首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissolved organic nitrogen (DON) is a significant nitrogen (N) pool in most soils and is considered to be important for N cycling. The present study focused on paired sites of native remnant woodland and managed pasture at three locations in south-eastern Australia. Improved understanding of N cycling is important for assessing the impact of agriculture on soil processes and can guide conservation and restoration soil management strategies to maintain remnant native woodland systems, which currently exist as small pockets of woodland within extensive managed pasture landscapes. Organic and inorganic N pools were quantified, as well as the rates of amino acid and peptide mineralisation in the paired native woodland and managed pasture systems. Soil DON dominated the soil N pool in both land uses, and the proportion of DON to other N pools was greatest at the most N-limited site (up to ∼70% of extractable N). In both land uses soil ammonium and free amino acid concentrations were similar (∼20% of extractable N), and soil nitrate formed the smallest N pool (<∼5% of extractable N). Mineralisation of 14C-labelled amino acid and peptide substrates was rapid (<3 h), and more amino acid was respired than peptide in both the native woodland and managed pasture soils. Soil C:N ratio was important in separating site and land use differences, and contrasting relationships between soil physico-chemical properties and organic N uptake rates were identified across sites and land uses.  相似文献   

2.
不同有机废弃物对土壤磷吸附能力及有效性的影响   总被引:9,自引:3,他引:6  
城郊农地是循环有机废弃物的重要场所,但长期施用畜禽粪和城市污泥可引起土壤磷素积累、磷饱和度提高,增加土壤向环境流失磷的风险。为了解施用不同来源的有机废弃物对城郊耕地土壤磷素化学行为的影响,选择4种不同磷含量的土壤,探讨在等量磷素情况下,施用KH2PO4、猪粪/稻草秸秆堆肥、沼渣、猪粪、鸡粪、生活垃圾堆肥和2种污泥等不同磷源时,土壤有效磷含量及磷吸附能力的差异。结果表明,施用有机废弃物增加了土壤有效磷和水溶性磷含量,降低了土壤对磷的吸附能力,但影响程度因有机废弃物来源而异。施用猪粪/稻草秸秆堆肥和猪粪降低土壤磷最大吸附量比例(9.03%~15.60%)与施KH2PO4(10.59%~16.63%)相当,但施用沼渣、鸡粪和生活垃圾堆肥降低土壤磷最大吸附量的比例(5.09%~9.84%)明显低于施KH2PO4;施用2种污泥降低土壤磷最大吸附量的比例(4.32%~6.77%)最小。不同有机废弃物对土壤有效磷的影响差异较小,但对水溶性磷的影响较大。施用有机废弃物后,土壤磷最大吸附量的下降值与施用有机废弃物中铁、铝、钙含量呈负相关;土壤水溶性磷的变化量与施用有机废弃物后土壤交换性钙的增加量呈负相关,表明有机废弃物中铁、铝和钙等矿质成分的增加,可在一定程度上减少有机废弃物在土壤循环处理时磷对环境的负影响。在农田施用有机废弃物时,不仅要考虑有机废弃物磷素状况,也应适当考虑其他矿质成分的组成特点。该研究可为城郊农地科学施用有机废弃物提供依据。  相似文献   

3.
肥料重金属含量状况及施肥对土壤和作物重金属富集的影响   总被引:56,自引:5,他引:56  
本文对肥料中重金属的含量状况以及施肥对土壤和农作物重金属累积影响的研究进展进行了系统分析和总结。过磷酸钙中锌(Zn)、 铜(Cu)、 镉(Cd)、 铅(Pb)含量高于氮肥、 钾肥和三元复合肥,有机-无机复混肥料中的Pb含量高于其他化肥。有机肥如畜禽粪便、 污泥及其堆肥中的重金属含量高于化肥,猪粪中的Cu、 Zn、 砷(As)、 Cd含量明显高于其他有机废弃物,鸡粪中铬(Cr)含量高;污泥和垃圾堆肥中Pb或汞(Hg)含量高。商品有机肥Zn、 Pb和镍(Ni)含量高于堆肥,Hg含量高于畜禽粪便。多数研究表明,氮磷钾配施与不施肥相比土壤Cd和Pb含量增加,施用有机肥比不施肥提高土壤Cu、 Zn、 Pb、 Cd含量。施用化肥对农作物重金属富集的影响不明确,而施用有机肥可提高作物可食部位Cu、 Zn、 Cd、 Pb 的含量,影响大小与有机肥种类、 用量、 土壤类型和pH以及作物种类等有很大关系。在今后的研究中应着重以下几个方面, 1)典型种植体系下土壤重金属的投入/产出平衡; 2)不同种植体系下长期不同施肥措施对土壤重金属含量、 有效性影响的动态趋势; 3)典型种植体系和施肥措施下土壤对重金属的最高承载年限; 4)现有施肥措施下肥料中重金属的最高限量标准。  相似文献   

