首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaf rust caused by Puccinia triticina is a common disease on wheat in the coastal regions of Turkey. Collections of P. triticina from infected wheat leaves were obtained from the main wheat production zones of Turkey in 2009 and 2010. A total of 104 single uredinial isolates were tested for virulence on 20 lines of Thatcher wheat that differ for single leaf rust resistance genes. Forty-four different virulence phenotypes were identified over both years. Four phenotypes were found in both years. Phenotype FHPTQ found in 2009, with virulence to genes Lr2c, Lr3, Lr16, Lr26, Lr3ka, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr3bg, and Lr14b, was the most common phenotype at 15.4 % of the total isolates. Forty-three winter and spring wheat cultivars from Turkey were tested as seedlings with 13 different P. triticina virulence phenotypes from Canada, the US and Turkey. The infection types on the cultivars were compared with infection types on the Thatcher near isogenic lines to postulate the presence of seedling leaf rust resistance genes in the cultivars. Resistance genes Lr1, Lr3a, Lr10, Lr14a, Lr17a, Lr20, Lr23, and Lr26 were postulated to be present in the Turkish wheat cultivars. DNA of the wheat cultivars was tested with PCR markers to determine the presence of the adult plant resistance genes Lr34 and Lr37. Marker data indicated the presence of Lr34 in 20 cultivars and Lr37 in three cultivars. Field plot evaluations of the wheat cultivars indicated that no single Lr gene conditioned highly effective leaf rust resistance. Resistant cultivars varied for combinations of seedling and adult plant resistance genes.  相似文献   

2.
Breeding for resistance is an efficient strategy to manage wheat leaf rust caused by Puccinia triticina f. sp. tritici. However, a prerequisite for the directed use of Lr genes in breeding and the detection of new races virulent to these Lr genes is a detailed knowledge on Lr genes present in wheat cultivars. Therefore, respective molecular markers for 18 Lr genes were tested for specificity and used to determine Lr genes in 115 wheat cultivars. Results obtained were compared to available pedigree data. Using respective molecular markers, genes Lr1, Lr10, Lr26, Lr34 and Lr37 were detected, but data were not always in accordance with pedigree data. However, leaf rust scoring data of field trials confirmed the reliability of DNA markers. These reliable marker data facilitated the analyses of the development of virulent leaf rust races from 2002 to 2009 based on released cultivars. A sudden change from low infection rates to susceptibility was observed for Lr1, Lr3, Lr10, Lr13, Lr14, Lr16, Lr26 and Lr37 since 2006. Cultivars carrying several leaf rust resistance genes showed no significant shift to susceptibility except one cultivar which revealed an increasing infection rate at a low level. In summary, it turned out that pedigree data are often not reliable and a detection of Lr genes by diagnostic markers is fundamental to combine Lr genes in cultivars for a durable resistance against leaf rust, and to conduct reliable surveys based on released cultivars, instead of ‘Thatcher’ NILs.  相似文献   

3.
43个中国小麦品种(系)抗叶锈性研究   总被引:2,自引:0,他引:2  
 选用12个墨西哥叶锈菌生理小种对43个中国小麦品种(系)所携带的抗叶锈病基因进行了推导,在25个品种(系)中推导出6个抗叶锈基因Lr1,Lr10,Lr13,Lr14a,Lr16Lr26,9个品种(系)对本试验所使有的12个叶锈菌生理小种都表现感病反应,另有9个品种(系)携带未知的抗叶锈基因。在墨西哥2个地点进行的田间成株期抗叶锈性试验表明,12个品种(系)表现慢叶锈性,在将来的抗病育种中有一定的应用价值。  相似文献   

