首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 746 毫秒
1.
Experiments were conducted to compare the effects of two cookery methods, two shear force procedures, and sampling location within non-callipyge and callipyge lamb LM on the magnitude, variance, and repeatability of LM shear force data. In Exp. 1, 15 non-callipyge and 15 callipyge carcasses were sampled, and Warner-Bratzler shear force (WBSF) was determined for both sides of each carcass at three locations along the length (anterior to posterior) of the LM, whereas slice shear force (SSF) was determined for both sides of each carcass at only one location. For approximately half the carcasses within each genotype, LM chops were cooked for a constant amount of time using a belt grill, and chops of the remaining carcasses were cooked to a constant endpoint temperature using open-hearth electric broilers. Regardless of cooking method and sampling location, repeatability estimates were at least 0.8 for LM WBSF and SSF. For WBSF, repeatability estimates were slightly higher at the anterior location (0.93 to 0.98) than the posterior location (0.88 to 0.90). The difference in repeatability between locations was probably a function of a greater level of variation in shear force at the anterior location. For callipyge LM, WBSF was higher (P < 0.001) at the anterior location than at the middle or posterior locations. For non-callipyge LM, WBSF was lower (P < 0.001) at the anterior location than at the middle or posterior locations. Consequently, the difference in WBSF between callipyge and non-callipyge LM was largest at the anterior location. Experiment 2 was conducted to obtain an estimate of the repeatability of SSF for lamb LM chops cooked with the belt grill using a larger number of animals (n = 87). In Exp. 2, LM chops were obtained from matching locations of both sides of 44 non-callipyge and 43 callipyge carcasses. Chops were cooked with a belt grill and SSF was measured, and repeatability was estimated to be 0.95. Repeatable estimates of lamb LM tenderness can be achieved either by cooking to a constant endpoint temperature with electric broilers or cooking for a constant amount of time with a belt grill. Likewise, repeatable estimates of lamb LM tenderness can be achieved with WBSF or SSF. However, use of belt grill cookery and the SSF technique could decrease time requirements which would decrease research costs.  相似文献   

2.
Experiments were conducted to develop an optimal protocol for measurement of slice shear force (SSF) and to evaluate SSF as an objective method of assessing beef longissimus tenderness. Whereas six cylindrical, 1.27-cm-diameter cores are typically removed from each steak for Warner-Bratzler shear force (WBSF) determination, a single 1-cm-thick, 5-cm-long slice is removed from the lateral end of each longissimus steak for SSF. For either technique, samples are removed parallel to the muscle fiber orientation and sheared across the fibers. Whereas WBSF uses a V-shaped blade, SSF uses a flat blade with the same thickness (1.016 mm) and degree of bevel (half-round) on the shearing edge. In Exp. 1, longissimus steaks were acquired from 60 beef carcasses to determine the effects of belt grill cooking rate (very rapid vs. rapid) and conditions of SSF measurement (hot vs cold) on the relationship of SSF with trained sensory panel (TSP) tenderness rating. Slice shear force was more strongly correlated with TSP tenderness rating when SSF measurement was conducted immediately after cooking (r = -.74 to -.76) than when steaks were chilled (24 h, 4 degrees C) before SSF measurement (r = -.57 to -.72). When SSF measurement was conducted immediately after cooking, the relationship of SSF with TSP tenderness rating did not differ among the belt grill cooking protocols used to cook the SSF steak. In Exp. 2, longissimus steaks were acquired from 479 beef carcasses to compare the ability of SSF and WBSF of 1.27-cm-diameter cores to predict TSP tenderness ratings. Slice shear force was more strongly correlated with sensory panel tenderness rating than was WBSF (r = -.82 vs -.77). In Exp. 3, longissimus steaks were acquired from 110 beef carcasses to evaluate the repeatability (.91) of SSF over a broad range of tenderness. Slice shear force is a more rapid, more accurate, and technically less difficult technique than WBSF. Use of the SSF technique could facilitate the collection of more accurate data and should allow the detection of treatment differences with reduced numbers of observations and reduced time requirements, thereby reducing research costs.  相似文献   

