首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA methylation was investigated as a possible mechanism for regulation of floral gene expression in stolbur phytoplasma‐infected tomato buds. Expression of methylase and demethylase genes was found to be globally down‐regulated in tomato plants infected with stolbur isolate PO, but not in those infected with isolate C. These results are consistent with the finding that SlDEF, a gene orthologous to arabidopsis APETALA3 which is involved in petal formation, was down‐regulated in stolbur PO‐infected buds and remained unaffected in stolbur C‐infected buds, and with the fact that the two stolbur phytoplasma isolates C and PO induce distinct symptoms. Because of variations between the different cell‐types of the flower buds, the DNA methylation status of SlDEF could not be clearly established. However, the finding that treatment of stolbur PO‐infected plants with 5‐azacytidine partially restored SlDEF gene expression strongly suggests that DNA methylation is involved in down‐regulation of floral development genes in stolbur PO‐infected tomatoes.  相似文献   

2.
The role of salicylic acid (SA) was investigated in basal defence and induced resistance to powdery mildew ( Oidium neolycopersici ) and grey mould ( Botrytis cinerea ) in tomato ( Lycopersicon esculentum ) and tobacco ( Nicotiana tabacum ). A comparison of NahG transgenic tomato and tobacco (unable to accumulate SA) to their respective wild types revealed that in tomato, SA was not involved in basal defence against O. neolycopersici but NahG tobacco showed an enhanced susceptibility to O. neolycopersici infection, the effect becoming more obvious as the plants grew older. In contrast, SA played no role in the basal defence of tobacco against B. cinerea , but seemed to contribute to basal defence of tomato against B. cinerea. Activation of the SA-dependent defence pathway via benzothiadiazole (BTH) resulted in induced resistance against O. neolycopersici in tobacco but not in tomato. Microscopic analysis revealed that BTH treatment could prevent penetration of the Oidium germ tube through tobacco leaves, whereas penetration was successful on tomato leaves irrespective of BTH treatment. In contrast, soil or leaf treatment with BTH induced resistance against B. cinerea in tomato but not in tobacco. It is concluded that the SA-dependent defence pathway is effective against different pathogens in tomato and tobacco.  相似文献   

3.
When the biocontrol agent Pythium oligandrum (PO) colonizes the rhizosphere, it suppresses bacterial wilt disease in tomato (Solanum lycopersicum cv. Micro‐Tom) caused by Ralstonia solanacearum, and a homogenate of its mycelia exhibits elicitor activity, inducing an ethylene (ET)‐dependent defence response in Micro‐Tom. Since salicylic acid (SA) and jasmonic acid (JA) play an important role in plant defence responses to pathogens, the involvement of SA‐ and JA‐dependent signal transduction pathways in resistance to R. solanacearum was investigated in tomato roots treated with a mycelial homogenate of PO. Bacterial wilt disease was also suppressed in tomato cv. Moneymaker treated with the PO homogenate. However, the SA‐inducible PR‐1(P6) gene was not up‐regulated in either Micro‐Tom or Moneymaker. SA did not accumulate in homogenate‐treated roots in comparison with distilled water‐treated controls, even 24 h after inoculation. Induced resistance against R. solanacearum was not compromised in SA‐non‐accumulating NahG transgenic plants treated with the PO homogenate. On the other hand, the expression of the JA‐responsive gene for the basic PR‐6 protein was induced in both tomato cultivars treated with the PO homogenate. Furthermore, quantitative disease assays showed that the induced resistance against R. solanacearum was compromized in PO homogenate‐treated jai1‐1 mutant plants defective in JA signalling. These results indicated that the JA‐dependent signalling pathway is required for PO‐induced resistance against R. solanacearum in tomato.  相似文献   

4.
Sustainable strategies for plant-parasitic nematode control are required to reduce dependence on chemical nematicides. Foliar application of various compounds can induce a systemic defence response that reduces nematode infestation. The effects of benzothiadiazole (BTH), β-aminobutyric acid (BABA), jasmonates (cis-jasmone and methyl jasmonate) and salicylic acid (SA) in the development and reproduction of the root-knot nematode Meloidogyne chitwoodi in tomato plants were assessed. The effects of BTH and of the jasmonates were further tested on potato plants. Pot assays were conducted using tomato plants cv. Tiny Tim or potato cv. Désirée treated with foliar sprays and inoculated with 300 second stage juveniles. Nematode development and reproduction were assessed 21 and 45 days after inoculation. Treatment with SA had a negative effect on nematode development in tomato plants but did not affect reproduction and methyl jasmonate treatment was the most effective in reducing nematode penetration (58 %). Nematode development was significantly affected in potato plants sprayed with cis-jasmone. Nematode penetration was reduced by 90, 67 and 81 % in plants treated with BTH, cis-jasmone and methyl jasmonate respectively, although the reproduction factor (Rf) was only significantly lower in the BTH treatment (Rf?=?7.6) when compared to the control (Rf?=?18.1). Our results suggest that both the SA and JA pathways play an important role in plant defence mechanisms against root-knot nematode development and reproduction for both plants, and should be considered in the design of integrated pest management approaches.  相似文献   

