首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
不同有机物料对微域内土壤原生动物和线虫的影响   总被引:1,自引:0,他引:1  
施用有机物料能够显著影响土壤肥力和生物群落结构,然而有机物料在土壤中分布不均会加剧土壤空间异质性,进而对土壤生物群落的结构和功能产生进一步的影响。选用水稻秸秆和白三叶草两类有机物料,按比例混合后装于网袋,置于预先装好土的培养容器中恒温培养,在培养的第14、35和70天分别对其中的不同微域(0~1 cm和1~5 cm)土样进行采集,分析其中的土壤原生动物和线虫群落结构的变化。结果表明,有机物料种类及培养时间对原生动物和线虫数量的影响更大,采样微域对二者的影响相对较小。水稻秸秆添加下的土壤植食性线虫、食真菌线虫和捕杂食线虫数量显著高于白三叶草添加;而白三叶草添加下的土壤变形虫、鞭毛虫和线虫总数、食细菌线虫数量显著高于水稻秸秆添加。从整个培养周期来看,鞭毛虫数量随培养时间的延长逐渐减少,而变形虫和线虫总数则随培养时间的延长逐渐增多。在同一有机物料下不同微域间土壤原生动物和线虫在培养初期会出现一定的数量差异,但这种差异随培养时间的延长逐渐消失。  相似文献   

2.
有机物料对污染土壤微生物碳和磷的影响   总被引:7,自引:0,他引:7  
施用不同的有机物料对污染土壤微生物量及其磷素的固定作用的研究发现 ,有机物料施入污染土壤之后 ,土壤微生物碳 (C)在第 3d即达到高峰 ,土壤微生物磷 (P)在第 10d达到高峰 ,腐熟的牛粪对该土壤磷的活化作用很大 ,而葡萄糖的处理显著地降低了污染土壤磷的有效性 ,并不同程度地增加了对土壤磷的生物固定。  相似文献   

3.
为探讨施用有机肥和秸秆还田对盐渍化耕地土壤的培肥效果及改土效应,以河套灌区典型盐渍化土壤为研究对象,对比分析了不施肥(CK)、化肥(CF)、化肥+有机肥(CFM)、化肥+秸秆还田(CFS)对土壤pH、有机碳、全氮含量、速效氮磷钾含量和微生物数量的影响,并通过简单相关分析和冗余分析研究等氮条件下浅层(0~20 cm)土壤化学性质与土壤微生物数量间的相关关系,揭示不同培肥措施下土壤微生物数量差异的驱动因子,明确施用有机肥和秸秆还田这2种主要培肥措施下土壤肥力的变化特征。结果表明:与CK处理相比,CFM和CFS处理的土壤p H分别降低了1.36%~1.78%和1.02%~1.44%,土壤盐渍化得到改善;CFM和CFS处理提高了土壤有机碳和全氮含量,土壤碱解氮、有效磷和速效钾含量也显著增加,且施用有机肥的提升效果优于秸秆还田;在土壤微生物方面,CFM处理可显著提高土壤细菌数量(53.44%~59.78%)和放线菌数量(10.08%~16.79%),CFS处理可显著提高土壤真菌数量(29.99%~49.06%)。综上所述,增施有机肥和秸秆还田可有效降低土壤pH,增加土壤有机碳和速效养分;同时改善...  相似文献   

4.
为探讨施用有机物料对宁夏沙化土壤的改良效果,以当地易得的杨树枝条、玉米秸秆、牛粪为原料在2015年4~10月期间进行桶栽试验,采用Biolog技术研究了有机物料单施和配施对宁夏沙化土壤微生物群落功能多样性的短期影响。结果显示:(1)施用有机物料使土壤微生物利用碳源总量增加,微生物代谢活性增强。其利用比例较高的碳源类型为氨基酸类、胺类和碳水化合物类。(2)单施有机物料比配施有机物料对微生物代谢的促进作用强;单施杨树枝条粉碎物的土壤微生物平均颜色变化率在所有处理中最大,而且微生物各种多样性指数也有明显提高。(3)对各类碳源的利用强度与土壤易氧化有机碳、全氮含量和碳氮比之间表现出了密切的关系,微生物多样性指数则与土壤易氧化有机碳和无机氮存在紧密联系。本研究表明,土壤施入杨树枝条粉碎物后微生物代谢活性增强、土壤质量提高,对土壤改良有积极作用。  相似文献   

