首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bovine viral diarrhea virus (BVDV) persistently infected (PI) calves represent significant sources of infection to susceptible cattle. The objectives of this study were to determine if PI calves transmitted infection to vaccinated and unvaccinated calves, to determine if BVDV vaccine strains could be differentiated from the PI field strains by subtyping molecular techniques, and if there were different rates of recovery from peripheral blood leukocytes (PBL) versus serums for acutely infected calves. Calves PI with BVDV1b were placed in pens with nonvaccinated and vaccinated calves for 35 d. Peripheral blood leukocytes, serums, and nasal swabs were collected for viral isolation and serology. In addition, transmission of Bovine herpes virus 1 (BHV-1), Parainfluenza-3 virus (PI-3V), and Bovine respiratory syncytial virus (BRSV) was monitored during the 35 d observation period. Bovine viral diarrhea virus subtype 1b was transmitted to both vaccinated and nonvaccinated calves, including BVDV1b seronegative and seropositive calves, after exposure to PI calves. There was evidence of transmission by viral isolation from PBL, nasal swabs, or both, and seroconversions to BVDV1b. For the unvaccinated calves, 83.2% seroconverted to BVDV1b. The high level of transmission by PI calves is illustrated by seroconversion rates of nonvaccinated calves in individual pens: 70% to 100% seroconversion to the BVDV1b. Bovine viral diarrhea virus was isolated from 45 out of 202 calves in this study. These included BVDV1b in ranch and order buyer (OB) calves, plus BVDV strains identified as vaccinal strains that were in modified live virus (MLV) vaccines given to half the OB calves 3 d prior to the study. The BVDV1b isolates in exposed calves were detected between collection days 7 and 21 after exposure to PI calves. Bovine viral diarrhea virus was recovered more frequently from PBL than serum in acutely infected calves. Bovine viral diarrhea virus was also isolated from the lungs of 2 of 7 calves that were dying with pulmonary lesions. Two of the calves dying with pneumonic lesions in the study had been BVDV1b viremic prior to death. Bovine viral diarrhea virus 1b was isolated from both calves that received the killed or MLV vaccines. There were cytopathic (CP) strains isolated from MLV vaccinated calves during the same time frame as the BVDV1b isolations. These viruses were typed by polymerase chain reaction (PCR) and genetic sequencing, and most CP were confirmed as vaccinal origin. A BVDV2 NCP strain was found in only 1 OB calf, on multiple collections, and the calf seroconverted to BVDV2. This virus was not identical to the BVDV2 CP 296 vaccine strain. The use of subtyping is required to differentiate vaccinal strains from the field strains. This study detected 2 different vaccine strains, the BVDV1b in PI calves and infected contact calves, and a heterologous BVDV2 subtype brought in as an acutely infected calf. The MLV vaccination, with BVDV1a and BVDV2 components, administered 3 d prior to exposure to PI calves did not protect 100% against BVDV1b viremias or nasal shedding. There were other agents associated with the bovine respiratory disease signs and lesions in this study including Mannheimia haemolytica, Mycoplasma spp., PI-3V, BRSV, and BHV-1.  相似文献   

2.
The aim of this work was to investigate the susceptibility of calves infected with bovine viral diarrhea virus (BVDV) against secondary infections. For this purpose, the profile of cytokines implicated in the immune response of calves experimentally infected with a non-cytopathic strain of BVDV type-1 and challenged with bovine herpesvirus 1.1 (BHV-1.1) was evaluated in comparison with healthy animals challenged only with BHV-1.1. The immune response was measured by serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), acute phase proteins (haptoglobin, serum amyloid A and fibrinogen) and BVDV and BHV-1.1 specific antibodies. BVDV-infected calves displayed a great secretion of TNFα and reduced production of IL-10 following BHV-1 infection, leading to an exacerbation of the inflammatory response and to the development of more intense clinical symptoms and lesions than those observed in healthy animals BHV-1-inoculated. A Th1 immune response, based on IFNγ production and on the absence of significant changes in IL-4 production, was observed in both groups of BHV-1-infected calves. However, whereas the animals inoculated only with BHV-1 presented an IFNγ response from the start of the study and high expression of IL-12, the BVDV-infected calves showed a delay in the IFNγ production and low levels of IL-12. This alteration in the kinetic and magnitude of these cytokines, involved in cytotoxic mechanisms responsible for limiting the spread of secondary pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves.  相似文献   