4.
5.
为明确春小麦品种沈免2063所含抗叶锈病基因的对数、身份、显隐性和互作关系,以沈免2063为父本,分别与感病品种Thatcher及小麦抗叶锈病近等基因系Lr9、Lr19、Lr24、Lr25、Lr28、Lr42和Lr43的载体品系杂交,获得F1、F2和F3代群体后,分别在苗期和成株期进行抗病性测定。结果表明:沈免2063含有3对显性遗传且相互独立作用的抗叶锈病基因Lr9、Lr19和Lr25,在苗期,沈免2063对致病类型CBG/QQ的抗病性由Lr9和Lr25控制,对PHT/RP的抗病性由上述3对抗叶锈病基因控制;在成株期,沈免2063对优势致病类型PHT/RP和THT/TP等比混合菌种的抗病性由上述3对抗叶锈病基因控制。Lr9、Lr19和Lr25在育成品种中出现频率很低,目前尚很有效,但这3个基因均为典型的垂直抗病性基因,应进行基因布局、基因轮换等科学组配,才能延长其使用寿命。  相似文献   

6.
Puccinia triticina f. sp. tritici, the causal agent of leaf rust causes yield losses in wheat up to 60%. In order to avoid such losses, leaf rust resistance (Lr-) genes have been incorporated into wheat cultivars. The Lr- genes confer mostly vertical resistance, i.e. they are race specific. Therefore, knowledge of still effective resistance genes is required for efficient breeding of resistant cultivars. To get information on these virulences, a leaf rust population was monitored in field experiments in 2010. For this purpose naturally infection at three different timepoints of wheat development was monitored on Thatcher near isogenic lines (NILs) carrying 37 and accessions carrying 6 additional Lr-genes. Thatcher-NILs carrying Lr2a, Lr9, Lr19, Lr22a, Lr23, Lr24, Lr35, Lr38 and Lr49 showed a significantly lower infection with Puccinia triticina than the susceptible cultivar Thatcher. Thatcher-NILs carrying Lr13, Lr16, Lr37 and Lr46 showed no significant differences in comparison to Thatcher. In order to get information on the effectiveness of resistance genes, P. triticina isolates were collected from the NILs analysed in field trials and a leaf segment test was conducted followed by microscopic analyses. In the field and in the leaf segment test Lr9, Lr19, Lr24 and Lr38 and to some extent Lr3a turned out to be the most effective genes. By microscopic analyses, the infection process as well defense reactions activated before macroscopic symptoms are visible were monitored. By counting haustorial mother cells, it could be demonstrated which Lr-genes provide resistance, which were overcame and whether P. triticina isolates exist already at a low frequency, which may overcome a certain Lr-gene in the future. Thus microscopy offers a timesaving and effective method to detect susceptible or resistant plants and the upcoming of virulent races prior to typical symptom expression.  相似文献   

7.
 为了明确黑龙江省小麦品种(系)对中国秆锈菌的抗性水平和了解抗秆锈病基因在该区域的分布情况,本研究选用中国小麦秆锈菌流行小种21C3CTHQM、34MKGQM和34C3RTGQM对从该区域征集到的83份主要小麦品种(系)进行了苗期抗秆锈病的评价,并利用与抗秆锈病基因Sr2、Sr24、Sr25、Sr26、Sr31和Sr38紧密连锁的分子标记分别进行了分子检测,结合苗期表型及系谱,推测这些品种(系)可能含有的抗病基因。结果表明,83份小麦品种(系)对供试秆锈菌小种均表现抗性,对21C3CTHQM、34MKGQM和34C3RTGQM表现免疫或近免疫的分别为57、53和60份,各占供试材料数量的68.68%、63.85%和72.29%,其他剩余材料对3个供试秆锈菌小种表现中抗或高抗。分子标记分析表明,83份主要小麦品种(系)中有12份可能含有Sr2;克旱3号可能含有Sr25;6份小麦品种可能含有Sr31;19份小麦品种可能含有Sr38;没有检测出含有Sr24Sr26的品种。因此,黑龙江省小麦品种对中国小麦秆锈病抗性水平相对较高,含有抗秆锈病基因Sr2以及对我国小麦秆锈病表现良好抗性的基因Sr31Sr38,可能含有其他未知抗秆锈病基因,这些优良抗源材料可作为未来小麦生产育种的种质资源。  相似文献   