3.
The objectives of this study were to evaluate the efficacy of a system for classifying beef for tenderness based on a rapid, simple method of measuring cooked longissimus shear force. Longissimus steaks (2.54 cm thick) were trimmed free of s.c. fat and bone and rapidly cooked using a belt grill. A 1-cm-thick, 5-cm-long slice was removed from the cooked longissimus parallel with the muscle fibers for measurement of shear force. Slices were sheared with a flat, blunt-end blade using an electronic testing machine. The entire process was completed in less than 10 min. Therefore, in commercial application, this process could be completed during the 10- to 15-min period that carcasses are normally held to allow the ribeye to bloom for quality grading. In Exp. 1, the repeatability of slice shear force (SSF), as determined by evaluation of duplicate samples from 204 A-maturity carcasses, was .89. In Exp. 2, A-maturity carcasses (n = 483) were classified into three groups based on SSF (< 23, 23 to 40, and > 40 kg) at 3 d postmortem that differed (P < .001) in mean trained sensory panel tenderness ratings (7.3 +/- .04, 6.4 +/- .06, and 4.4 +/- .20) and the percentages (100, 91, and 28%) of samples rated "Slightly Tender" or higher at 14 d postmortem. Therefore, this tenderness classification system could be used to accurately segregate beef carcasses into expected tenderness groups. Further research is needed to test the feasibility and accuracy of this system under a variety of commercial processing conditions.  相似文献   

4.
Two experiments were conducted to investigate mechanical measures of tenderness on uncooked USDA Select longissimus muscle as a means to predict Warner-Bratzler shear force (WBSF) and trained sensory panel tenderness (SPT) of cooked steaks. In Exp. 1, strip loins (n = 24) were aged 14 d postmortem and fabricated into steaks (2.54 cm). Medial, center, and lateral locations within uncooked steaks were evaluated by a plumb bob device and correlated with WBSF and SPT of cooked steaks. In Exp. 2, 24 strip loins were used to evaluate how well plumb bob and needle probe devices used on uncooked steaks predicted WBSF and SPT of cooked steaks. At 2 d postmortem, two steaks were fabricated from the anterior end. One uncooked steak (2.54 cm) was assigned to the plumb bob treatment and the other uncooked steak (5.08 cm) was assigned to needle probe treatment. At 14 d postmortem, one uncooked steak (5.08 cm) was assigned to needle probe treatment, a second uncooked steak (2.54 cm) was assigned to plumb bob treatment, whereas the remaining steaks (2.54 cm) were cooked and evaluated by a trained sensory panel and WBSF device. In Exp. 1, average plumb bob values were negatively correlated (P < 0.05) to average SPT scores (r = -0.48). However, correlations between WBSF and plumb bob values for medial, lateral, and average of all sections were not significant (P > 0.05). In Exp. 2, regression models to predict SPT from needle probe and plumb bob measurements individually taken at 2 d postmortem had R2 of 0.54 and 0.51, respectively. Combining needle probe and plumb bob measurements resulted in an R2 of 0.76; when quadratic terms for both variables were in the model, the R2 was 0.80. Regressing needle probe and plumb bob measurements at 2 d postmortem with WBSF produced R2 values of 0.51 and 0.45, respectively. If linear terms of both probes were combined to predict WBSF, the R2 increased to 0.77. An equation to predict WBSF, including both the linear and quadratic terms of needle probe and plumb bob measurements, resulted in an R2 of 0.84. Using plumb bob and needle probe devices on uncooked longissimus muscle at 2 d postmortem can predict cooked WBSF and SPT of USDA Select Grade steaks at 14 d postmortem.  相似文献   