4.
Chrome tannery sludge applied to agricultural land may have benefits in terms of added N for crop growth. An experiment was designed to compare tannery waste with commercial N fertilizer and investigate the potential of the waste as an alternative or supplement to commercial fertilizer. Soils with 38% and 7% organic C and N content of 1.3% and 0.2%, respectively, were amended with lime, commercial N fertilizer, or tannery sludge containing 1.6% Cr. A portion of the tannery waste was supplemented with additional Cr 3+ salt before adding to the soils. The amended soils were analyzed for total Cr, ammonium acetate extractable Cr, selected nutrient and trace element concentrations. The tannery sludge increased soil pH, total Cr and N, S, Ca, P, Mg, and Na concentrations. DTPA extractable Cr increased only when Cr3+ salt was added, but soil pH decreased markedly. Electroconductivity of the soils increased with the waste application rate and, at the highest rate of Cr3+ salt addition, far exceeded values recommended for successful crop production. The acidic, high salt conditions complicated interpretation of the Cr3+ salt addition results. Tannery sludge may be applied to agricultural land as a fertilizer amendment without adversely affecting soil chemical properties. The amount and frequency of application should be determined by (1) total and available N, (2) total salt content, (3) total and available Cr, and (4) soil organic matter.  相似文献   

5.
矿化垃圾和绿化植物废弃物在盐碱土上利用的效果   总被引:1,自引:0,他引:1  
通过矿化垃圾和绿化植物废弃物在盐碱土上的现场应用试验,研究了土壤性质的变化.结果表明,盐碱土上利用矿化垃圾和绿化植物废弃物后pH和盐分降低,土壤肥力提高;但矿化垃圾中有机质相对稳定,而绿化植物废弃物易分解,其土壤微生物量碳、土壤脲酶和土壤磷酸酶增加效果更明显;而且以矿化垃圾、绿化植物废弃物和原土混合后土地利用的效果最好,其次为矿化垃圾和绿化植物废弃物混合,以矿化垃圾和5%原土处理的利用效果最差;而不同废弃物用量中以30%的绿化植物废弃物添加量改良效果最好;不同处理间土壤微生物量碳、土壤脲酶和土壤磷酸酶的变化趋势基本一致,并与有机质存在显著或极显著相关关系,适合评价有机废弃物土地利用的效果.  相似文献   

6.
不同栽培方式菜田耕层土壤重金属状况   总被引:6,自引:2,他引:4  
【目的】评价不同栽培方式(温室、大棚和露地)菜田土壤重金属状况,为菜田土壤质量改善和蔬菜高效安全施肥提供一定的理论依据。【方法】针对我国北方3个区域(东北、黄淮海、西北地区)和南方4个区域(华中、西南、华东、华南地区)主要蔬菜种植区不同栽培方式的典型菜田耕层土壤展开调查,选择的主要菜区不同栽培方式的菜田均为远离城郊的未受到工业“三废”、汽车尾气等污染的农村菜田,取样时间是2013年作物收获后或蔬菜施肥前或生长后期,共采集503个土壤样品,对温室、大棚和露地三种栽培方式下土壤重金属状况进行了研究。【结果】1)采样区设施(温室和大棚)菜田土壤重金属Cu、Zn和Cd总量总体上均高于露地菜田土壤,较露地菜田土壤平均分别高12.2%、21.7%和30.4%。2)随着种菜年限的增加,菜田土壤重金属Cu、Zn和Cd总量呈显著增加的趋势。不同栽培方式菜田土壤中均可能存在几种重金属同时污染的复合污染现象,土壤Cu、Zn、Cd等之间的相关性均达到极显著水平。3)采样区不同栽培方式菜田土壤Cd的二级超标率在19.2%~22.3%之间,温室、大棚和露地菜田土壤Cd的单项污染指数平均分别为0.97、0.98和0.70;土壤Cu、Zn、Pb、Cr、As和Hg的二级超标率在0~14.6%之间,单项污染指数在0.06~0.52之间。【结论】设施菜田N、P2O5和K2O总量及有机肥用量均显著高于露地菜田,可能是造成设施菜田土壤中重金属Cu、Zn和Cd积累显著高于露地菜田的重要原因。采样区设施(温室和大棚)菜田土壤Cd总体上处于污染警戒级状态,露地菜田土壤总体上未受到Cd的污染;设施和露地菜田土壤Cu、Zn、Pb、Cr、As和Hg总体上均未构成对土壤的污染。  相似文献   