8.
为明确小麦品种武汉2号和品冬34对小麦条锈菌流行小种的抗病性及抗病遗传规律,用小麦条锈菌生理小种CYR29、CYR31、CYR32、CYR33以及致病类型Su11-4、Su11-5、Su11-11、PST-Ch42在苗期接种小麦品种武汉2号和品冬34进行抗病性鉴定,并用武汉2号和品冬34分别与感病亲本铭贤169进行杂交,对F2群体和F2:3家系在温室进行苗期遗传分析。结果表明:武汉2号对CYR29和CYR32表现感病,对其它小种和致病型均表现抗病,且对CYR31的抗性由1对隐性基因控制;品冬34对所测试的小种和致病类型均表现高抗,且对CYR32的抗性由1对显性基因控制。  相似文献   

9.
为西北农林科技大学小麦新育成品种(系)在黄淮麦区的大面积推广,该研究对83份西农新育成的小麦品种(系)进行苗期抗条锈病和白粉病鉴定,成株期抗条锈病、白粉病、叶锈病和赤霉病鉴定,并在田间自然环境下对其抗性进行鉴定及对相关抗病基因进行分子检测。结果显示,在苗期人工接种鉴定中,有63、29和16份小麦品种(系)分别对条锈菌Puccinia striiformis f.sp.tritici生理小种CYR32、CYR33和CYR34表现出抗性,9份小麦品种(系)对3个条锈菌生理小种均表现出抗性;有10、3和0份小麦品种(系)分别对白粉菌Blumeria graminis f.sp.tritici生理小种E15、E09和A13表现出抗性。在成株期人工接种鉴定中,有23、15、28和62份小麦品种(系)分别对条锈病、白粉病、叶锈病和赤霉病表现出抗性。在83份小麦品种(系)中有6份在苗期和成株期均对小麦条锈病表现出抗性。在田间抗性鉴定中,有57、6、65和40份小麦品种(系)分别对条锈病、白粉病、赤霉病及叶锈病表现出抗性。在83份小麦品种(系)中,3份含有Yr5基因,22份含有Yr9基因,3份含有Yr17基因,2份含有Pm24基因,14份含有Lr1基因,所占比例分别为3.6%、26.5%、3.6%、2.4%和16.8%。  相似文献   

10.
Kerber ER  Aung T 《Phytopathology》1999,89(6):518-521
ABSTRACT The common wheat cultivar Thatcher and the backcross derivative Canthatch are moderately or fully susceptible to several races of stem rust because of a suppressor on chromosome 7DL that inhibits the expression of the relevant resistance gene(s). The incorporation of leaf rust resistance gene Lr34 into 'Thatcher' is known to enhance stem rust resistance. The effect of this gene in a 'Canthatch' background and its relationship with the 7DL suppressor were determined by replacing chromosome 7D of 'Canthatch' with 7D of 'Chinese Spring', which possesses Lr34 on the short arm. 'Canthatch' nullisomic 7D was crossed with 'Chinese Spring', followed by a succession of backcrosses to the nullisomic recurrent parent. Homozygous resistant disomic and monosomic substitution lines were recovered that exhibited the same resistant reaction as that of 'Thatcher' possessing Lr34 and as that of 'Canthatch' nullisomic 7D, in which the 7DL suppressor is absent. The results indicate that, in 'Canthatch', Lr34 permits expression of resistance genes normally inhibited by the 7DL suppressor. Furthermore, it is likely that, in 'Thatcher' and 'Thatcher' back-cross derivatives, Lr34 inactivates the 7DL suppressor.  相似文献   

11.
Nearly 100,000 ha in the Three Gorges Reservoir Area (TGRA) are in wheat production and the area is a junction where wheat stripe rust overwinters and causes epidemics the next spring; thus the area plays a pivotal role in wheat stripe rust epidemics in China. To better understand wheat resistance levels and the application of Yr genes in this area, 116 wheat cultivars (lines) were collected from the TGRA to investigate stripe rust resistance during the 2014–2016 cropping seasons. Seedling resistance evaluation results indicated that only nine accessions (7.8%) were immune or nearly immune to three predominant races of CYR32, CYR33 and PST-V26. In the field evaluation, 51 accessions (43.9%) showed adult-plant resistance, whereas 56 accessions (48.3%) were susceptible. The application of resistant sources focused on ineffective Yr9 (26.7%) and Yr17 (18.9%), and gradual ineffective Yr26 (34.5%), while effective Yr5, Yr10 and Yr15 were absent. Among them, 21 accessions (18.1%) were combined with two resistance genes. Both low resistance and more concentrated use of Yr genes indicated that this region faces a major risk for a wheat stripe rust epidemic. To improve the wheat resistance level in the TGRA, it is important to discover new all-stage resistance resources and diversify resistance resources for breeding.  相似文献   