5.
Four experiments were conducted, using carcasses from cattle identified for anticipated variability in tenderness (Exp. 1, 2, and 3) and carcasses selected for variability in physiological maturity and marbling score (Exp. 4), to evaluate the ability of the Tendertec Mark III Beef Grading Probe (Tendertec) to predict tenderness of steaks from beef carcasses. In Exp. 1, 2, and 3, longissimus steaks were aged for different periods of time, cooked to a medium degree of doneness (70 degrees C), and evaluated for Warner-Bratzler shear force (WBS) and trained sensory panel ratings. In Exp. 4, longissimus steaks were aged 14 d and cooked to 60, 65, 70, 75, or 80 degrees C for WBS tests and to 65 or 75 degrees C for sensory panel evaluations. Tendertec output variables were not correlated with 1) 24-h calpastatin activity, steak WBS (following 1, 4, 7, 14, 21, or 35 d of aging), or d-14 sensory panel tenderness ratings in Exp. 1 (n = 467 carcasses) or 2) 14-d WBS in Exp. 2 (n = 202 carcasses). However, in Exp. 3 (n = 29 carcasses), Tendertec output variables were correlated (P < 0.05) with tenderness of steaks aged 1, 21, 28, or 35 d, and we were able to separate carcasses into groups yielding tough, acceptable, and tender steaks. In Exp. 4 (n = 70), Tendertec output variables were correlated (P < 0.05) with steak WBS at 60 degrees C and with steak ratings for muscle fiber tenderness, connective tissue amount, and overall tenderness at 65 degrees C, but these relationships weakened (P > 0.05) as degree of doneness increased. Consequently, Tendertec output variables only were effective for stratifying carcasses according to tenderness when steaks from those carcasses in Exp. 4 were cooked to a rare or medium-rare degree of doneness. Although Tendertec was able to sort carcasses of older, mature cattle based on tenderness of steaks at some cooked end points, it failed to detect tenderness differences in steaks derived from youthful carcasses consistently, and was thus of limited value as an instrument for use in improving the quality, consistency, and uniformity of the U.S. fed-beef supply.  相似文献   

6.
7.
Consumer impressions of Tender Select beef.   总被引:14,自引:0,他引:14  
  相似文献   

8.
Strip loins from two experiments were used to evaluate effects of feeding dry (DDG) or wet (WDG) distiller's grains on beef color, tenderness, and sensory traits of Holstein steers. In Exp. 1, conducted at the University of Illinois at Champaign-Urbana, dietary treatments consisted of a control whole corn-corn silage diet with soybean meal (SBM) or diets formulated with 12.5% DDG plus urea, 25% DDG, 25% WDG, 50% DDG, or 50% WDG (DM basis). In Exp. 2, conducted at Iowa State University, dietary treatments consisted of cracked corn-corn silage-hay diets with either SBM or urea (Urea) as the control diets, or diets formulated with 10, 20, or 40% DDG or WDG (DM basis). Within each study, strip loins from each of four steers (representing 45.7 and 66.6% of steers in Exp. 1 and 2, respectively) in four replicate pens per treatment were aged for 13 d at 4 degrees C for subsequent color, tenderness, and palatability evaluation. Color of steaks was measured objectively using a HunterLab Miniscan XE spectrophotometer and was subjectively evaluated by a trained panel. Tenderness was measured using the Warner-Bratzler shear force (WBSF) instrument on steaks cooked to 70 degrees C. For sensory evaluation, 95 consumers were recruited to evaluate tenderness, juiciness, and flavor of cooked steaks. In Exp. 1, steaks from steers fed 25% WDG had higher (P < 0.05) a* values after 138 h of simulated retail display than all other treatments, except for those from steers fed 12.5% DDG. In Exp. 2, a greater (P < 0.05) percentage of steaks from steers fed 40% DDG or 40% WDG were considered moderately undesirable during retail display (steaks that received a consumer acceptability score of 3 or less). There were no (P = 0.20 in Exp. 1, and P = 0.33 in Exp. 2) differences among treatments in Exp. 1 and Exp. 2 for WBSF (1.47 +/- 0.66 kg and 1.58 +/- 0.72 kg, respectively) or taste panel tenderness (5.7 +/- 0.30 and 6.2 +/- 0.22, respectively), beef flavor (6.0 +/- 0.23 and 6.2 +/- 0.22, respectively), and juiciness (5.6 +/- 0.31 and 5.8 +/- 0.23). Feeding distiller's grains at up to 50% of the dietary DM did not affect tenderness or sensory traits, and seems to be a viable feed alternative without negatively impacting sensory attributes.  相似文献   