5.
Since 1989, tomato plants showing symptoms of stolbur disease have been sporadically noticed at the ‘Stuard Experimental Farm for Agriculture’in the Province of Parma, Emilia‐Romagna region (north Italy). In this farm, one of the largest in Italy for tomato plantation, more than 36 commercial tomato lines have been comparatively evaluated for suitability for processing into diced or crushed tomato products. Recently, among these lines, some plants of two hybrids (Perfect Peel, TI 991) showed the typical symptoms of ‘stolbur’infection (yellowing and reduction of leaves, sterility or fruit alterations, stunting of the plants). In order to protect these plants, as Perfect Peel is one of the most important commercial hybrids, transmission electron microscopy was used to identify the pathogens responsible for the disease and to study the alterations caused in cells. Phytoplasmas were observed in the phloem cells of leaf and stem tissues of the two tomato hybrids and also in Catharanthus roseus used as test plant. This is the first report of identification, by electron microscopy, of stolbur phytoplasma affecting economically important tomato crops in Emilia‐Romagna region.  相似文献   

6.
Maize redness (MR), a disease causing midrib, leaf and stalk reddening and abnormal ear development in maize, has been reported from Serbia, Romania and Bulgaria for 50 years. Recent epiphytotics reduced yields by 40%–90% in southern Banat, Serbia. MR was recently associated with the presence of the stolbur phytoplasma, although the epidemiology of the disease remained unknown. Diseased fields in southern Banat were surveyed for potential vectors of the phytoplasma during 2005 and 2006, and high populations of Reptalus panzeri were found. In affected fields, 20% of the R. panzeri individuals and 85% of symptomatic maize plants carried the stolbur phytoplasma. When stolbur phytoplasma-infected R. panzeri were introduced into insect-free mesh cages containing healthy maize plants, midrib and leaf reddening developed on 48% of plants and stolbur phytoplasma was detected in 90% of the symptomatic plants. No symptoms or phytoplasma-positive plants were found in cages without insects. These data indicate that MR symptoms are associated with the stolbur phytoplasma. Reptalus panzeri is both abundant in affected fields and can transmit the stolbur phytoplasma, indicating the insect is likely to be a major vector of MR.  相似文献   

7.
8.
Primer pairs were designed from a cloned DNA probe of a strain of flavescence dorée (FD) phytoplasma and from a cloned DNA probe of a strain of stolbur phytoplasma. Among an array of reference phytoplasma strains maintained in periwinkle, pair FD9f/r amplified a 1.3 kb DNA fragment only with phytoplasma strains of elm yellows (EY) group, i.e. two strains of FD and two strains of EY. Tru9I restriction analysis of the fragment amplified by FD9f/r revealed a diversity among EY-group phytoplasmas. The FD strains differed from the strains isolated from elm. The profile of the phytoplasmas infecting the grapevine samples from Catalonia and most of the samples from Northern Italy were identical to that of a FD strain. Three other profiles were detected in grapevine from Palatinate, in Germany.The two primer pairs derived from a stolbur strain, STOL4f/r and STOL11f2/r1, specifically amplified a 1.7 kb and a 0.9 kb DNA fragment, respectively, with all strains in the stolbur subgroup. However, the pair STOL4f/r did not recognise strain MOL. Both pairs allowed to detect phytoplasmas in diseased grapevines from France, Italy, Spain and Israel. Attempts to differentiate between phytoplasmas in the stolbur subgroup by restriction analyses failed. The pairs FD9f/r and STOL11f2/r1 could be used in the same reaction (multiplex PCR) to detect EY-group phytoplasmas, stolbur-subgroup phytoplasmas or both phytoplasmas simultaneously when template DNAs were mixed.  相似文献   