5.
华北平原是我国主要的粮食生产基地之一,农民为了追求高产,过量施用化肥的弊端日益凸显。本研究依托中国科学院栾城农业生态系统试验站有机养分循环再利用长期定位试验,开展不同外源有机物料对土壤氮素和氨基糖在不同粒级土壤库中分布的影响研究,为阐释不同农业管理措施下土壤氮素的物理保护机制和生物保护机制提供依据。定位试验设6个处理:无肥无秸秆处理(对照,CK)、单施猪圈肥(M)、单施化肥(NPK)、单施秸秆(SCK)、化肥配施猪圈肥(MNPK)和化肥配施秸秆(SNPK)。通过超声波分散-离心分离得到3种粒径土壤——砂粒级(2 000~53 μm)、粉粒级(53~2 μm)和黏粒级(<2 μm),分析全土及各粒级土壤中全氮和3种土壤氨基糖(氨基葡萄糖、胞壁酸和氨基半乳糖)的含量及变化;基于这3种土壤氨基糖的稳定性和异源性,以氨基糖作为微生物残留物标识物,了解真菌和细菌残留物的积累和转化,阐释真菌和细菌在养分转化中的作用。结果表明:添加有机物料(秸秆、猪圈肥)明显提升了土壤全氮和氨基糖含量,粒级间土壤氮素和氨基糖含量顺序均为黏粒级>砂粒级>粉粒级。添加有机物料对砂粒级土壤氮素影响最大,长期化肥配施猪圈肥中氮素主要在砂粒级中富集,长期化肥配施秸秆的氮素主要在黏粒级中富集。添加秸秆主要提高了真菌来源的氨基葡萄糖的含量,而添加猪圈肥主要提高了土壤中细菌来源的胞壁酸含量,表明添加不同有机物料可影响土壤微生物的群落结构。从各粒级中氨基葡萄糖/胞壁酸的比值来看,添加不同类型外源有机物料对砂粒级土壤微生物群落结构影响最为明显。由此可见,在长期秸秆还田措施下实施有机粪肥部分替代化肥不仅可以减少化肥用量,还可提升土壤养分含量和微生物多样性,改善土壤质量。  相似文献   

6.
通过研究不同有机物料添加对内蒙古河套灌区碱化土壤可溶性有机碳含量变化的影响,寻找合理高效的增碳方式,降低碱化土壤有机碳损失。以内蒙古河套灌区轻度、中度盐碱土为对象进行田间试验,设置生物炭(BC)添加、羊粪(GM)添加,对照(CK)3个处理,对比和分析不同有机物料添加后土壤有机碳(SOC)、可溶性有机碳(DOC)、土壤理化性质的变化。结果表明:(1)与CK相比,轻度碱化土壤BC、GM处理土壤DOC含量分别增加3.28%,20.66%,SOC含量增加5.40%,10.30%,中度碱化土壤BC和GM处理下可溶性碳增加41.32%,74.10%,土壤SOC含量增加60.24%,79.16%;(2)轻度碱化土壤BC和GM处理土壤DOC含量与SOC含量呈负相关,中度碱化土壤BC和GM处理下呈正相关;(3)盐碱土壤SOC、DOC含量主要与土壤pH、电导率的变化有关;BC处理较GM处理相比土壤电导率低约1.93%~29.15%,而GM处理土壤pH、碱化度比BC处理低0.31%~1.53%,7.10%~24.63%。总体来看,有机物料添加后均能使土壤中SOC、DOC含量提高,不同程度地降低土壤碱化程度,且羊粪添加较生物炭略好,因此羊粪添加对河套灌区碱化土壤碳含量的提高比生物炭添加更有效,土壤改良效果更好,土壤理化性质改善更明显。  相似文献   

7.
有机物料对盆栽苹果土壤酶活性的影响   总被引:6,自引:0,他引:6  
有机物料的施用普遍提高了土壤酶活性,秸秆类对转化酶活性影响大,粪类对脲酶活性作用大,羊粪降低土壤中的磷酸酶活性,鸡粪对各种酶活性都有良好的作用。有机物料施用后第二年秸秆的效果下降,粪类则有良好的持续作用。  相似文献   

8.
有机物料土地利用在改善土壤理化性质、增强供肥能力、提高农作物产量的同时,也给土壤生态系统带来了短期风险,但目前并未得到足够重视。本文重点就有机物料施用对土壤微生物、生源要素周转、以及重金属迁移转化的短期影响进行综述,并将土壤生态系统的短期响应与土壤健康联系,以期有机物料土地利用引起的短期环境效应得到关注,进而在机理上深入研究,为正确使用有机肥,更好地提高土壤质量,快速发展有机农业打下基础。  相似文献   