9.
The objective of this study was to determine the effect of sampling methodology on the relationship between longissimus tenderness and measures of biochemical meat traits. Sampling methodology included measurements of sarcomere length, collagen concentration, and postmortem desmin proteolysis on raw samples and measurements of these same traits on the same cooked meat used for shear force measurement. Twenty crossbred steers and 20 crossbred barrows were used for these studies. The beef longissimus thoracis were vacuum-packaged, stored at 2 degrees C until 14 d postmortem, then frozen and stored at -30 degrees C. The pork longissimus thoracis et lumborum were vacuum-packaged, stored at 2 degrees C until 7 d postmortem, then frozen and stored at -30 degrees C. Trained sensory panel tenderness rating ranged from 3.1 to 7.6 for beef and 4.1 to 7.4 for pork. The coefficient of variation was lower for sarcomere length than for all other traits. Simple correlation coefficients between measurements on raw and cooked samples were 0.58 (beef) and 0.11 (pork) for sarcomere length, 0.66 (beef) and 0.59 (pork) for collagen, and 0.74 (beef) and 0.76 (pork) for desmin degradation. Simple correlation coefficients between biochemical traits and measures of tenderness (Warner-Bratzler shear force and trained sensory tenderness rating) were higher or not different for cooked compared to raw samples. Correlation coefficients between biochemical traits and tenderness rating were 0.38 (raw) and 0.22 (cooked) for sarcomere length, -0.12 (raw) and -0.45 (cooked) for collagen, and 0.48 (raw) and 0.80 (cooked) for desmin degradation in beef longissimus and 0.14 (raw) and 0.15 (cooked) for sarcomere length, -0.38 (raw) and -0.33 (cooked) for collagen, and 0.53 (raw) and 0.67 (cooked) for desmin degradation in pork longissimus. The coefficients of determination for explaining variation in tenderness rating using sarcomere length, collagen concentration, and desmin degradation for raw and cooked samples were 0.43 and 0.73 (beef) and 0.48 and 0.57 (pork), respectively. This study indicates that measurements of biochemical traits on the same cooked meat as used for shear force determination account for more of the variation in measures of tenderness than biochemical measurements made on a separate raw sample.  相似文献   

10.
Top sirloin butts (n = 162) were used to investigate the influence of quality classification, aging period, blade tenderization passes, and endpoint cooking temperature on the tenderness of gluteus medius steaks. Top sirloin butts (gluteus medius) from Select (SEL), Choice (CHO), and Certified Angus Beef (CAB) carcasses were obtained, aged for 7, 14, or 21 d, and either not tenderized or blade tenderized one or two times. Three steaks from each top sirloin butt were randomly selected and assigned to a final endpoint cooking temperature of 65.5, 71.0, or 76.6 degrees C. Cooking characteristics and Warner-Bratzler shear force (WBSF) were analyzed as a split-plot with a 3 x 3 x 3 factorial treatment structure of quality classification, aging period, and tenderization passes in the whole plot and endpoint cooking temperature in the subplot. Sensory panel data for CHO steaks cooked to 70 degrees C were analyzed with a 3 x 3 factorial treatment structure of aging period and tenderization passes. Thawing loss was greater (P < 0.05) for steaks aged 7 d than those aged 21 d. Cooking loss was greater (P < 0.05) for steaks aged for 14 and 21 d than those aged 7 d, and increased (P < 0.05) with each increasing endpoint temperature. Each increase in aging period resulted in lower (P < 0.05) WBSF values. In addition, steaks blade tenderized two times had lower (P < 0.05) WBSF values than steaks blade tenderized once or not at all. Within each quality classification, WBSF values increased (P < 0.05) as endpoint cooking temperature increased. When cooked to 71 or 76.6 degrees C, CHO and CAB steaks had lower (P < 0.05) WBSF than SEL steaks. Steaks blade tenderized one or two times received higher (P < 0.05) sensory panel ratings for myofibrillar and overall tenderness than steaks not blade tenderized. Connective tissue amount and overall tenderness ratings were higher (P < 0.05) for steaks aged 21 vs. 7 d. Postmortem aging and blade tenderization of gluteus medius steaks can improve tenderness, as measured by WBSF and sensory panel, without decreasing flavor or juiciness. When cooking to higher endpoint temperatures, higher quality classifications should be selected to minimize toughness due to cooking.  相似文献   

