中小型电灌站和排涝站则表现的尤为突出。(3) 配电变压器的负荷轻、不平衡:配电变压器空载运行时间长,配电变压器的固定损耗大。农闲季节时,白天用电负荷小,经常轻载或空…  相似文献   

2.
线损率是供电企业的一项重要经济技术指标 ,而配网线损不管在损失电量的绝对数量上 ,还是在电网的损失比例上 ,都占据了较大的份额。因此 ,配网的降损显得尤为重要 ,配网现存的问题归纳如下 :(1) 布局和结构不合理 :在配电网中 ,超供电半径范围供电 ,或线路迂回供电 ;配网线路没有随着负荷的发展 ,伸入到用电负荷中心。以上这些问题 ,在国家大规模的电网改造后 ,有些问题已逐渐消除 ,但并没有全部解决。(2 ) 一些配电变压器的负荷轻、不平衡 :配电变压器空载运行时间长 ,配电变压器的固定损耗大。尤其在农闲季节 ,白天用电负荷小 ,经常轻…  相似文献   

3.
金华配电管理系统的主要功能有:配电网故障处理,即故障识别、定位、故障隔离和恢复供电;配电网监控,即对开闭所、10kV线路、配电变压器和重要用户的监控;集成的地理信息系统AM/FM/GIS;配电工作管理;配电高级应用软件等。本文重点介绍了金华配电地理信息系统的主要功能及实现方法。  相似文献   

4.
韩峰 《农村电工》2003,11(8):23-23
1配电网布局合理化的含义配电网布局合理化的含义是指在预测或已知的负荷下,变电站的座数和各个变电站的出线回路数、主变压器容量的选择以及线路供电半径应合理,变电站的位置应靠近负荷中心,以使电网建设投资最省,电能损耗最小,运行维护费用最低。2配电网布局合理化的具体要求2.1变电站的出线一般不多于6回。这是因为与其他多种回路出线的方案比较,只有6回出线才有最好的技术经济指标。2.210kV配电线路的经济供电半径。确定10kV配电线路的经济供电半径的原则是:在这一供电半径下,单位供电面积所承担的总计算费用为最小值(总计算费用包括35…  相似文献   

5.
吴国松 《农村电工》2003,11(12):29-29
随着配电网的发展,配电自动化系统在配电网中得到越来越广泛的应用,但配电自动化设备与我们传统的配电设备有许多不同的地方,这要求我们在应用中要特别注意,避免因使用不当而造成意外事故。下面就配电自动化系统在实际应用中应注意的几个问题作简单介绍。1配电线路联络断路器应核相,防止因相序不正确而导致合环事故。2当一条线路转带另一条线路或其一部分时,这时应注意将联络断路器和分段断路器的模式及时进行转换,否则,由于联络断路器和分段断路器时限不同,线路出现故障时,断路器会不正确动作,可能造成无法隔离故障和及时恢复供电。3操作前…  相似文献   

6.
南澳县在2003年城网改造中,对后宅片区陈旧配电网进行了改造。文章以南澳县近几年农网改造实践经验为基础,介绍了配电的总体设计思路,即缩短低压电网供电半经,将10kV电源直接深入负荷中心,配电网线路绝缘化,配电装置紧凑、小型化。  相似文献   

7.
1 农网线损管理存在的问题( 1 ) 配电网布局和结构不合理 :超大供电半径线路较多 ,线路的送电距离超长 ;迂回供电和“卡脖子”线路较多 ;配电线路上负荷点分散 ;配变供电点离用电负荷中心较远 ;主配电导线截面选择与载荷量不匹配等。( 2 ) 供电设备老化 ,损耗严重 :高能耗配电变压器和用电设备仍在大量使用 ,早期农村架设的1 0 k V线路的线号较小 ,导线截面小 ,载流量大 ,超过截面允许载流量 ,线路损耗较为严重 ,农村中小型电灌站和排涝站则表现的尤为突出。( 3) 配电变压器负荷不平衡 :配电变压器空载运行时间长 ,配电变压器的空载损…  相似文献   

8.
1 我国配电网发展的基本状况我国配电网系统按传统概念分为城网和农网 ,随着经济的发展 ,部分地区农网与城网的差距缩小 ,但经济发达的程度差别还是存在。城网供电负荷相对集中 ,供电环境较好 ;农网供电范围较大 ,线路半径长 ,事故机率高且查找困难。近年来供电部门对配电网的设备进行了大量的技术改造和更新 ,选用了新型的配电设备如真空、SF6 断路器 ,但新设备主要应用于变电所中 ,对事故多发的户外配电线路并没有太大改变。因此 ,为了提高整个电网的供电可靠性 ,建立以配电线路故障自动隔离 /恢复供电为目标的配电网自动化系统尤为重要…  相似文献   