3.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

4.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in 2 groups of stocker calves with acute respiratory disease. Both studies used calves assembled after purchase from auction markets by an order buyer and transported to feedyards, where they were held for approximately 30 d. In 1 study, the calves were mixed with fresh ranch calves from a single ranch. During the studies, at day 0 and at weekly intervals, blood was collected for viral antibody testing and virus isolation from peripheral blood leukocytes (PBLs), and nasal swabs were taken for virus isolation. Samples from sick calves were also collected. Serum was tested for antibodies to bovine herpesvirus-1 (BHV-1), BVDV1a, 1b, and 2, parainfluenza 3 virus (PI3V), and bovine respiratory syncytial virus (BRSV). The lungs from the calves that died during the studies were examined histopathologically, and viral and bacterial isolation was performed on lung homogenates. BVDV was isolated from calves in both studies; the predominant biotype was noncytopathic (NCP). Differential polymerase chain reaction (PCR) and nucleic acid sequencing showed the predominant subtype to be BVDV1b in both studies. In 1999, NCP BVDV1b was detected in numerous samples over time from 1 persistently infected calf; the calf did not seroconvert to BVDV1a or BVDV2. In both studies, BVDV was isolated from the serum, PBLs, and nasal swabs of the calves, and in the 1999 study, it was isolated from lung tissue at necropsy. BVDV was demonstrated serologically and by virus isolation to be a contributing factor in respiratory disease. It was isolated more frequently from sick calves than healthy calves, by both pen and total number of calves. BVDV1a and BVDV2 seroconversions were related to sickness in selected pens and total number of calves. In the 1999 study, BVDV-infected calves were treated longer than noninfected calves (5.643 vs 4.639 d; P = 0.0902). There was a limited number of BVDV1a isolates and, with BVDV1b used in the virus neutralization test for antibodies in seroconverting calves' serum, BVDV1b titers were higher than BVDV1a titers. This study indicates that BVDV1 strains are involved in acute respiratory disease of calves with pneumonic Mannheimia haemolytica and Pasteurella multocida disease. The BVDV2 antibodies may be due to cross-reactions, as typing of the BVDV strains revealed BVDV1b or 1a but not BVDV2. The BVDV1b subtype has considerable implications, as, with 1 exception, all vaccines licensed in the United States contain BVDV1a, a strain with different antigenic properties. BVDV1b potentially could infect BVDV1a-vaccinated calves.  相似文献   

5.
Susceptible calves were administered modified live virus (MLV) vaccines containing bovine herpesvirus-1 (BHV1) and bovine viral diarrhoea type 1 (BVDV1a) strains intramuscularly, with one vaccine containing both MLV and inactivated BHV-1 and inactivated BVDV1a. There was no evidence of transmission of vaccine (BHV-1 and BVDV1a) strains to susceptible non-vaccinated controls commingled with vaccinates. No vaccinates had detectable BHV-1 in peripheral blood leucocytes (PBL) after vaccination. Each of three vaccines containing an MLV BVDV1a strain caused a transient BVDV vaccine induced viremia in PBL after vaccination, which was cleared as the calves developed serum BVDV1 antibodies. The vaccine containing both MLV and inactivated BHV-1 induced serum BHV-1 antibodies more rapid than MLV BHV-1 vaccine. Two doses of MLV BHV-1 (days 0 and 28) in some cases induced serum BHV-1 antibodies to higher levels and greater duration than one dose.  相似文献   