11.
The objective of this study was to determine the influence of beef LM nutrient components on beef palatability traits and evaluate the impact of USDA quality grade on beef palatability. Longissimus muscle samples from related Angus cattle (n = 1,737) were obtained and fabricated into steaks for trained sensory panel, Warner-Bratzler shear force (WBSF), lipid oxidation measured by thiobarbituric acid reactive substances (TBARS), fatty acid, and mineral composition analysis. Pearson phenotypic correlations were obtained by the correlation procedure of SAS. Beef palatability data were analyzed by the GLM procedure of SAS with USDA quality grade as the main effect. Specific mineral concentrations did not demonstrate strong correlations with WBSF or sensory traits (r = -0.14 to 0.16). However, minerals appeared to have a stronger relationship with flavor; all minerals evaluated except Ca and Mn were positively correlated (P < 0.05) with beef flavor. Stearic acid (C18:0), C18:2, C20:4, and PUFA were negatively correlated (P < 0.05) with all 3 panelist tenderness traits (r = -0.09 to -0.22) and were positively correlated (P < 0.05) with WBSF (r = 0.09 to 0.15). The MUFA were positively correlated (P < 0.05) with panelist tenderness ratings (r = 0.07 to 0.10) and negatively associated (P < 0.05) with WBSF (r = -0.11). The strongest correlations with juiciness were negative relationships (P < 0.05) with C18:2, C18:3, C20:4, and PUFA (r = -0.08 to -0.20). Correlations with beef flavor were weak, but the strongest was a positive relationship with MUFA (r = 0.13). Quality grade affected (P < 0.05) WBSF, TBARS, and all trained sensory panel traits, except livery/metallic flavor. As quality grade increased, steaks were more tender (P < 0.05), as evidenced by both WBSF and sensory panel tenderness ratings. Prime steaks were rated juiciest (P < 0.05) by panelists, whereas Select and Low Choice were similarly rated below Top Choice for sustained juiciness. Quality grade influenced (P < 0.05) beef flavor, but not in a linear fashion. Although there were significant correlations, these results indicate tenderness, juiciness, and flavor are not strongly influenced by individual nutrient components in beef LM. Furthermore, the positive linear relationships between USDA quality grade and beef palatability traits suggest quality grade is still one of the most valuable tools available to predict beef tenderness.  相似文献   