9.
丁华 《农村电工》2010,18(3):29-29
配电网经济运行是在保证配电网安全运行、满足供电容量及保证供电质量的基础上。通过技术措施最大限度降低配电变压器与供电线路有功损耗和无功消耗。在当前,各地县供电企业农村配电网的经济运行水平仍然较低.管理也比较粗放,笔者认为提高配电网经济运行水平.主要应从配电变压器经济运行、调整电网三相负荷平衡度、改善无功补偿水平及加强日常的运行维护等方面加强管理,现就这几个方面应注意的问题谈谈自己的认识.供参考。  相似文献   

10.
《农村电气化》2006,(10):11-12
配电网的线损管理,历来是线损管理的重点和难点,相关统计资料表明,在供电环节中,10kV及以下配电网的损失电量,占到了地区损失电量的60%~70%,针对这一现状,我们开展了配电设备的配置分析,结果表明配电设备的配置状况与国外相比差异十分明显,如:我国配电变压器平均容量为284kVA,日本为34.8kVA;我国每台配变的平均供电户数为200户以上,日本为8.5户;低压供电线路我国平均在1200m以上,日本为98m。我国配变单台容量大,低压供电半径长,是制约配网线损降低的主要因素,引进国外配电技术,实现配网降损目标,成为了苏州供电公司的降损重点,并围绕这一…  相似文献   

11.
To investigate the relationship between stable carbon isotope discrimination (Δ) of different organs and water use efficiency (WUE) under different water deficit levels, severe, moderate and low water deficit levels were treated at bud burst to leafing, flowering to fruit set, fruit growth and fruit maturation stages of field grown pear-jujube tree, and leaf stable carbon isotope discrimination (ΔL) at different growth stages and fruit stable carbon isotope discrimination (ΔF) at fruit maturation stage were measured. The results indicated that water deficit had significant effect on ΔL at different growth stages and ΔF at fruit maturation stage. As compared with full irrigation, the average ΔL at different growth stages and ΔF at fruit maturation stage were decreased by 1.23% and 2.67% for different water deficit levels, respectively. ΔL and ΔF among different water deficit treatments had significant difference at the same growth stage (P < 0.05). Under different water deficit conditions, significant relationships between the ΔL and WUEi (photosynthesis rate/transpiration rate, Pn/Tr), WUEn (photosynthesis rate/stomatal conductance of CO2, Pn/gs), WUEy (yield/crop water consumption, Y/ETc) and yield, or between the ΔF and WUEy and yield were found, respectively. There were significantly negative correlations of ΔL with WUEi, WUEn, WUEy and yield (P < 0.01) at the fruit maturation stage, or ΔL with WUEi and WUEn (P < 0.01) over whole growth stage, respectively. ΔF was negatively correlated with WUEy, WUEn and yield (P < 0.05), but positively correlated with ETc (P < 0.01) over the whole growth stage. Thus ΔL or ΔF can compare WUEn and WUEy, so the stable carbon isotope discrimination method can be applied to evaluate the water use efficiency of pear-jujube tree under the regulated deficit irrigation.  相似文献   

12.
A 3-year study was carried out to assess the root biomass production, crop growth rate, yield attributes, canopy temperature and water-yield relationships in Indian mustard grown under combinations of irrigation and nutrient application for revealing the dynamic relationship of crop yield (Y) and seasonal evapotranspiration (ET). Three post-sowing irrigation treatments viz. no irrigation (I 1), one irrigation at flowering (I 2) and two irrigations one each at rosette and flowering stage (I 3), three nutrient treatments viz. no fertilizer or manure (F 1), 100% recommended NPK i.e., 60 kg N, 13.1 kg P and 16.6 kg K ha−1 (F 2) and 100% recommended NPK plus farmyard manure @ 10 Mg ha−1 (F 3) were tested in a split-plot design. Root biomass was significantly greater in I 3 than I 2 and I 1, and in F 3 than F 2 and F 1. The I 3 × F 3, I 2 × F 3 and I 3 × F 2 combinations maintained significantly greater crop growth rate, plant height, yield components, ET and crop yield and better plant water status in terms of canopy temperature, canopy-air temperature difference (CATD) and relative leaf water content (RLWC). Number of siliqua plant−1 and seeds siliqua−1 were the major contributors to the seed yield. Marginal analysis of water production function was used to establish Y–ET relationship. The elasticity of water production (E wp) provides a means to assess relative changes in Y and ET, and gives an indication of improvement of Y due to nutrient application. The ET–Y relationships were linear with marginal water use efficiency (WUEm) of 3.09, 4.23 and 3.95 kg ha−1 mm−1 in F 1, F 2 and F 3, respectively, and the corresponding E wp were 0.63, 0.71 and 0.61. This implies that the scope for improving yield and WUE with 100% NPK was little compared with 100% NPK + farmyard manure. The crop yield was highest in I 3 × F 3 combination, and the similar yield was obtained in I 2 × F 3 and I 3 × F 2 combinations. Application of organic manure along with 100% NPK fertilizers maintained greater crop growth rate, better water relation in plants, yield attributes and saved one post-sowing irrigation.  相似文献   