9.
Bois noir is a grapevine disease caused by the stolbur phytoplasma. It is widespread in all European and Mediterranean viticultural areas, and it can induce severe damage to the quality and quantity of production. The recent disease recrudescence has encouraged studies on the use of molecular markers to assess the genetic diversity of stolbur strains. The aim of this study was to evaluate the presence of Bois noir symptoms and to monitor the spatial genetic structure of the stolbur population according to vmp1 genotypes, through 2011 and 2012 in a cv. Chardonnay vineyard. In both years, there were increased vines with symptoms from July to September. The analysis of dispersal indices showed that the spatial distribution was uniform in the vineyard. However, the two‐dimensional contour maps show that Bois noir severity was higher in plants located on the borders than in the central parts of the vineyard. Stolbur population was composed of two prevalent vmp genotypes (V14, V12) across both years, along with other minor haplotypes (V3, V4, V9, V11, V15, V18, in 2011; V3, V18 in 2012). The data indicate that the vmp1 gene is an efficient marker to study the population structure of stolbur phytoplasma, to track the movement of the pathogen, and to identify the inoculum source, which will all serve in the planning of control strategies.  相似文献   

10.
Bois noir (BN) is an economically important grapevine yellows disease induced by the stolbur phytoplasma and principally vectored by the cixiid Hyalesthes obsoletus. This study addresses the involvement of other planthoppers and/or leafhoppers in BN epidemics in the South Banat district of northeastern Serbia, by performing transmission experiments and multilocus typing of stolbur phytoplasma isolates to determine the vector‐related characteristics of the disease. Transmission trials were conducted with adults of two cixiid congeners, Reptalus panzeri and R. quinquecostatus, which were found to harbour stolbur phytoplasma in the vineyards under study. A molecular characterization of stolbur phytoplasma isolates was performed by sequence analysis and/or RFLP typing of the two housekeeping genes tuf and secY and the two membrane proteins stamp and vmp1. Transmission trials with naturally infected R. panzeri adults from either the BN‐infected vineyards or maize redness (MR)‐affected maize fields revealed a high stolbur phytoplasma transmission efficiency to grapevines. In contrast, experiments conducted with stolbur‐positive R. quinquecostatus originating from BN‐infected vineyards, provided no evidence for a vector role of this species. Seven stolbur phytoplasma genotypes, all of which were tuf‐b types, were detected among the grapevine‐ and insect‐associated field samples according to the tuf/secY/vmp1/stamp typing. STOLg was the genotype most frequently found in naturally infected grapevine (42%), as well as R. panzeri originating from the vineyards (85%) and maize fields (98%). The same genotype was found in all experimental plants inoculated by R. panzeri, confirming its vectorship of the disease.  相似文献   

11.
ABSTRACT Marginal chlorosis has affected strawberry production in France for about 15 years. A phloem-restricted uncultured bacterium, "Candidatus Phlomobacter fragariae," is associated with the disease. A large-scale survey for marginal chlorosis in French strawberry production fields and nurseries by polymerase chain reaction amplification of "Ca. P. fragariae" 16S rDNA revealed that symptoms of marginal chlorosis were not always induced by "Ca. P. fragariae" and that the stolbur phytoplasma could induce identical symptoms. "Ca. P. fragariae" was found to be predominant in strawberry production fields, whereas the stolbur phytoplasma was predominantly detected in nurseries. Two transmission periods of the disease, one in spring and the other from late summer to early fall, were evident. Cixius wagneri planthoppers captured on infected strawberry plants were demonstrated to be efficient vectors of "Ca. P. fragariae." The involvement in natural disease spread of the whitefly Trialeurodes vaporariorum, previously shown to acquire and multiply "Ca. P. fragariae" under greenhouse conditions, remains uncertain.  相似文献   

12.
A new disease of sugar beet called Syndrome des Basses Richesses, which appeared in Burgundy and Franche-Comté, France, in 1991, is of uncertain aetiology. However, evidence for aerial transmission of the disease, symptom similarity with yellow wilt and preliminary results of phytoplasma detection, support the hypothesis of a phytoplasma being associated to the disease. A search for a natural phytoplasma vector, was conducted in Franche-Comté in 1997 and 1998, in an area where sugar beet crops had been affected since 1996. A cixiid, tentatively identified as Pentastiridius beieri, not described in the preceding years and not formerly reported as a phytoplasma vector, was present in sugar beet plots in high populations from June to August in 1997 and 1998. Individuals were captured and used for transmission experiments to periwinkle and sugar beet seedlings. They were further tested for the presence of a phytoplasma in their body, using PCR amplification of 16S rDNA of phytoplasmas. In 1997 and 1998, from 2% to 13.3% of the individuals carried a stolbur phytoplasma and insects which tested positive, appeared to have transmitted, through feeding, a stolbur phytoplasma to periwinkles and to sugar beets. This cixiid, whose vectoring capacity of stolbur phytoplasma to plants, is now clearly demonstrated, is available for experimental inoculations, in order to examine the role of phytoplasmas in the Syndrome des Basses Richesses, through the observation of symptom expression in phytoplasma-inoculated plants.  相似文献   