7.
This work assesses relationships between characteristic aggregate microstructures related to biological activity in soils under different long‐term land use and the distribution and extractability of metal pollutants. We selected two neighbouring soils contaminated with comparable metal loads by past atmospheric deposition. Currently, these soils contain similar stocks, but different distributions of zinc (Zn) and lead (Pb) concentrations with depth. One century of continuous land use as permanent pasture (PP) and conventional arable (CA) land, has led to the development of two soils with different macro‐ and micro‐morphological characteristics. We studied distributions of organic matter, characteristic micro‐structures and earthworm‐worked soil by optical microscopy in thin sections from A, B and C horizons. Concentrations and amounts of total and EDTA‐extractable Zn and Pb were determined on bulk samples from soil horizons and on size‐fractions obtained by physical fractionation in water. Large amounts of Zn and Pb were found in 2–20‐µm fractions, ascribed to stable organo‐mineral micro‐aggregates influenced by root and microbial activity, present in both soils. Unimodal distribution patterns of Zn, Pb and organic C in size‐fractions were found in horizons of the CA soil. In contrast, bimodal patterns were observed in the PP soil, because large amounts of Zn and Pb were also demonstrated in stable larger micro‐aggregates (50–100‐µm fractions). Such differing distribution patterns characterized all those horizons markedly influenced by earthworm activity. Larger earthworm activity coincided with larger metal EDTA‐extractability, particularly of Pb. Hence, land use‐related biological activity leads to specific soil microstructures affecting metal distribution and extractability, both in surface and subsurface horizons.  相似文献   

8.
《Geoderma》2006,130(1-2):176-189
The distribution and form of P in soil is central to the sustainability of agricultural practice. This study used sequential fractionation and 31P nuclear magnetic resonance spectroscopy (31P NMR) of NaOH–EDTA extracts to examine the influence of pastoral, native (undisturbed) and forest land use on soil P forms in 5 contrasting soils ranging from a Regosol to a Rendzina in Otago, New Zealand. Climatic factors likely to influence soil P distribution were negated by careful site selection. Together with a decrease in soil organic C (31%), total P decreased in forested soils (mean=674 mg kg−1) compared to native soils (mean=784 mg kg−1). In contrast, the ratio of inorganic to organic P increased (10%) probably due to mineralization of organic P in forest soils, while for pasture soils, accumulation of P in inorganic forms due to P inputs via fertilisers and animal dung was to blame. Investigation of the organic P forms in NaOH–EDTA extracts of each land use by 31P NMR indicated that diesters were greatest in the native soil (4–12% of total P in spectra), and declined as a proportion of total P in pasture soils and more so in forest soils. This was reflected in a decline of the diester to monoester ratio. However, the ratio was generally greater in forest than pasture soils and attributed to the labile nature of diesters, mineralization of monoesters in forest soils, and an increase in monoesters in pasture soils from inositol phosphates in plant debris. This effect was pronounced in the Regosol due to sandy texture and the preferential accumulation of plant debris in coarse particle size fractions. Due to the depletion of soil P reserves, forest soils in the area should be followed by pasture and well managed fertiliser additions before replanting.  相似文献   