6.
An investigation based on 2 studies was carried out to assess the involvement of bovine virus diarrhoea virus (BVDV), bovine herpesvirus type 1 (BHV-1), and bovine respiratory syncytial virus (BRSV) in calf respiratory disease in dairy farms in Venezuela. In the first study, 8 farms were selected and paired serum samples from 42 calves with respiratory disease were tested by ELISA for antibodies to the 3 viruses. Seroconversion to BVDV, BHV-1, and BRSV was found to 5, 2, and 6 farms out of the 8, respectively. The proportion of calves that showed seroconversion to BVDV, BHV-1, and BRSV were 19%, 14%, and 26%, respectively. In the second study, another farm having previous serological evidence of BVDV infection was selected. The decline of maternal antibodies against BVDV was monitored in 20 calves and the half-life of maternal antibodies was 34 +/- 12 days presumably indicating an early natural infection with BVDV. Furthermore, sera free of BVDV antibodies that were collected in studies 1 and 2 and were assayed for the presence of BVDV by nested RT-PCR. Two BVDV strains were detected and compared to those of ruminant and porcine pestiviruses. Both strains were assigned to subgroup Ib of type I BVDV. This investigation provides information on BVDV genotypes circulating in Venezuela and may contribute to the establishment of official control programmes against the viruses studied.  相似文献   

7.
OBJECTIVE: To determine the efficacy of a modified-live virus vaccine containing bovine herpes virus 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus 3, and bovine viral diarrhea virus (BVDV) types 1 and 2 to induce neutralizing antibodies and cell-mediated immunity in na?ve cattle and protect against BHV-1 challenge. ANIMALS: 17 calves. PROCEDURES: 8 calves were mock-vaccinated with saline (0.9% NaCl) solution (control calves), and 9 calves were vaccinated at 15 to 16 weeks of age. All calves were challenged with BHV-1 25 weeks after vaccination. Neutralizing antibodies and T-cell responsiveness were tested on the day of vaccination and periodically after vaccination and BHV-1 challenge. Specific T-cell responses were evaluated by comparing CD25 upregulation and intracellular interferon-gamma expression by 5-color flow cytometry. Titration of BHV-1 in nasal secretions was performed daily after challenge. Results-Vaccinated calves seroconverted by week 4 after vaccination. Antigen-specific cell-mediated immune responses, by CD25 expression index, were significantly higher in vaccinated calves than control calves. Compared with control calves, antigen-specific interferon-gamma expression was significantly higher in calves during weeks 4 to 8 after vaccination, declining by week 24. After BHV-1 challenge, both neutralizing antibodies and T-cell responses of vaccinated calves had anamnestic responses to BHV-1. Vaccinated calves shed virus in nasal secretions at significantly lower titers for a shorter period and had significantly lower rectal temperatures than control calves. CONCLUSION AND CLINICAL RELEVANCE: A single dose of vaccine effectively induced humoral and cellular immune responses against BHV-1, BRSV, and BVDV types 1 and 2 and protected calves after BHV-1 challenge for 6 months after vaccination.  相似文献   

8.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


9.
In 961 calves up to an age of 6 months which were sent to the animal health center in Oldenburg between March 1987 and March 1990 for necropsy the results of determination of different viruses were calculated: BVD-, rota-, corona-, parainfluenza-3- (PI-3)-, bovine herpes-1 (BHV-1)- and bovine respiratory syncytial virus (BRSV). In 122 and 104 randomly collected health calves of 22 farms antibodies against BRSV and bovine adeno virus-types 5, 7 and 8 were determined. 50.1% of the necropsied calves were one and two weeks old. In this group in 40.2% rotavirus and in 19.0% coronavirus could be isolated. All over the calves the frequencies of isolated viruses were 13.3% for BVDV, 4.6% for BRSV, 3.2% for BHV-1, and 2.1% for PI-3. The percentages of positive findings for rota- and coronavirus increased up to 7 days after birth, and thereafter both decreased. The frequencies of BVDV and BRSV were higher in older groups. The frequency of PI-3 was low and remained constantly. Infections with rota-, corona- and with both viruses were accompanied by BVDV in 11.3, 5.3 and 14.3%, respectively. Against bovine adenoviruses and BRSV in the first 8 weeks and after 14 weeks of life in more than 70% of the calves antibodies were detected.  相似文献   