13.
A study was conducted to determine the relationship between midday measurements of vine water status and daily water use of grapevines measured with a weighing lysimeter. Water applications to the vines were terminated on August 24th for 9 days and again on September 14th for 22 days. Daily water use of the vines in the lysimeter (ETLYS) was approximately 40 L vine−1 (5.3 mm) prior to turning the pump off, and it decreased to 22.3 L vine−1 by September 2nd. Pre-dawn leaf water potential (ΨPD) and midday Ψl on August 24th were −0.075 and −0.76 MPa, respectively, with midday Ψl decreasing to −1.28 MPa on September 2nd. Leaf g s decreased from ~500 to ~200 mmol m−2 s−1 during the two dry-down periods. Midday measurements of g s and Ψl were significantly correlated with one another (r = 0.96) and both with ETLYS/ETo (r = ~0.9). The decreases in Ψl, g s, and ETLYS/ETo in this study were also a linear function of the decrease in volumetric soil water content. The results indicate that even modest water stress can greatly reduce grapevine water use and that short-term measures of vine water status taken at midday are a reflection of daily grapevine water use.  相似文献   

14.
This study examined hydrological characteristics of low-grade weirs, an alternative controlled drainage strategy in surface drainage ditches. Chemographs of vegetated and clear scraped (control) replicates of weir vs. non-weir treatments were compared to determine differences in time to peak (Tp) and time to base (Tb). Drainage ditches Tp and Tb were affected by both vegetation and weir presence. The order of treatment efficiency for Tp was observed to be: non-vegetated non-weir < vegetated non-weir < non-vegetated weir < vegetated weir. Furthermore, Tb for each ditch was the reverse relationship from Tp where vegetated weir > non-vegetated weir > vegetated non-weir > non-vegetated non-weir. Low-grade weirs increase chemical retention time (vegetated and clear scraped), the average time a molecule of contaminant remains in the system. Future research in water quality improvement and weir management will yield useful information for non-point source pollutant reduction.  相似文献   

15.
Expected yield losses as a function of quality and quantity of water applied for irrigation are required to formulate guidelines for the effective utilisation of marginal quality waters. In an experiment conducted during 2004-2006, double-line source sprinklers were used to determine the separate and interactive effects of saline and alkali irrigation waters on wheat (Triticum aestivum L.). The study included three water qualities: groundwater (GW; electrical conductivity of water, ECw 3.5 dS m−1; sodium adsorption ratio, SAR 9.8 mmol L−1; residual sodium carbonate, RSC, nil) available at the site, and two synthesized waters, saline (SW; ECw 9.4 dS m−1, SAR 10.3 mmol L−1; RSC nil) and alkali (AW; ECw 3.7 dS m−1, SAR 15.1 mmol L−1; RSC 9.6 meq. L−1). The depths of applied SW, AW, and GW per irrigation ranged from 0.7 to 3.5 cm; the depths of applied mixtures of GW with either SW (MSW) or AW (MAW) ranged from 3.2 to 5 cm. Thereby, the water applied for post-plant irrigations using either of GW, SW or AW ranged between 15.2 and 34.6 cm and 17.1 and 48.1 cm during 2004-2005 and 2005-2006, respectively and the range was 32.1-37.0 and 53.1-60.0 cm for MSW or MAW. Grain yields, when averaged for two years, ranged between 3.08 and 4.36 Mg ha−1, 2.57 and 3.70 Mg ha−1 and 2.73 and 3.74 Mg ha−1 with various quantities of water applied using GW, SW and AW, respectively, and between 3.47 and 3.75 Mg ha−1 and 3.63 and 3.77 Mg ha−1 for MSW and MAW, respectively. The water production functions developed for the two sets of water quality treatments could be represented as: RY = 0.528 + 0.843(WA/OPE) − 0.359(WA/OPE)2 − 0.027ECw + 0.44 × 10−2(WA/OPE) × ECw for SW (R2 = 0.63); RY = 0.446 + 0.816(OPE/WA) − 0.326(WA/OPE)2 − 0.0124RSC − 0.55 × 10−4(WA/OPE) × RSC for AW (R2 = 0.56). Here, RY, WA and OPE are the relative yields in reference to the maximum yield obtained with GW, water applied for pre- and post-plant irrigations (cm), and open pan evaporation, respectively. Crop yield increased with increasing amount of applied water for all of the irrigation waters but the maximum yields as obtained with GW, could not be attained even with increased quantities of SW and AW. Increased frequency of irrigation with sprinklers reduced the rate of yield decline with increasing salinity in irrigation water. The sodium contents of plants increased with salinity/alkalinity of sprinkled waters as also with their quantities. Simultaneous decrease in potassium contents resulted in remarkable increase in Na:K ratio.  相似文献   