9.
The mutagenic potential of the acid, base, and neutral fractions of petroleum sludge amended soil was determined using the Salmonella/microsome assay and Aspergillus methionine assay. Organic compounds were extracted from two different soils amended with either storm-water runoff impoundment or combined API-separator/slop-oil emulsion solids waste. Application of either waste to soil reduced the mutagenic activity of organic compounds extracted from equal weights of soil. However, biodegradation increased both the total and the direct-acting mutagenicity of all fractions residual in the waste-amended soil. The maximum level of mutagenic activity per milligram residual C was detected in the sample collected 360 days after waste application for the acid and base fractions from the storm-water runoff impoundment amended soils and the acid, base, and neutral fractions of the combined API separator/slop-oil emulsion waste amended soils. A comparison of the results based on equivalent weights of soil indicates that the mutagenic potential of both wastes was reduced by soil incorporation. The results from the Salmonella assay indicate that while the bulk of the solvent extractable organics in both wastes was rendered non-mutagenic, the mutagenic potential of the organic compounds in the acid fraction from the storm-water runoff impoundment sludge amended soil was increased. The results from the Aspergillus assay of both wastes indicate that the mutagenic potential of all three fractions was eventually reduced to a level that would be considered non-mutagenic. Thus, while degradation may have increased the mutagenic potential of specific organic compounds that were residual in the soil, the overall effect of degradation was to reduce the weighted activity of the waste amended soil.  相似文献   

10.
The risk assessment of heavy‐metal contamination in soils requires knowledge of the controls of metal concentrations and speciation. We tested the relationship between soil properties (pH, CEC, Corg, oxide concentrations, texture) and land use (forest, grassland, arable) and the partitioning of Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn among the seven fractions of a sequential extraction procedure in 146 A horizons from Slovakia. Using a cluster analysis, we identified 92 soils as representing background metal concentrations while the remaining 54 soils showed anthropogenic contamination. Among the background soils, forest soils had the lowest heavy‐metal concentrations except for Pb (highest), because of the shielding effect of the organic layer. Arable soils had the highest Cr, Cu, and Ni concentrations suggesting metal input with agrochemicals. Grassland soils had the highest Cd and Zn concentrations probably for geogenic reasons. Besides the parent material (highest metal concentrations in soils from carbonatic rock, lowest in quartz‐rich soils with sandy texture), pedogenic eluviation processes controlled metal concentrations with podzols showing depletion of most metals in E horizons. Partitioning among the seven fractions of the sequential extraction procedure was element‐specific. The pH was the overwhelming control of the contributions of the bioavailable fractions (fractions 1–4) of all metals and even influenced the contributions of Fe oxide‐associated metals (fractions 5 and 6) to total metal concentrations. For fractions 5 and 6, Fe concentrations in oxides were the most important control of contributions to total metal concentrations. After statistically separating the pH from land use, we found that the contributions of Cu in fractions 1–4 and of NH4NO3‐extractable Al, Cd, Pb, and Zn to total metal concentrations were significantly higher under forest than under grassland and in some cases arable use. Our results confirm that metal speciation in soils is mainly controlled by the pH. Furthermore, land use has a significant effect.  相似文献   

11.
The chloroform fumigation technique has been successfully employed to quantify intracellular and extracellular urease and arylsulfatase activities in soil. In this study, the same approach was evaluated for its ability to differentiate between various pools of phosphomonoesterase activities in soils and reference proteins purified from plant and microbial sources. The activities of acid and alkaline phosphatases were assayed in 10 surface soils and reference proteins at their optimal pH values before and after chloroform fumigation and in the presence and absence of toluene. Chloroform fumigation decreased the activities of acid and alkaline phosphatases in soils, on average, by 6 and 8%, respectively. Similarly, the activities of two purified reference enzyme proteins were decreased after fumigation, with acid and alkaline phosphatase activities exhibiting a reduction of 17 and 8%, respectively. Toluene treatment caused an increase in the activities of acid and alkaline phosphatases by 8 to 18% in nonfumigated soils, but showed no effect in the fumigated soils. Average enzyme protein concentrations, calculated for the 10 soils based on the activity values of the soils and the specific activity of the purified enzymes (i.e., activity values per mg protein), were 22.5 and 2.1 mg protein (kg soil)—1 for acid and alkaline phosphatase, respectively. The decrease in enzyme activity by the fumigant was either by direct denaturing of the periplasmic and extracellular portion of the particular protein after lysis of the microbial cell membrane, by absorption and/or inhibition of the released phosphomonoesterases by organic and inorganic constituents or by degradation of the protein by soil proteases. The ratios of acid phosphatase protein concentrations relative to organic C in six soils were significantly, but negatively correlated with soil organic C, suggesting differences in organic C quality. Comparison of the activity values of soil phosphatases with those of the protein concentrations present in soils indicated that alkaline phosphatase has greater catalytic efficiency than does acid phosphatase.  相似文献   