10.
Serum antibody analyses for bovine herpesvirus type 1 (BHV-1), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), bovine coronavirus (BCV), and bovine rotavirus (BRV) were performed on 527 randomly selected cows, before calving, and on 407 three-week-old calves. In cows and calves, BCV and BRV were the most seroprevalent viruses (80% to 100% according to virus and vaccination status). Bovine respiratory syncytial virus was the least seroprevalent in the cows, independent of the vaccination status. In nonvaccinated cows the seroprevalence to BRSV was 36.7%, and 53.5% in cows vaccinated less than two weeks prior to collecting blood, and 67.6% in cows vaccinated two weeks or more prior to blood collection. In their calves, BHV-1 was the least seroprevalent, independent of the vaccination status. The serological status and antibody titers in calves were generally associated with those of the dam. The occurrence of respiratory diseases in the calves was associated with cow and calf serological profiles (BHV-1, BRSV and BCV in the nonvaccinated group, BHV-1, BVDV and BCV in the vaccinated group). The occurrence of diarrhea was not associated with cow and calf serological profiles but was negatively associated with high level calf serum IgG in the nonvaccinated group (odds ratio = 0.73). Bovine coronavirus and BRV were shed by 1.4% and 4.9% of calves in the nonvaccinated group, and by 0% and 9.9% of calves in the vaccinated group, respectively. Bovine rotavirus shedding was associated with fecal diarrheic consistency at the moment of fecal sampling but not with previous occurrence of diarrhea.  相似文献   

11.
The associations between herd bovine herpesvirus 1 (BHV-1) seroprevalence, along with other infectious and farm management factors with bovine respiratory disease (BRD) in dairy calves and heifers, were investigated. Serum samples from 103 dairy cattle herds were analyzed for antibodies against BHV-1, bovine respiratory syncytial virus (BRSV), bovine viral diarrhea virus (BVDV), and Mycoplasma bovis (M. bovis). A questionnaire was used to record herd management practices. A high occurrence of respiratory disease in unweaned calves was associated with low to moderate and high prevalence of BHV-1 among cows (OR=14.8, p=0.005 and OR=19.2, p=0.002, respectively) and positive BVDV status of a herd (OR=5.1, p=0.02). The presence of BVDV in a herd was related to a high incidence of respiratory disease in heifers 3-16 months old (OR=4.3, p=0.027). Based on the results of multiple correspondence analysis, holding youngstock separately from cows until pregnancy, introducing new animals and the activities of on-farm employees may contribute to a higher incidence of BRD.  相似文献   

12.
The aim of the study was to determine the epidemiological data of bovine viral diarrhea virus (BVDV), bovine herpesvirus-1 (BHV-1), bovine herpesvirus-4 (BHV-4), bovine herpesvirus-5 (BHV-5) and Brucella–associated cattle that were previously reported to have abortion and infertility problems in Ankara, Corum, Kirikkale and Yozgat provinces, Turkey. Whole blood and sera samples were obtained from 656 cattle, and antibodies against Brucella spp. were detected in 45 (6.86%) and 41 (6.25%) animals by Rose Bengal plate and serum tube agglutination tests, respectively. The seropositivity rates against BVDV, BHV-1 and BHV-4 were 70.89%, 41.3% and 28.78%, respectively. RT-PCR and PCR were performed to detect RNA and DNA viruses in blood samples, respectively. The BVDV 5′-untranslated region and BHV-1 gB gene detected in this study were phylogenetically analyzed. The BVDV strains analyzed in this study were closely related to those previously reported from Turkey. The nucleotide sequence from the BHV-1 strain detected in this study is the first nucleotide sequence of BHV-1 circulating in this area of Turkey deposited in the GenBank. The presence of Brucella spp. and prevalence of BHV-1, BHV-4 and BVDV in cattle should be further investigated throughout these regions.  相似文献   