12.
Two experiments were conducted to determine the effectiveness of using mechanical probes and objective color measurement on beef LM to predict cooked tenderness. In Exp. 1, sharp needle (SN), sharp blade (SB), blunt needle (BN), blunt blade (BB), and plumb bob (PB) probes were used to measure uncooked LM (n = 29) at 2 d postmortem in both a perpendicular and parallel orientation to the long axis of the strip loin. Additionally, instrumental color measurements were measured on uncooked muscle at 2 d postmortem. Steaks for trained sensory panel (TSP) and Warner-Bratzler shear force (WBSF) measurements were aged 14 d postmortem before cooking. Probe measurements taken perpendicular to the long axis of the LM were not correlated (P = 0.22 to 0.82) to TSP tenderness. Probe measurements (BB, BN, SN, SB, and PB) taken parallel to the long axis were correlated to TSP tenderness (r = -0.57, -0.40, -0.77, -0.52, and -0.53, respectively). A regression equation using the SN probe to predict TSP tenderness had a R2 value of 0.74. The SB probe combined with L* accounted for 45% of the variation in TSP tenderness, whereas the PB probe combined with L* accounted for 56% of the variation in TSP tenderness. A second experiment (n = 24) was conducted using the SN, SB, and PB probes on uncooked sections at 2 d and on cooked steaks at 14 d postmortem. Probe measurements on cooked steaks were not correlated to TSP tenderness. New regression equations were calculated using the probe measurements on uncooked steaks from both experiments. Prediction equations formulated with L* values and either SN, SB, or PB probes accounted for 49, 50, and 47% of the variability in TSP tenderness scores, respectively. An equation using WBSF of cooked steaks to predict TSP tenderness had an R2 of 0.58. Of the steaks predicted to be tender (predicted tenderness > 5.0) by the equations using the SN, SB, and PB probes on uncooked steaks and WBSF on cooked steaks, 85, 88, 80, and 84%, respectively, were actually tender (TSP tenderness > 5.0). Mechanical probe measurements of uncooked steaks at 2 d postmortem can potentially classify strip loins into groups based on tenderness, as well as WBSF measurements, which are more costly and time consuming.  相似文献   

13.
14.
Cattle (n = 303) were visually selected from four feed yards to represent six phenotypes (English [EN; n = 50], 3/4 English-1/4 Brahman [ENB; n = 52], 1/2 English-1/2 Exotic [ENEX; n = 56], 1/2 English-1/4 Exotic-1/4 Brahman [ENEXB; n = 47], 3/4 Exotic-1/4 Brahman [EXB; n = 49], and 1/2 Exotic-1/4 English-1/4 Brahman [EXENB; n = 49]). Carcasses were processed at a commercial beef packing facility, and strip loins were collected after 48-h chilling. Strip loins were aged for 14 d at 2 degrees C and frozen at -20 degrees C for 3 to 5 d before three 2.5-cm-thick steaks were cut for Warner-Bratzler shear force (WBSF) determinations and sensory evaluations. Phenotype EN had the highest (P < 0.05) adjusted fat thickness, and EXB had adjusted fat thickness that was lower (P < 0.05) than all other phenotypes except EXENB. Carcasses of EN and ENB had smaller (P < 0.05) longissimus muscle areas than phenotypes ENEX, EXB, and EXENB. Phenotype EN produced carcasses with the highest (P < 0.05) numerical yield grade, whereas carcasses originating from phenotype EXB had lower (P < 0.05) numerical yield grades than all other phenotypes except ENEX. No differences (P > 0.05) were found among phenotypes for mean WBSF values or sensory panel ratings for initial and sustained tenderness, initial and sustained juiciness, beef flavor characteristics, and overall mouthfeel. More than 90% of steaks from carcasses of all phenotypes had WBSF values less than 3.6 kg when cooked to an internal cooked temperature of 70 degrees C. Results from this study indicated that all phenotypes represented in this study could be managed to produce tender beef.  相似文献   