12.
Tropical regions are currently undergoing remarkable rates of land use change accompanied by altered litter inputs to soil. In vast areas of Southern Ecuador forests are clear cut and converted for use as cattle pastures. Frequently these pasture sites are invaded by bracken fern, when bracken becomes dominant pasture productivity decreases and the sites are abandoned. In the present study implications of invasive bracken on soil biogeochemical properties were investigated. Soil samples (0-5 cm) were taken from an active pasture with Setaria sphacelata as predominant grass and from an abandoned pasture overgrown by bracken. Grass (C4 plant) and bracken (C3 plant) litter, differing in C:N ratio (33 and 77, respectively) and lignin content (Klason-lignin: 18% and 45%, respectively), were incubated in soils of their corresponding sites and vice versa for 28 days at 22 °C. Unamended microcosms containing only the respective soil or litter were taken as controls. During incubation the amount of CO2 and its δ13C-signature were determined at different time intervals. Additionally, the soil microbial community structure (PLFA-analysis) as well as the concentrations of KCl-extractable C and N were monitored. The comparison between the control soils of active and abandoned pasture sites showed that the massive displacement of Setaria-grass by bracken after pasture abandonment was characterized by decreased pH values accompanied by decreased amounts of readily available organic carbon and nitrogen, a lower microbial biomass and decreased activity as well as a higher relative abundance of actinomycetes. The δ13C-signature of CO2 indicated a preferential mineralization of grass-derived organic carbon in pasture control soils. In soils amended with grass litter the mineralization of soil organic matter was retarded (negative priming effect) and also a preferential utilization of easily available organic substances derived from the grass litter was evident. Compared to the other treatments, the pasture soil amended with grass litter showed an opposite shift in the microbial community structure towards a lower relative abundance of fungi. After addition of bracken litter to the abandoned pasture soil a positive priming effect seemed to be supported by an N limitation at the end of incubation. This was accompanied by an increase in the ratio of Gram-positive to Gram-negative bacterial PLFA marker. The differences in litter quality between grass and bracken are important triggers of changes in soil biogeochemical and soil microbial properties after land use conversion.  相似文献   

13.
The sorption behavior of diuron, imidacloprid, and thiacloprid was investigated using 22 soils collected in triplicate from temperate environments in Australia and tropical environments in Australia and the Philippines. Within the temperate environment in Australia, the soils were selected from a range of land uses. The average KOC values (L/kg) for imidacloprid were 326, 322, and 336; for thiacloprid, the values were 915, 743, and 842; and for diuron, the values were 579, 536, and 618 for the Ord (tropical), Mt. Lofty (temperate), and Philippines (tropical) soils, respectively. For all soils, the sorption coefficients decreased in the following order: thiacloprid > diuron > imidacloprid. There were no significant differences in sorption behavior between the tropical soils from the Philippines and the temperate soils from Australia. Sorption was also not significantly related with soil characteristics, namely, organic carbon (OC) content, clay content, and pH, for any of the three chemicals studied. When the data were sorted into separate land uses, the sorption of all three chemicals was highly correlated (P < 0.001) with OC for the rice soils from the Philippines. Sorption coefficients for all three chemicals were highly correlated with OC in temperate, native soils only when one extreme value was removed. The relationships between sorption of all three chemicals and OC in temperate, pasture soils were best described by a polynomial. Sorption coefficients for imidacloprid and thiacloprid determined in the temperate pasture soils remained fairly consistent as the OC content increased from 3.3 to 5.3%, indicating that, although the total OC in the pasture soils was increasing, the component of OC involved with sorption of these two compounds may have been remaining constant. This study demonstrated that the origin of the soils (i.e., temperate vs tropical) had no significant effect on the sorption behavior, but in some cases, land use significantly affected the sorption behavior of the three pesticides studied. The impact of land use on the nature of soil OC will be further investigated by NMR analysis.  相似文献   