13.
14.
Several laboratory studies assessed the duration of immunity of a quadrivalent vaccine (Rispoval™4, Pfizer Animal Health) against bovine respiratory diseases (BRD) caused by bovine herpes-virus type-1 (BHV-1), parainfluenza type-3 virus (PI3V), bovine viral-diarrhoea virus type 1 (BVDV), or bovine respiratory syncytial virus (BRSV). Calves between 7 weeks and 6 months of age were allocated to treatment and then were injected with two doses of either the vaccine or the placebo 3 weeks apart. Six to 12 months after the second injection, animals were challenged with BHV-1 (n = 16), PI3V (n = 31), BVDV (n = 16), or BRSV (n = 20) and the course of viral infection was monitored by serological, haematological (in the BVDV study only), clinical, and virological means for ≥2 weeks. Infection induced mild clinical signs of respiratory disease and elevated rectal temperature in both vaccinated and control animals and was followed by a dramatic rise in neutralising antibodies in all treatment groups. Titres reached higher levels in vaccinated calves than in control calves after challenge with BHV-1, BVDV, or BRSV. On day 3 after PI3V challenge, virus shedding was reduced from 3.64 log10 TCID50 in control animals to 2.59 log10 TCID50 in vaccinated animals. On days 6 and 8 after BRSV challenge, there were fewer vaccinated animals (n = 2/10 and 0/10, respectively) shedding the virus than control animals (n = 8/10 and 3/10, respectively). Moreover, after challenge, the mean duration of virus shedding was reduced from 3.8 days in control animals to 1 day in vaccinated animals in the BVDV study and from 3.4 days in control animals to 1.2 days in vaccinated animals in the BRSV study. The duration of immunity of ≥6 months for PI3V, BHV-1 and BVDV, and 12 months for BRSV, after vaccination with Rispoval™4, was associated mainly with enhanced post-challenge antibody response to all four viruses and reduction of the amount or duration of virus shedding or both.  相似文献   

15.
In this study, viral pathogens associated with nine outbreaks of naturally occurring dairy calf pneumonia in Mashhad area of Khorasan Razavi province from September 2008 to May 2009 were assessed. Five diseased calves from each farm were chosen for examination. Acute and convalescent serum samples were taken from calves with signs of respiratory disease. Sera were analyzed for antibodies to bovine viral diarrhea virus (BVDV), bovine herpesvirus type 1 (BHV-1), bovine respiratory syncytial virus (BRSV), parainfluenza virus type 3 (PI-3V), and bovine adenovirus-3 (BAV-3) by indirect ELISA kits. Among 42 serum samples collected at sample 1, seroprevalence values for viruses BHV-1, BVDV, BRSV, PI-3V, and BAV-3 were 61.9% (26), 57.1% (24), 64.2% (27), 90% (38), and 61.9% (26), respectively. Seroconversion to BVDV, BRSV, PI-3V, and BAV-3 occurred in 11.9% (5), 16.6% (7), 26.1% (11), and 21.4% (9) of animals, and 52.3% (22) had generated antibodies against one or more viral infections at sample 2. In addition, no significant relationship between seroprevalence of BHV-1, BVDV, BRSV, PI-3V, and BAV-3 and dairy herd size was observed (P > 0.05). According to serological findings, BHV-1, BVDV, BRSV, PI-3V, and BAV-3 are common pathogens of the dairy calf pneumonia in dairy herds in Mashhad area of Khorasan Razavi province, Iran.  相似文献   