9.
环境因子对山西太岳山土壤微生物量的影响   总被引:1,自引:0,他引:1  
本文以山西太岳山两个林型(华北落叶松人工林、灌木林)下阴坡和阳坡的土壤样品为研究对象,研究了不同坡向下土壤微生物量碳、氮、土壤理化性质、土壤微生物碳氮比值的变化特征。研究结果表明:土壤有机碳、全氮、微生物量碳、氮含量在0~10 cm土层均显著高于10~20 cm土层。在华北落叶松人工林和灌木林下,土壤微生物量碳、可溶性有机碳及两者之和在阳坡均显著高于阴坡;土壤微生物量碳占两者之和的比例约为81%~87%,在不同坡向下没有显著性差异。土壤微生物量碳氮比在灌木林阳坡下为6.5~7.2,阴坡为7.3~9.9;在华北落叶松人工林阳坡下为7.3~8.6,阴坡为8.2~8.6。两种林型下土壤微生物熵在阳坡均高于阴坡。相关性分析结果表明,土壤微生物量碳、氮与土壤pH值、可溶性有机碳呈显著正相关,土壤有机碳与土壤全氮、微生物量碳、pH值和含水率均有显著正相关性。总的来说,不同坡向对土壤微生物量产生重要影响,进而使土壤微生物熵不同,阴坡土壤有机碳活性较小,碳库的稳定性较好。本文从土壤微生物量及其与环境因子相互关系的角度探讨了土壤环境对土壤微生物的影响,以期为更好的理解该地区土壤碳周转和植被恢复生态效应提供参考。  相似文献   

10.
免耕对农田土壤生物学特性的影响   总被引:32,自引:3,他引:32  
姜勇  梁文举  闻大中 《土壤通报》2004,35(3):347-351
农业管理对土壤群落水平下各种生物之间复杂的相互作用的影响是土壤生态学研究的一个热点。土壤生物和酶活性在改善土壤结构、养分循环、有机质分解和保持中起重要作用。与常规耕作系统比,免耕系统中作物残体和土壤矿物质的机械混合要少得多,因此免耕系统更接近于未受扰动的自然生态系统,可能更加依赖于土壤生物体的固有作用。综合有关文献讨论了耕作实践对一些土壤生物学特性的影响。总体看来,土壤线虫总量及功能类群对免耕既可能是正响应也可能是负响应,与常规耕作相比免耕系统中土壤微生物的丰富度或生物量增加,土壤酶活性增强,土壤呼吸作用减弱。最后还对免耕系统中有关土壤生物学特性研究的重要性和需要解决的问题进行了小结。  相似文献   

11.
Information is needed on the ability of different crop management factors to maintain or increase soil C and N pools, especially in intensively tilled short crop rotations. Soil samples from field experiments in Maine were used to assess the effect of cover crop, green manure (GM) crop, and intermittent or annual amendment on soil C and N pools. These field experiments, of 6–13 years duration, were all characterized by a 2-year rotation with either sweet corn ( Zea mays L.) or potato ( Solanum tuberosum L.), and primary tillage each year. Total, particulate organic matter (POM), and soil microbial biomass (SMB)-C and -N pools were assessed for each experiment. Total C and N stocks were not affected by red clover ( Trifolium pratense L.) cover crop or legume GM, but were increased by 25–53% via a single application of papermill sludge or an annual manure and/or compost amendment. With the exception of continuous potato production which dramatically reduced the SMB-C and SMB-N concentration, SMB-C and -N were minimally affected by changes in cropping sequence, but were quite sensitive to amendments, even those that were primarily C. POM-C and -N, associated with the coarse mineral fraction (53–2,000 µm), were more responsive to management factors compared to total C and N in soil. The change in soil C fractions was a linear function of increasing C supply, across all experiments and treatments. Within these intensively tilled, 2-year crop rotations, substantial C and N inputs from amendments are needed to significantly alter soil C and N pools, although cropping sequence changes can influence more labile pools responsible for nutrient cycling.  相似文献   