14.
土地利用对土壤线虫营养类群垂直分布和季节变化的影响   总被引:1,自引:0,他引:1  
A field investigation was conducted at the Shenyang Experimental Station of Ecology, Chinese Academy of Sciences, in an aquic brown soil of Northeast China under three land use types (cropland, abandoned cropland, and woodland) in order to evaluate whether the vertical distribution and seasonal fluctuation for the number of total nematodes and trophic groups could reflect soil ecosystem differences and to determine the relationships between soil chemical properties and soil nematodes. The majority of soil nematodes were present in the 0-20 cm soil layers, and for these land use types plant parasites were the most abundant trophic group. In the abandoned cropland the numbers of plant parasites reached a peak on the August sampling date, whereas the cropland and woodland peaked on the October sampling date. Meanwhile, in all land use types the number of total nematodes, bacterivores, plant parasites, and omnivores-predators was negatively (P 〈 0.05, except for bacterivores in cropland, which was not significant) correlated with bulk density, and positively (P 〈 0.05, except for fungivores in abandoned cropland, which was not significant) correlated with total organic carbon and total nitrogen.  相似文献   

15.
Soil tillage along with the application of organic waste probably affects the concentrations of organic carbon and the enrichment of introduced polychlorinated biphenyls (PCBs). In a three‐year experiment the PCB status of soils from three different field sites (silty clay loam, silt loam, sandy loam) which were long‐term differently tilled (NT = no‐tillage, CT = conventional plough tillage) and amended with two different organic wastes such as sewage sludge and compost (biosolids) was examined. No significant alteration in soil‐PCB quality and quantity with biosolid application could be proven within the course of the experiments. This indicates soil‐air exchange of PCBs dominates their concentrations in soil. Organic carbon in soil was significantly tillage‐dependent and determined the fate of PCBs resulting in a generally elevated PCB‐level in the non tilled soils. Linear regression of PCB load and organic matter content of all investigated untreated soils was highly significant (R2 = 0.73). Due to already elevated PCB levels in non tilled soils with a maximum of 65 μg kg—1 in the superficial layer of the silt loam control plot, any additional potential input, i. e. through the amendment with organic wastes, should therefore be avoided.  相似文献   

16.
A sterilized, but undecomposed, organic by-product of municipal waste processing was incubated in sandy soils to compare C and N mineralization with mature municipal waste compost. Waste products were added to two soils at rates of 17.9, 35.8, 71.6, and dry weight and incubated at for 90 d. Every 30 d, nitrate and ammonium concentrations were analyzed and C mineralization was measured as total CO2-C evolved and added total organic C. Carbon mineralization of the undecomposed waste decreased over time, was directly related to application rate and soil nutrient status, and was significantly higher than C mineralization of the compost, in which C evolution was relatively unaffected across time, soils, and application rates. Carbon mineralization, measured as percentage C added by the wastes, also indicated no differences between composted waste treatments. However, mineralization as a percentage of C added in the undecomposed waste treatments was inversely related to application rate in the more productive soil, and no rate differences were observed in the highly degraded soil. Total inorganic N concentrations were much higher in the compost- and un-amended soils than in undecomposed waste treatments. Significant N immobilization occurred in all undecomposed waste treatments. Because C mineralization of the undecomposed waste was dependant on soil nutrient status and led to significant immobilization of N, this material appears to be best suited for highly degraded soils low in organic matter where restoration of vegetation adapted to nutrient poor soils is desired.  相似文献   