15.
Boneless top loin subprimals (n = 320) from Slight and Small marbled carcasses were fabricated into 2.54-cm thick steaks to determine core location effects on tenderness. In Exp. 1, top loins were aged to 7 d before steaks were cut and cooked to an internal temperature of 71 degrees C. After cooking, a maximum of 15 1.27-cm diameter cores were removed and sheared with a Warner-Bratzler shear force (WBSF) device. There was not a marbling score x core location interaction (P = 0.36). However, there was a main effect of core location (P < 0.01). Cores from the medial, middle, and lateral portion of the longissimus muscle (LM) aged for 7 d differed, with less resistance (P < 0.05) in the medial than the lateral end. Also, there was an effect of marbling score on WBSF, with Small-marbled steaks having lower (P < 0.02) WBSF values than Slight-marbled steaks. In a second experiment, steaks were removed from the middle of the top loin subprimals and aged an additional 7 d to produce 14-d aged steaks. Shear values decreased (P < 0.05) from Exp. 1 to 2 for all core locations. Neither the main effect of marbling score nor the core location x marbling score interaction was significant (P > 0.40); however, the same lateral to medial gradient in WBSF values was discovered again in Exp. 2. Both experiments indicated there were regions of WBSF values that differed (P < 0.05) across the cross section of the LM producing a shear-force/tenderness gradient, with the most medial cores having the lowest WBSF values in both experiments independent of marbling score. Regression analyses indicated the middle and center portions of LM steaks tended to have the most predictive capacity of average WBSF. Because of the variability in tenderness caused by location within the LM, care should be exercised when selecting sampling areas for the measurements of tenderness using the WBSF measure.  相似文献   

16.
Boneless pork loins (n = 901) were evaluated either on the loin boning and trimming line of large-scale commercial plants (n = 465) or at the US Meat Animal Research Center abattoir (n = 436). Exposed LM on the ventral side of boneless loins was evaluated with visible and near-infrared spectroscopy (VISNIR; 450 to 1,000 nm) using a commercial system that was developed for on-line evaluation of beef tenderness. Boneless loin sections were aged (2°C) until 14 d postmortem, and two 2.54-cm-thick chops were obtained from the 11th-rib region. Fresh (never frozen) chops were cooked (71°C) and LM slice shear force (SSF) was measured on each of the 2 chops. Those 2 values were averaged, and that value was used for all analyses. Loins were blocked by plant (n = 3), production day (n = 24), and observed SSF (mean = 13.9 kg; SD = 3.7 kg; CV = 26.8%; range 6.4 to 32.4 kg). One-half of the loins were assigned to a calibration data set, which was used to develop regression equations, and one-half of the loins were assigned to a prediction data set, which was used to validate the regression equations. A partial least-squares regression model was developed, and loins were classified as predicted tender or not predicted tender if their VISNIR-predicted SSF was <14.0 kg or ≥14.0 kg, respectively. Analysis of variance was used to determine the effect of VISNIR classification on SSF. The calibration data set and prediction data set had 61.9 and 60.9% of the loins classified as predicted tender, respectively. For both the calibration data set and the prediction data set, mean SSF was less for loins predicted tender than loins not predicted tender (P < 0.001). Relative to loins that were not predicted tender, the percentage of loins with SSF ≥20 kg was less for loins predicted tender in the calibration data set (3.6 vs. 8.1%) and prediction data set (1.8 vs. 13.6%). These results clearly indicate that the VISNIR technology could be used to noninvasively classify pork loins on-line for tenderness.  相似文献   

17.
Beef carcasses (n = 150) of A-maturity were selected randomly to determine baseline shear force and sensory panel ratings, assess variation in tenderness, and evaluate mean value differences between Certified Angus Beef (CAB), commodity Choice, and Select steaks. Three steaks were removed from the triceps brachii (TB), longissimus lumborum (LL), gluteus medius (GM), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris complex (QF), and assigned to Warner-Bratzler shear (WBSF) and sensory panel analyses. As anticipated, marbling score and measured percentage of i.m. fat were greatest (P < 0.05) for CAB, intermediate (P < 0.05) for Choice, and least (P < 0.05) for Select carcasses. A muscle x quality level interaction (P < 0.05) was observed for WBSF values and sensory panel tenderness ratings. The TB, LL, GM, and BF steaks from CAB carcasses had lower (P < 0.05) WBSF than Select steaks from the same muscles. Even though WBSF values did not differ (P > 0.05) between CAB and Choice QF and TB steaks, the LL and GM steaks from CAB carcasses were more tender (P < 0.05) than Choice-grade LL and GM steaks. The TB from Select carcasses had higher (P < 0.05) WBSF values than TB steaks from CAB or Choice carcasses, but sensory panel ratings indicated that quality level showed little consistency among the GM, SM, BF, and QF. Trained sensory panelists rated CAB LL steaks more tender (P < 0.05) than LL steaks from Choice and Select carcasses, and Choice LL steaks were evaluated as more (P < 0.05) tender than those from Select carcasses. These results demonstrate that the influence of marbling on tenderness was more evident in muscles of middle meats than in end cuts, particularly in muscles of the round.  相似文献   