16.
Based on successive observation, fifteen-day evapotranspiration (ETc) of Populus euphratica Oliv forest, in the extreme arid region northwest China, was estimated by application of Bowen ratio-energy balance method (BREB) during the growing season in 2005. During the growing season in 2005, total ETc was 446.96 mm. From the beginning of growing season, the ETc increased gradually, and reached its maximum value of 6.724 mm d−1 in the last fifteen days of June. Hereafter the ETc dropped rapidly, and reached its minimum value of 1.215 mm d−1 at the end of growing season. The variation pattern of crop coefficient (Kc) was similar to that of ETc. From the beginning of growing season, the Kc value increased rapidly, and reached its maximum value of 0.623 in the last fifteen days of June. Afterward, with slowing growth of P. euphratica, the value dropped rapidly to the end of growing season. According to this study, the ETc of P. euphratica forest is affected not only by meteorological factors, but by water content in soil.  相似文献   

17.
Physically, evaporative demand is driven by net radiation (Rn), vapour pressure (ea), wind speed (u2), and air temperature (Ta), each of which changes over time. By analyzing temporal variations in reference evapotranspiration (ET0), improved understanding of the impacts of climate change on hydrological processes can be obtained. In this study, variations in ET0 over 58 years (1950-2007) at 34 stations in the Haihe river basin of China were analyzed. ET0 was calculated by the FAO Penman-Monteith formula. Calculation of Kendall rank coefficient was done by analyzing the annual and seasonal trends in ET0 derived from its dependent climate variables. Inverse distance weighting (IDW) was used to analyze the spatial variation in annual and seasonal ET0, and in each climate variable. An attribution analysis was performed to quantify the contribution of each input variable to ET0 variation. The results showed that ET0 gradually decreased in the whole basin over the 58 years at a rate of −1.0 mm yr−2, at the same time, Rn, u2 and precipitation also decreased. Changes in ET0 were attributed to the variations in net radiation (−0.9 mm yr−2), vapour pressure (−0.5 mm yr−2), wind speed (−1.3 mm yr−2) and air temperature (1.7 mm yr−2). Looking at all data on a month by month basis, we found that Ta had a positive effect on dET0/dt (the derivative of reference evapotranspiration to time) and Rn and u2 had negative effects on dET0/dt. While changes in air temperature were found to produce a large increase in dET0/dt, changes in other key variables each reduced rates, resulting in an overall negative trend in dET0/dt.  相似文献   

18.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

19.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

20.
The efficient use of water by modern irrigation systems is becoming increasingly important in arid and semi-arid regions with limited water resources. This study was conducted for 2 years (2005 and 2006) to establish optimal irrigation rates and plant population densities for corn (Zea mays L.) in sandy soils using drip irrigation system. The study aimed at achieving high yield and efficient irrigation water use (IWUE) simultaneously. A field experiment was conducted using a randomized complete block split plot design with three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration), and three plant population densities (D1: 48,000, D2: 71,000 and D3: 95,000 plants ha−1) as the main plot and split plot, respectively. Irrigation water applied at I1, I2 and I3 were 5955, 4762 and 3572 m3 ha−1, respectively. A 3-day irrigation interval and three-way cross 310 hybrid corn were used. Results indicated that corn yield, yield components, and IWUE increased with increasing irrigation rates and decreasing plant population densities. Significant interaction effects between irrigation rate and plant population density were detected in both seasons for yield, selected yield components, and IWUE. The highest grain yield, yield components, and IWUE were found for I1D1, I1D2, or I2D1, while the lowest were found for I3D2 or I3D3. Thus, a high irrigation rate with low or medium plant population densities or a medium irrigation rate with a low plant population density are recommended for drip-irrigated corn in sandy soil. Crop production functions with respect to irrigation rates, determined for grain yield and different yield components, enable the results from this study to be extrapolated to similar agro-climatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号