13.
BTH诱导花椰菜对菌核病的抗性研究   总被引:3,自引:0,他引:3  
 利用苯并噻二唑BTH处理菌核病抗性不同的花椰菜品种幼苗, 采用营养生长期活体叶片菌丝块接种鉴定法评价菌核病抗性诱导效果,结果表明经BTH处理的植株菌核病病情指数明显下降, 对感病品种和抗病品种的诱抗效果分别达到81.5%和63.8%。对于花椰菜重要的防御酶活性变化研究结果表明,BTH诱导处理的花椰菜植株过氧化物酶(POD)、抗坏血酸酶( SOD )、过氧化氢酶(CAT)、苯丙氨酸解氨酶(PAL)和多酚氧化酶( PPO)的活性均有所提高。同时病程相关蛋白几丁质酶和β-1,3-葡聚糖酶的活性也增加。 利用半定量RT-PCR方法检测防御反应基因表达,结果表明BTH诱导首先激发了植株 PR-1等基因参与的水杨酸信号传导防御反应途径的发生,同时PDF1.2 基因的上调表达说明BTH诱导也影响了茉莉酸信号传导途径。  相似文献   

14.
The main viticultural production areas in Spain were surveyed in 1994, 1995 and 1996 for the occurrence and incidence of Grapevine Yellows diseases associated to phytoplasmas. Samples from 300 plants showing symptoms of phytoplasma infection were collected from grapevine fields in the Spanish regions of Aragón, Catalonia and Navarra and analysed by PCR with specific primers for a non-ribosomal DNA of stolbur/Bois Noir (BN) and of Flavescence dorée (FD) phytoplasma. Nested PCR with universal primers P1/P7 and fU5/rU3 was also used. In the survey conducted in 1994 and 1995 only BN/stolbur phytoplasma was detected. The incidence of symptomatic plants was low in five plots of Catalonia from 3% to 18% in 1994 and 1995, respectively, and high in two plots of Navarra, from 60% to 80%. In the survey conducted in 1996 the incidence of symptomatic plants in Catalonia increased (6–80%) due to the presence of FD in five plots in the Northeastern Catalonia. An epidemiological study was carried out in two BN-affected plots of two regions from 1994 to 1997, with the evaluation of potential vectors and of host plants. The stolbur phytoplasma was found in individuals from different insect species belonging to the families Cicadellidae and Delphacidae. Some wild plants naturally infected with stolbur phytoplasma around the infected grapevines were: Convolvulus arvensis, Lavandula officinalis, Polygonum convolvulus, Solanum nigrum, and Thymus officinalis. The incidence of the disease in one BN-infected grapevine plot increased from 3.4% in 1994 to 18.40% in 1997.  相似文献   

15.
通过透射电子显微镜,在从宁夏回族自治区固原市彭阳县红河镇采集的表现叶片上卷、红叶、气生薯症状的马铃薯样品叶脉韧皮部筛管细胞内观察到大量直径为500~700 nm的球形植原体粒子。以提取的感病和健康马铃薯叶片总DNA为模板,应用植原体16S rRNA基因和rp基因通用引物进行PCR扩增,从感病样品中扩增得到了长度均约为1.2 kb的片段。对获得基因核酸一致性比较分析表明,马铃薯僵顶植原体宁夏株系16S rRNA基因与‘Candidatus Phytoplasma fragariae’槭树株系(MK501642)16S rRNA基因核酸一致性最高,为99.7%,rp基因与‘Ca.P.fragariae’云南马铃薯YN-2G株系(KJ144889)rp基因核酸一致性最高,为100%;基于16S rRNA基因和rp基因构建系统进化树发现,马铃薯僵顶植原体宁夏株系与16SrⅫ-E亚组成员聚在一起。基于透射电镜观察和基因序列比较分析,证明宁夏发生的马铃薯僵顶病与植原体侵染相关,该植原体在分类地位上属于植原体16SrⅫ-E亚组。  相似文献   