16.
A combination vaccine (Bovi-Shield FP4 + L5, Pfizer Animal Health) containing modified-live virus (MLV) components against bovine herpesvirus-1 (BHV-1), bovine viral diarrhea virus BVDV), parainfluenza virus-3 (PI3), bovine respiratory syncytial virus (BRSV), and inactivated cultures of Leptospira canicola, grippotyphosa, hardjo, icterohaemorrhagiae, and pomona was evaluated for safety in pregnant beef and dairy animals. Heifers vaccinated prebreeding with the minimum immunizing dose (lowest antigen level initiating immunizing effects) of the vaccine's MLV BHV-1 or BVDV components and during pregnancy (approximately 200 days of gestation) with vaccine containing 10x doses of the same BHV-1 and BVDV components delivered live, healthy calves that were determined to be serologically negative (titer less than 1:2) for neutralizing antibodies to BHV-1 and BVDV prior to nursing. Additionally, in three field safety studies, previously vaccinated cows and heifers that received a field dose (vaccine containing antigen levels required for commercial sale of the MLV combination vaccine during either the first, second, or third trimester of pregnancy had abortion rates similar to those of pregnant cows and heifers vaccinated during the same stage of pregnancy with sterile water diluent.  相似文献   

17.
The aim of this study was to determine the pathogenicity of an Indian bovine viral diarrhea virus (BVDV) 1b isolate in 7-9-months-old male calves. Infected (four) and control (two) calves were bled at three days interval for hematological, virological and serological studies until day 27. All infected calves developed respiratory illness, biphasic pyrexia, mild diarrhea, leucopenia and mild thrombocytopenia. Viraemia was demonstrated between 3 and 15dpi and the infected calves seroconverted by 15dpi. Prominent kidney lesions were endothelial cell swelling, proliferation of mesangial cells and podocytes leading to glomerular space obliteration. Degeneration and desquamation of cells lining seminiferous tubules were observed in two infected calves. Consolidation of lungs with interstitial pneumonia, mild gastroenteritis and systemic spread were also evident. It was concluded that Indian BVDV isolate induced moderate clinical disease in calves and glomerulonephritis resulting from acute BVDV infection was observed for the first time.  相似文献   