12.
Genetics of leaf rust resistance in spring wheat cultivars alsen and norm   总被引:3,自引:0,他引:3  
Oelke LM  Kolmer JA 《Phytopathology》2005,95(7):773-778
ABSTRACT Alsen is a recently released spring wheat cultivar that has been widely grown in the United States because it has resistance to Fusarium head blight and leaf rust caused by Puccinia triticina. Norm is a high yielding wheat cultivar that has been very resistant to leaf rust since it was released. Alsen and Norm were genetically examined to determine the number and identity of the leaf rust resistance genes present in both wheats. The two cultivars were crossed with leaf rust susceptible cv. Thatcher and F(1) plants were backcrossed to Thatcher. Eighty one and seventy three BCF(1) of Thatcher times; Alsen and Thatcher x Norm respectively, were selfed to obtain BCF(2) families. The BCF(2) families were tested as seedlings with different isolates of P. triticina that differed for virulence to specific leaf rust resistance genes. The BCF(2) families that lacked seedling resistance were also tested as adult plants in greenhouse tests and in a field rust nursery plot. Segregation of BCF(2) families indicated that Alsen had seedling genes Lr2a, Lr10, and Lr23 and adult plant genes Lr13 and Lr34. Norm was determined to have seedling genes Lr1, Lr10, Lr16, and Lr23 and adult plant genes Lr13 and Lr34. The characterization of Lr23 in the segregating populations was complicated by the presence of a suppressor gene in Thatcher and the high temperature sensitivity of resistance expression for this gene. The effective leaf rust resistance in Alsen is due to the interaction of Lr13 and Lr23, with Lr34; and the effective leaf rust resistance in Norm is due to the interaction of Lr13, Lr16, and Lr23, with Lr34.  相似文献   

13.
Genetics of Stem Rust Resistance in Wheat Cvs. Pasqua and AC Taber   总被引:2,自引:0,他引:2  
Liu JQ  Kolmer JA 《Phytopathology》1998,88(2):171-176
ABSTRACT Canadian wheat cvs. Pasqua and AC Taber were examined genetically to determine the number and identity of stem rust resistance genes in both. The two cultivars were crossed with stem rust susceptible line RL6071, and sets of random F(6) lines were developed from each cross. The F(6) lines, parents, and tester lines with single stem rust resistance genes were grown in a field rust nursery, inoculated with a mixture of stem and leaf rust races, and evaluated for rust resistance. The same wheat lines were tested by inoculation with specific stem rust races in seedling tests to postulate which Sr genes were segregating in the F6 lines. Segregation of F(6) lines indicated that Pasqua had three genes that conditioned field resistance to stem rust and had seedling genes Sr5, Sr6, Sr7a, Sr9b, and Sr12. Leaf rust resistance gene Lr34, which is in Pasqua, was associated with adult-plant stem rust resistance in the segregating F(6) lines. Adult-plant gene Sr2 was postulated to condition field resistance in AC Taber, and seedling genes Sr9b, Sr11, and Sr12 also were postulated to be in AC Taber.  相似文献   

14.
ABSTRACT A total of 78 isolates of Puccinia triticina from durum wheat from Argentina, Chile, Ethiopia, France, Mexico, Spain and the United States and 10 representative isolates of P. triticina from common wheat from the United States were tested for virulence phenotypes on seedling plants of 35 near-isogenic lines of Thatcher wheat. Isolates with virulence on lines with leaf rust resistance genes Lr10, Lr14b, Lr20, Lr22a, Lr23, Lr33, Lr34, Lr41, and Lr44 represented the most frequent phenotype. Cluster analysis showed that P. triticina from durum wheat from South America, North America, and Europe had an average similarity in virulence of 90%, whereas isolates from Ethiopia were <70% similar to the other leaf rust isolates collected from durum wheat. Of the 11 isolates from Ethiopia, 7 were avirulent to Thatcher and all near-isogenic lines of Thatcher. The isolates from common wheat had an average similarity in virulence of 60% to all leaf rust isolates from durum wheat. P. triticina from durum wheat was avirulent to many Lr genes frequently found in common wheat. It is possible that P. triticina currently found on durum wheat worldwide had a single origin, and then spread to cultivated durum wheat in North America, South America, and Europe, whereas P. triticina from Ethiopia evolved on landraces of durum wheat genetically distinct from the cultivated durum lines grown in Europe and the Americas.  相似文献   