16.
The interaction between the fungal leaf pathogen Cladosporium fulvum and its only host, tomato, fits the gene-for-gene model. In tomato, the Cf-9 resistance gene product mediates specific recognition of the fungal avirulence gene product AVR9, resulting in a hypersensitive response and resistance. Cf9 tomato leaves respond with necrosis after injection with AVR9, whereas Cf9 tomato cell suspensions do not show defence responses after treatment with AVR9. Here we report on early defence responses induced in Cf-9 transgenic tobacco leaves and Cf-9 transgenic tobacco cell suspensions after treatment with synthesized AVR9 and mutant analogues R08K, F10A and F21A. The necrosis-inducing activity of the AVR9 peptides increased in the order F21A, F10A, AVR9, R08K. An oxidative burst was induced at a much lower AVR9 peptide concentration as compared to medium alkalization and necrosis. Interestingly, the mutant peptide F21A failed to induce necrosis and medium alkalization but did induce an oxidative burst. In all assays, the relative differential activities of the AVR9 peptides were similar to those observed in Cf9 tomato leaves. Both AVR9 and F21A activated a MAP kinase in Cf-9 transgenic tobacco cell suspensions. AVR9 also induced specific cell death in these suspensions. The relation between the induction of early defence responses and necrosis is discussed.  相似文献   

17.
18.
Yellows-diseased plants of Crepis setosa (hawksbeard), Knautia arvensis (field scabious), Convolvulus arvensis (field bindweed), Picris echioides (bristly oxtongue), Echium vulgare (blueweed) and Calendula officinalis (pot marigold) collected in central and southern Italy were examined for phytoplasma infection by means of polymerase chain reaction (PCR) technology using universal phytoplasma primers directed to ribosomal sequences. The detected phytoplasmas were characterized and differentiated using restriction fragment length polymorphism analysis of PCR-amplified DNA. The phytoplasma detected in diseased pot marigold plants was identified as a member of the aster yellows group and proved indistinguishable from a strain of the American aster yellows phytoplasma. The phytoplasma identified in diseased field bindweed plants is a putative new type of the stolbur group that differed from the typical stolbur phytoplasma. Phytoplasmas detected in diseased hawksbeard, blueweed and field scabious plants are all putative new members of the sugarcane white leaf group while the phytoplasma detected in diseased bristly oxtongue plants represents a new member of the faba bean phyllody group. For hawksbeard and field scabious this is the first report on the occurrence of phytoplasma diseases, whereas phytoplasmas infecting bristly oxtongue and blueweed have never been characterized before.  相似文献   

19.
The identification of effectors from pathogenic microbes is one of the most important subjects for elucidating infection mechanisms. Wheat blue dwarf (WBD) phytoplasma causes dwarfism, witches' broom, and yellow leaf tips in wheat plants, resulting in severe yield loss in northwestern China. In this study, 37 candidate effector proteins were transiently expressed in Nicotiana benthamiana. Plants expressing the SAP11‐like protein SWP1 exhibited typical witches' broom. Interestingly, another protein, SWP11, induced both cell death and defence responses, including H2O2 accumulation and callose deposition. Analysis by qRT‐PCR was used to show that a marker gene of the hypersensitive response, HIN1, and three pathogenesis‐related genes, PR1, PR2 and PR3, were significantly up‐regulated in leaves of N. benthamiana expressing SWP11. In addition, SWP12 and SWP21 (TENGU‐like) were shown to suppress SWP11‐, BAX‐, and/or INF1‐induced cell death. These results indicated that SWP21 has a distinct role in virulence compared with TENGU and that WBD phytoplasma possesses effectors that target plant proliferation and defence responses. The ability of these effectors to trigger or suppress plant immunity provides new insights into the phytoplasma–plant interaction.  相似文献   

20.
To improve knowledge about plant/phytoplasma interactions and, in particular, about the ‘recovery’ phenomenon in previously-infected plants, we investigated and compared expression levels of several defence-related genes (four pathogenesis-related proteins and three jasmonate-pathway marker enzymes) in apple plants showing different states of health: vigorous (healthy), phytoplasma-infected, and recovered. Real Time-PCR analyses demonstrated that genes are differentially expressed in apple leaf tissue according to the plants’ state of health. Malus domestica Pathogenesis-Related protein (MdPR) 1, MdPR 2 and MdPR 5 were significantly induced in leaves of diseased and symptomatic plants compared to leaves of those plants that were healthy or recovered. On the other hand, levels of all the jasmonate (JA)-pathway marker genes that we selected for this study, were up-regulated in the leaves of recovered plants compared to the diseased ones. In conclusion, our study demonstrated that two different sets of defence genes are involved in the interactions between apple plants and ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) and that these genes are differentially expressed during phytoplasma infection or recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号