18.
The immune receptor-mediated functions of bovine alveolar macrophages (AM) inoculated in vitro with bovine herpesvirus-1 (BHV-1) or parainfluenza-3 (PI-3) virus were tested in the presence or absence of virus-specific antiserum or pulmonary lavage fluids collected from calves 6 days after inoculation with BHV-1 or PI-3 virus. The Fc and C3b phagocytic indices of noninoculated AM, collected from 6- to 16-week-old calves, ranged from 75 to 87 and 59 to 64, respectively, and the binding indices ranged from 5 to 8 and 22 to 28, respectively. Infection of AM with either BHV-1 or PI-3 virus had no significant effect on receptor-mediated phagocytosis or binding, with the exception of a significant (P less than 0.05) decrease, from 64 to 46, of the C3b phagocytic index of PI-3 virus-infected AM. The addition of lavage fluids, collected after BHV-1 or PI-3 virus infection, to AM infected with the respective virus caused a significant (P less than 0.05) decrease in phagocytic indices with values for the Fc and C3b indices in BHV-1-infected AM decreasing from 81 to 49 and from 47 to 8, respectively, and those for the PI-3 virus-infected AM from 79 to 51 and from 46 to 15, respectively. The binding indices of virus-infected AM increased with the addition of viral lavage fluids, but the only significant (P less than 0.05) increase was for C3b binding in PI-3 virus-infected cells, which increased from 33 to 56.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Acidogenic diets were evaluated for their effects on lymphocyte proliferation in response to Staphylococcus aureus exotoxin B (SEB), and specific lymphocyte proliferation and serum-neutralizing antibody titers to four bovine respiratory viruses in vitro. Four Holstein steer calves, with an average weight of 213 +/- 42 kg, were fed a basal (control) diet consisting of 49% forage and 51% concentrate (DM basis), with 15% CP (on a DM basis). Three additional treatment diets were used: 1) the basal diet supplemented with 700 mL/d of butylene glycol (BG) to induce ketoacidosis by increasing blood beta-hydroxybutyate (BHBA); 2) the basal diet supplemented with 1.2 +/- 0.1 kg/d of anionic salts (AS; Soychor 16.7, West Central Soy, Ralston, IA) to induce a metabolic acidosis; and 3) the basal diet with all forage replaced by finely ground corn and soybean meal blended to provide 15% CP (HG), to induce lactic acidosis. The calves were fed each diet for 21 d in a 4 x 4 Latin square design. Blood samples were collected on d 18, 19, and 20 of each 21-d period and analyzed for pH; concentrations of BHBA; in vitro lymphocyte proliferation to SEB, bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), parainfluenza-3 (PI-3), and bovine herpesvirus-1 (BHV-1); and titers of serum-neutralizing antibodies against the four viruses. Following treatment, the average pH of the serum samples was 7.38 for calves fed the control diet, 7.37 for the BG treatment, and 7.36 for the HG treatment, and was decreased (P < 0.05) to 7.33 for the AS treatment. All acidogenic diets decreased lymphocyte response to SEB (P < 0.05). The lymphocyte proliferative response, however, of each virus showed a different pattern of interaction with the three acidogenic diets tested. The AS diet was associated with increased lymphocyte proliferative response to BVDV and BRSV (P < 0.01) and increased serum neutralization titers to BHV-1 (P < 0.05). In calves fed the BHBA-inducing diet (BG), an increase in lymphocyte proliferation to BRSV was observed (P < 0.05). A similar relationship to blood BHBA concentration was not observed with the lymphocyte proliferation to BVDV, PI-3, or BHV-1. Titers of serum-neutralizing antibody against PI3 (P < 0.05) and BHV-1 (P < 0.01) were negatively correlated with blood pH, and titers of serum neutralizing antibodies to BHV-1 were negatively correlated to elevated circulating concentrations of BHBA (P < 0.05).  相似文献   

20.
During the past several years, acute infections with bovine viral diarrhea virus (BVDV) have been causally linked to hemorrhagic and acute mucosal disease-like syndromes with high mortality. The majority of BVDVs isolated in such cases have been classified as type II on the basis of genetic and antigenic characteristics. It was our objective to examine clinical disease, lesions and potential sites of viral replication, following experimental BVDV type II infection in young calves. On approximately day 35 after birth, calves that had received BVDV-antibody-negative colostrum were infected by intranasal inoculation of 5 x 10(5) TCID50 of BVDV type II isolate 24,515 in 5 mL of tissue culture fluid (2.5 mL/nostril). Calves were monitored twice daily for signs of clinical disease. Approximately 48-72 h after infection, all calves developed transient pyrexia (39.4-40.5 degrees C) and leukopenia. Beginning on approximately day 7 after infection, all calves developed watery diarrhea, pyrexia (40.5-41.6 degrees C), marked leukopenia (> or = 75% drop from preinoculation values), variable thrombocytopenia, and moderate to severe depression. Calves were euthanized on days 10, 11, or 12 after infection due to severe disease. Gross and histological lesions consisted of multifocal bronchointerstitial pneumonia (involving 10%-25% of affected lungs), bone marrow hypoplasia and necrosis, and minimal erosive lesions in the alimentary tract. Immunohistochemical staining for BVDV revealed widespread viral antigen usually within epithelial cells, smooth muscle cells and mononuclear phagocytes in multiple organs, including lung, Peyer's patches, gastric mucosa, thymus, adrenal gland, spleen, lymph nodes, bone marrow, and skin. This BVDV type II isolate caused rapidly progressive, severe multisystemic disease in seronegative calves that was associated with widespread distribution of viral antigen and few gross or histological inflammatory lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号