15.
Aegilops umbellulata, a non‐progenitor diploid species, is an excellent source of resistance to various wheat diseases. Leaf rust and stripe rust resistance genes from A. umbellulata were transferred to the susceptible wheat cultivar WL711 through induced homoeologous pairing. A doubly resistant introgression line IL 393‐4 was crossed with wheat cultivar PBW343 to develop a mapping population. Tests on BC2F7 RILs indicated monogenic inheritance of seedling leaf rust and stripe rust resistance in IL 393‐4 and the respective co‐segregating genes were tentatively named LrUmb and YrUmb. Bulked segregant analysis placed LrUmb and YrUmb in chromosome 5DS, 7.6 cM distal to gwm190. Aegilops geniculata‐derived and completely linked leaf rust and stripe rust resistance genes Lr57 and Yr40 were previously located in chromosome 5DS. STS marker Lr57/Yr40MAS‐CAPS16 (Lr57/Yr40‐CAPS16), linked with Lr57/Yr40 (T756) also co‐segregated with LrUmb/YrUmb. Seedling infection types differentiated LrUmb from Lr57. Absence of leaf rust‐susceptible segregants among F3 families of the intercross (IL 393‐4/T756) indicated repulsion linkage between LrUmb and Lr57. YrUmb expressed a consistently low seedling response under greenhouse conditions, whereas Yr40 expressed a higher seedling response. Based on the origin of LrUmb/YrUmb from the U genome and Lr57/Yr40 from the M genome, as well as phenotypic differences, LrUmb and YrUmb were formally named Lr76 and Yr70, respectively. These genes have been transferred to Indian wheat cultivars PBW343 and PBW550, and advanced breeding lines are being tested in state and national trials.  相似文献   

16.
Disease incidence and severity was studied for winter wheat variety Bezostaya 1 and susceptible checks based on data from international nurseries from 1969 to 2010 and from 51 countries across major winter wheat production regions totalling 1,047 reports. The frequency of leaf rust and stripe rust occurrence was stable over time with marked increases in severity in 2001–2010 especially in Europe and Central and West Asia. Substantial global reductions in stem rust occurrence were recorded and attributed primarily to use of resistance genes although the recent emergence of race Ug99 makes wheat more vulnerable. The occurrence of powdery mildew remained globally stable over time. It was the most important foliar disease in Western and Southern Europe, where the frequency was very high for all time periods coupled with slight increases in severity during 2001–2010. The durable resistance of variety Bezostaya 1 to all four diseases was demonstrated in the study using comparisons of disease severities of Bezostaya 1 and the most susceptible entries. The Lr34/Yr18/Pm38 pleiotrophic set possessed by Bezostaya 1 is currently an important target for selection because it is now amenable to molecular selection. Increased use of genes like Lr34 combined with strategies to minimize cultivation of extremely susceptible varieties will contribute to long term maintenance of low and non-damaging disease levels. The durable disease resistance of Bezostaya 1, combined with its adaptability and good end-use quality, was a significant reason for its huge impact in agriculture over the last 50?years.  相似文献   

17.
为预防强毒小种Ug99(TTKSK)及其突变菌株入侵我国引起小麦秆锈病流行、挖掘抗性资源和选育持久性抗病新品种,选用我国小麦秆锈菌主要小种21C3CTH、21C3CFH和34MKG对国外抗Ug99的78个小麦品种(系)和国内142个小麦品种进行田间成株期抗性鉴定,并利用SSR分子标记检测抗Ug99基因Sr22和Sr25在国内小麦品种中的分布。结果表明,国外品种(系)对供试单一小种的抗性频率分别为73.08%、84.62%和97.44%,表现全抗的为71.79%。国内品种对供试单一小种的抗性频率分别为57.04%、62.68%和66.2%,表现全抗的为50.7%,分子标记检测未检出抗病基因Sr22和Sr25。  相似文献   