18.
The objective of this study was to determine effects of electrical stimulation (ES) on muscle quality and sensory traits of 12 Hampshire x Rambouillet callipyge lambs. One side of each carcass was randomly assigned to an ES treatment of 550 V and 60 Hz of electricity for 2 s on and 2 s off 15 times. The other side was a nonstimulated control (NES). Heated calpastatin, sarcomere length, myofibrillar fragmentation index (MFI), Warner-Bratzler shear (WBS), and trained sensory panel values were measured on the semitendinosus (ST), semimembranosus (SM), longissimus (ML), supraspinatus (SP), and triceps brachii (TB) muscles. Electrically stimulating the carcass sides induced a more rapid (P = .001) pH decline in the longissimus muscle, and ES sides had a brighter (P = .001) red color of loineye than nonstimulated sides. At d 14 of storage (2 degrees C), the TB had the highest (P < .05) MFI value, indicating more protein degradation, and the ST and ML muscles had the lowest MFI (P = .008). Regardless of ES treatment, SM and ML had the highest (P < .05) WBS values. The ST muscle had higher (P < .05) WBS values than the SP but did not differ (P > .05) from the TB muscle. Electrical stimulation had no effect on WBS or any trained sensory panel values (P > .05). The percentage of loin chops rated slightly tender or better was improved 30 to 34% by electrical stimulation (P < .05). The ML muscle was scored lower (P < .05) in sustained juiciness compared with the SM, SP, and TB but did not differ (P > .05) from the ST muscle. The SM and ML muscles were rated lower (P < .05) in initial and sustained tenderness scores than other muscles. Tenderness scores were higher (P < .05) for the TB than for the SP but did not differ (P > .05) from the ST muscle. Electrically stimulating callipyge carcasses improves the tenderness of loin chops by increasing the percentage of chops rated from slightly tough to slightly tender.  相似文献   

19.
20.
Pork loins (n = 72) were selected so that marbling scores would range from "practically devoid" to "abundant" in the longissimus muscle. Loin chops were cooked and rated by a trained six-member sensory panel. Physical and chemical characteristics were stratified according to marbling level (divided into 10 subclasses), muscle structure, shear force, overall palatability, and juiciness (each divided into three subclasses). The highest ratings for overall palatability were assigned to chops with high reflectance (685 nm), low moisture (70.1%), high i.m. fat (9.1%; or, high marbling score), low protein (19.4%), and low cooking loss (25.9%). Chops with the highest percentage of cooking loss were high in moisture content (75.59%), low in i.m. fat (1.78%), and high in protein content (21.54%). Differences in muscle structure, shear force, overall palatability, and juiciness were associated with differences in percentages of protein, moisture (whole tissue basis [WTB]) and fat (WTB). Pork loins with marbling between "practically devoid-plus" and "small" had (P less than .05) more protein and less fat (WTB) than loins with marbling scores between "modest" and "abundant." Loins with overall palatability ratings between 4.0 and 6.0 had more moisture and protein (P less than .05) than did loins with palatability ratings of 6.1 to 8.0. Selecting pork loins with "small" or less marbling, extremely open structure, a juicy rating of "slightly juicy," and an overall palatability rating of "like slightly" would identify fresh loins that had lower fat and(or) higher protein content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号