12.
Although it is well known that fluctuations in soil moisture affect the decomposition of organic matter, few studies have provided direct evidence of the underlying biophysical mechanisms. Cycles of wetting and drying (W/D) may not only alter soil pore structure, but also stimulate a proliferation of fungi, since these organisms are typically less affected by drought stress than bacteria, and hence the development of fungal-induced soil water repellency. The biophysical interaction between these processes is likely to influence the decomposition of organic matter amendments to soil and carbon sequestration. By using soil cores amended with rice straw, the objectives of this study were to determine the effects of drying intensity and frequency of W/D cycles on decomposition rate after rewetting, soil pore-size distribution, soil microbial biomass (SMB) and soil water repellency, and to assess their biophysical interaction. One W/D cycle consisted of wetting a soil core from the bottom for 1.5-days at −0.03 kPa followed by 1.5, 3.5 or 6.5 days of drying in open air at 25 ± 2.5 °C. This resulted in different intensities of drying and frequencies of W/D cycles over a 120-d incubation period. The decomposition rate decreased with repeated W/D cycles and increasing drying intensity, particularly between the 3rd and 9th W/D cycles. The SMB-C concentration and soil water repellency peaked at the 3rd W/D cycle. The peak size of the SMB-C concentration was larger in the drier soils and soil water repellency was significantly related to SMB-C concentration (R = 0.57, P = 0.025). The soil with the strongest drying treatment had a greater concentration of particulate organic carbon (POC) and the lowest C:N ratio in POC. Although the decomposition rate was significantly correlated to the concentration of soil organic carbon (SOC) (P < 0.01), POC (P < 0.01) and SMB-C (P < 0.05), stepwise regression analysis further identified that it was largely correlated to soil pore characteristics. The decrease in the decomposition rate in the drier soil was largely explained by the increase in macropores >300 μm in diameter (R = 0.98). The results suggest that an increased drying intensity or a longer duration of drying after rainfall or irrigation may favour SOC sequestration through inhibiting decomposition of amended residue. This may be due to the formation of macropores and their subsequent stabilization via fungal growth and fungal-induced soil water repellency.  相似文献   

13.
Conservation tillage (no-till and reduced tillage) brings many benefits with respect to soil fertility and energy use, but it also has drawbacks regarding the need for synthetic fertilizers and herbicides. Our objective was to adapt reduced tillage to organic farming by quantifying effects of tillage (plough versus chisel), fertilization (slurry versus manure compost) and biodynamic preparations (with versus without) on soil fertility indicators and crop yield. The experiment was initiated in 2002 on a Stagnic Eutric Cambisol (45% clay content) near Frick (Switzerland) where the average annual precipitation is 1000 mm. This report focuses on the conversion period and examines changes as tillage intensity was reduced. Soil samples were taken from the 0–10 and 10–20 cm depths and analysed for soil organic carbon (Corg), microbial biomass (Cmic), dehydrogenase activity (DHA) and earthworm density and biomass. Among the components tested, only tillage had any influence on these soil fertility indicators. Corg in the 0–10 cm soil layer increased by 7.4% (1.5 g Corg kg−1 soil, p < 0.001) with reduced tillage between 2002 and 2005, but remained constant with conventional tillage. Similarly, Cmic was 28% higher and DHA 27% (p < 0.001) higher with reduced than with conventional tillage in the soil layer 0–10 cm. In the 10–20 cm layer, there were no significant differences for these soil parameters between the tillage treatments. Tillage had no significant effect on total earthworm density and biomass. The abundance of endogeic, horizontally burrowing adult earthworms was 70% higher under reduced than conventional tillage but their biomass was 53% lower with reduced tillage. Wheat (Triticum aestivum L.) and spelt (Triticum spelta L.) yield decreased by 14% (p < 0.001) and 8% (p < 0.05), respectively, with reduced tillage, but sunflower (Helianthus annuus L.) yield was slightly higher with reduced tillage. Slurry fertilization enhanced wheat yield by 5% (p < 0.001) compared to compost fertilization. Overall, Corg, Cmic, and DHA improved and yields showed only a small reduction with reduced tillage under organic management, but long-term effects such as weed competition remain unknown.  相似文献   

14.
土壤中溶解性有机物及其影响因素研究进展   总被引:1,自引:1,他引:1  
溶解性有机物(DOM)是陆地生态系统中极为活跃的有机组分,是土壤圈层与相关圈层(如生物圈、大气圈、水圈和岩石圈等)发生物质交换的重要形式。它不但是土壤微生物最重要的能量与物质来源,影响微生物的新陈代谢,而且对土壤营养元素(如C,N,P)和污染物的化学活性与生物活性也有直接影响。因此,土壤中溶解性有机物的消长动态已成为当前农业生态学领域的研究焦点问题之一。本文综述了土壤中溶解性有机物的迁移转化规律和主要影响因素,并指出未来的研究重点应在以下几个方面:(1)土壤有机质性质对DOM释放的影响。(2)有机质对DOM数量和质量的影响(3)生物和物理化学因素对土壤中DOM吸附和解吸的影响(4)DOC、DON和DOP迁移转化的差异。  相似文献   