18.
ABSTRACT Isolates of wheat leaf rust collected from durum and bread wheat cultivars in France during 1999-2002 were analyzed for virulence on 18 Thatcher lines with single genes for leaf rust resistance (Lr genes). Sampling focused on the five most widely grown bread wheat cultivars (two susceptible and three resistant) to allow statistical comparison of diversity indexes between the cultivars. Leaf rust populations from durum and bread wheats were different. The diversity of the bread wheat leaf rust pathotypes, as measured by the Shannon index, ranged from 2.43 to 2.76 over the 4 years. Diversity for wheat leaf rust resistance was limited in the host since we postulated only seven seedling resistance genes in the 35 cultivars most widely grown during 1999-2002. Leaf rust populations were strongly differentiated for virulence within bread wheat cultivars, and diversity was higher on those that were resistant, mainly due to a more even distribution of virulence phenotypes than on susceptible cultivars. The pathogen population on the susceptible cv. Soissons was largely dominated by a single pathotype (073100), whereas all other pathotypes virulent on cv. Soissons either decreased in frequency or remained at a low frequency during the period studied. Several pathotypes including the most complex one were found only on resistant cultivars, even though most of them were virulent on the susceptible cv. Soissons. Specific interactions were necessary, but not always sufficient, to account for pathotype distribution and frequencies on the cultivars, suggesting that selection for virulence to host resistance genes is balanced by other selective forces including selection for aggressiveness.  相似文献   

19.
[目的]建立简单、快速、有效的小麦抗叶锈基因复合PCR体系,从而提高分子标记辅助选择效率。[方法]以28个‘Thatcher’为背景的近等基因系和16个已知基因载体品系作为试材,测试了小麦抗叶锈病基因Lr9、Lr26、Lr19和Lr20的STS标记特异性,通过优化PCR反应体系和循环条件,构建了抗叶锈基因Lr9-Lr26和Lr19-Lr20的复合PCR检测体系。对116个小麦品种(系)所含有的抗叶锈病基因进行了分子检测。[结果]供试品种均不含有Lr9和Lr20,47个品种含有Lr26(基因频率为40.5%),‘中梁22’含有Lr19。经反复验证,Lr9-Lr26和Lr19-Lr20复合PCR技术检测结果可靠,且与上述单个分子标记检测结果一致。[结论]建立的Lr9-Lr26和Lr19-Lr20的复合PCR检测体系可以准确、稳定、高效地检测小麦抗叶锈基因Lr9、Lr26、Lr19和Lr20。  相似文献   

20.
四川省不仅是条锈菌冬繁区,也是我国东部麦区重要的春季初侵染菌源地和毒性变异地。准确评价四川小麦新育成品种和高代品系对条锈病的抗性水平,能为合理培育和使用抗病品种提供重要依据。利用当前条锈菌优势小种和4个地点的成株期鉴定圃对来自四川省的115份小麦育成品种和299份高代品系进行苗期和成株期抗病性鉴定。结果表明,新育成品种苗期对优势小种的高抗CYR32、CYR33和CYR34的比例发生不同程度的变化,对CYR32的高抗比例为40.9%、对CYR34的高抗比例为17.4%,而供试高代品系高抗比例从52.3%降至46.2%;中抗类型育成品种从20.0%增加到40.9%,高代品系从19.6%增加至33.2%。表明条锈菌优势小种更替后一些材料仍保留了部分抗性,后期选育的高代品系兼顾对新小种的抗病性。育成品种在四川成都和甘肃清水成株期鉴定,高抗品种所占比例较低,分别为13.9%和3.5%,但高代品系高抗类型比例较高,分别为42.2%和8.5%,表明甘肃和四川条锈菌的致病类型和发病环境条件存在较大差异,近年来四川小麦成株抗条锈病育种取得显著进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号