17.
We collected and analyzed over 600 soil samples from the vegetable production fields in seven regions across California, examining the total As, Cd, Pb, P, and Zn concentrations of the soils. The ranges for baseline concentrations were determined for each region. The total P and Zn contents of the soils in comparison to the baseline ranges served as indicators on P fertilizers and micronutrients inputs through cultivation, the greater the total contents the larger the inputs. When the soil As, Cd, and Pb concentrations of each region were plotted with respect to those of P and Zn, three data distribution patterns emerged: (1) the soil As, Cd and Pb concentrations of the cropland soils remained within the baseline range regardless of the phosphorus or zinc inputs in 5, 2, 4 of the 7 regions, respectively, (2) the soil As, Cd and Pb concentrations of the cropland soils had moved upward and exceeded the baseline ranges but their concentrations did not rise in proportion to the phosphorus or zinc concentrations of soils in 1, 4, and 3 of the 7 regions, respectively. The enrichment was due to diffuse sources other than phosphorus fertilizers or micronutrients. (3) The soil As and Cd concentrations of the cropland soil in the Oxnard/Ventura Area and Fresno showed trends of increasing with respect to inputs of P and or Zn indicating P fertilizer or micronutrients applications over time have caused As and Cd to slowly accumulate in the cropland soils.  相似文献   

18.
雾灵山低山区土地利用类型对土壤理化性质的影响   总被引:2,自引:0,他引:2  
针对雾灵山低山区不同土地利用类型的土壤进行采样和分析,研究农田、果园、绿化林、果农间作和未利用地5种土地利用类型对土壤理化性质的影响,以期为雾灵山地区的土地合理利用和水土保持等提供科学依据.结果表明:5种土地利用类型中,绿化林的有机质、全氮、碱解氮、速效钾含量均为最高,而含水量最低;果农间作的有机质、全氮、碱解氮含量最低;未利用地的含水量和容重最高,而速效磷和速效钾含量最低.不同土地利用类型土壤有机质含量随土层深度的增加而减少,而其他土壤养分含量随土层深度的增加其减少量有明显差异.同全国第二次土壤普查养分分级标准相比,各土地利用类型的土壤速效磷和速效钾含量较为丰富,全氮和有机质含量较为缺乏,其中绿化林的各养分均较为丰富.  相似文献   

19.
Background values for heavy metals are necessary for the assessment of metal pollution of soils and plants. Samples of cultivated and uncultivated soils, oat grain, and seed heads of orchard grass (Dáctylis glomeráta) were collected from central, southeastern, and southwestern Norway. Total and easily extractable concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were determined in soil samples and total concentrations in plant samples. Element distributions have been correlated with petrology of soil parent material, type of mineral deposit, soil depth, geographic area, and land use. Concentrations of heavy metals are generally within the lower part of the normal global range. The petrology of the soil parent material has the greatest influence on aqua regia extracted metal concentrations among the factors studied. DTPA extracted metals show less dependence on rock types. Presence of alum shale results in particularly high values for Cd in both soil extracts and in oat grain. Soil cultivation seems to influence the relative concentration of metals in the topsoil. The ratios of easily extractable to total concentrations of metals are primarily related to the organic matter content. Metal concentrations in oat grain can best be predicted by concentrations in DTPA extracts and soil pH among the factors studied. Seed heads of orchard grass are less affected by concentrations in the soil and appear therefore to be a poor indicator of heavy metals in soils.  相似文献   

20.
不同土地利用方式土壤对铜、镉离子的吸附解吸特征   总被引:1,自引:0,他引:1  
采用一次平衡法对Cu2+、Cd2+在城市及城郊农田、林地、草地3种土地利用方式土壤中的吸附解吸过程进行比较研究, 结果表明: Cu2+、Cd2+在3种土地利用方式土壤中的吸附量均随平衡液浓度的增加而增大, Cu2+、Cd2+在农田土壤上的吸附量均高于林地和草地土壤。分别用Langmuir和Freunlich两种等温吸附方程对吸附过程进行拟合, 3种土壤对Cu2+的吸附过程运用Langmuir方程拟合效果好, 而对Cd2+的吸附过程运用Freunlich方程拟合效果更好。Cu2+在3种土壤的解吸量大小顺序为农田>林地>草地, Cd2+在3种土壤的解吸量大小顺序为农田>草地>林地。两种离子在3种土壤中的动态吸附是个快速反应的过程, 随时间延长, 吸附反应趋于平衡。运用双常数函数方程和Elovich方程能较好地拟合重金属在土壤上的吸附动力学过程。Cu2+、Cd2+的吸附与土壤黏粒含量、有机质含量、CEC和pH均有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号