15.
不同有机肥源对土壤微生物生物量及花生产量的影响   总被引:15,自引:1,他引:14  
通过盆栽试验,采用平板计数法和DGGE分析法,研究施用化肥与不同来源的有机肥对土壤微生物生物量及花生产量的影响.结果表明,施肥均显著提高了花生的经济产量与生物产量,其中以施用麸酸有机复混肥处理最高;土壤中细菌、真菌、放线菌总量以施用鸡粪处理最高,其他处理差别不大;土壤微生物总DNA提取、PCR扩增及其产物DGGE分析表明,施用各品种有机肥较不施肥与施用化肥促进了土壤某些微生物量的提高,而施用不同有机肥品种促使不同种类微生物量的提高.故不同有机肥源对土壤微生物生物量乃至其多样性特征均产生影响.  相似文献   

16.
为了探讨不同有机物料施用对作物产量和土壤有机质活性组分的影响,以达到农田增产和土壤培肥的目的,本研究依托2015年在江西省红壤研究所布置的田间施肥试验,设置不施肥(CK)、常量化肥(CF)、减量化肥(RF)、减量化肥配施秸秆(RFR)、减量化肥配施生物黑炭(RFB)、减量化肥配施猪粪(RFP)、减量化肥配施蚓粪(RFV)7种不同施肥处理,研究减量化肥40%条件下配施不同有机物料对作物产量及耕层土壤有机质活性组分的影响。结果表明:在红薯-油菜轮作制度下,减肥配施有机物料处理的作物产量较常量化肥处理都有不同程度的增加,其中RFP、RFV处理油菜籽产量显著高于CF处理(P0.05);减肥配施有机物料处理的土壤微生物生物量有机质(MBOM)、水溶性有机质(DOM)、颗粒性有机质(POM)、易氧化有机质(LOM)含量均高于CF处理,其中油菜季POM含量较红薯季有明显的提升;相关性分析表明,经过两季的施肥处理,SOM和有机质活性组分与作物产量均呈显著正相关关系(P0.05),MBOM、POM、LOM与SOM呈极显著正相关性(P0.01)。可见,不同有机物料替代部分化肥,可以一定程度提高作物产量,更重要的是可以促进土壤有机质活性组分的提高,对于土壤培肥至关重要。  相似文献   

17.
The objective of this work was to identify soil parameters potentially useful to monitor soil quality under different soil management and crop rotation systems. Microbiological and chemical parameters were evaluated in a field experiment in the State of Paraná, southern Brazil, in response to soil management [no-tillage (NT) and conventional tillage (CT)] and crop rotation [including grain (soybean, S; maize, M; wheat, W) and legume (lupin, L.) and non-legume (oat, O) covers] systems. Three crop rotation systems were evaluated: (1) (O/M/O/S/W/S/L/M/O/S), (2) (O/S/L/M/O/S/W/S/L/M), and (3) (O/S/W/S/L/M/O/M/W/M), and soil parameters were monitored after the fifth year. Before ploughing, CO2-emission rates were similar in NT and CT soils, but plough increased it by an average of 57%. Carbon dioxide emission was 13% higher with lupin residues than with wheat straw; decomposition rates were rapid with both soil management systems. Amounts of microbial biomass carbon and nitrogen (MB-C and MB-N, respectively) were 80 and 104% higher in NT than in CT, respectively; however, in general these parameters were not affected by crop rotation. Efficiency of the microbial community was significantly higher in NT: metabolic quotient (qCO2) was 55% lower than in CT. Soluble C and N levels were 37 and 24% greater in NT than in CT, respectively, with no effects of crop rotation. Furthermore, ratios of soluble C and N contents to MB-C and MB-N were consistently lower in NT, indicating higher immobilization of C and N per unit of MB. The decrease in qCO2 and the increase in MB-C under NT allowed enhancements in soil C stocks, such that in the 0–40 cm profile, a gain of 2500 kg of C ha−1 was observed in relation to CT. Carbon stocks also varied with crop rotation, with net changes at 0–40 cm of 726, 1167 and −394 kg C ha−1 year, in rotations 1, 2 and 3, respectively. Similar results were obtained for the N stocks, with 410 kg N ha−1 gained in NT, while crop rotations 1, 2 and 3 accumulated 71, 137 and 37 kg of N ha−1 year−1, respectively. On average, microbial biomass corresponded to 2.4 and 1.7% of the total soil C, and 5.2 and 3.2% of the N in NT and CT systems, respectively. Soil management was the main factor affecting soil C and N levels, but enhancement also resulted from the ratios of legumes and non-legumes in the rotations. The results emphasize the importance of microorganisms as reservoirs of C and N in tropical soils. Furthermore, the parameters associated with microbiological activity were more responsive to soil management and crop rotation effects than were total stocks of C and N, demonstrating their usefulness as indicators of soil quality in the tropics.  相似文献   

18.
Reduction in soil disturbance can stimulate soil microbial biomass and improve its metabolic efficiency, resulting in better soil quality, which in turn, can increase crop productivity. In this study we evaluated microbial biomass of C (MB-C) by the fumigation-extraction (FE) or fumigation-incubation (FI) method; microbial biomass of N (MB-N); basal respiration (BR) induced or not with sucrose; metabolic quotient (obtained by the ratio BR/MB-C) induced (qCO2(S)), or not with sucrose (qCO2); and crop productivity in a 14-year experiment in the state of Paraná, southern Brazil. The experiment consisted of three soil-tillage systems [no-tillage (NT), conventional tillage (CT) and no-tillage using a field cultivator every 3 years (FC)] and two cropping systems [a soybean–wheat-crop sequence (CS), and a soybean–wheat–white lupin–maize–black oat–radish crop rotation (CR)]. There were six samplings in the 14th year, starting at the end of the winter crop (wheat in the CS and lupin in the CR plots) and finishing at full flowering of the summer crop (soybean in the CS and maize in the CR). Differences in microbiological parameters were greater than those detected in the total C (TCS) and total N (TNS) contents of the soil organic matter (SOM). Major differences were attributed to tillage, and on average NT was higher than the CT in the following parameters: TCS (19%), TNS (21%), MB-C evaluated by FE (74%) and FI (107%), and MB-N (142%). The sensibility of the microbial community and processes to soil disturbance in the tropics was highlighted, as even a moderate soil disturbance every 3 years (FC) affected microbial parameters but not SOM. The BR was the parameter that most promptly responded to soil disturbance, and strong differences were perceived by the ratio of qCO2 evaluated with samples induced and non-induced with sucrose. At plowing, the qCO2(S):qCO2 was five times higher under CT, indicating a C-starving low-effective microbial population in the C-usage. In general, crop rotation had no effect on microbial parameters or SOM. Grain yield was affected by tillage and N was identified as a limiting nutrient. Linear regressions between grain yields and microbial parameters showed that soybean was benefited from improvements in the microbial biomass and metabolic efficiency, but with no significant effects observed for the maize crop. The results also indicate that the turnover of C and N in microbial communities in tropical soils is rapid, reinforcing the need to minimize soil disturbance and to balance inputs of N and C.  相似文献   

19.
小麦秸秆腐解对自身锌释放及土壤供锌能力的影响   总被引:2,自引:0,他引:2  
为探讨秸秆在土壤中腐解对其本身所含锌的释放及其对土壤原有锌、外源施入锌形态转化以及对微生物量锌(Mic-Zn)含量的影响,进行了为期42 d的小麦秸秆腐解室内培养试验。结果表明,秸秆在土壤中腐解时CO2-C累积释放量和土壤微生物量碳(Mic-C)随着秸秆添加量的增加而显著增加,而秸秆自身锌含量高低以及外源施锌对其均无明显影响。土壤中无论是否添加秸秆,施入外源锌均明显增加了土壤Mic-Zn和土壤有效锌(DTPA-Zn)含量,土壤交换态锌(Ex-Zn)和松结有机态锌(Wbo-Zn)含量也明显增加;与低锌秸秆相比,高锌秸秆在土壤中腐解可明显增加土壤Mic-Zn和DTPA-Zn含量,提高土壤Ex-Zn和Wbo-Zn比例;秸秆腐解本身释放的锌主要转化为有效性较高的Ex-Zn。因此,增加秸秆还田量以及使用高锌秸秆还田能显著增加土壤Wbo-Zn比例,提高土壤有效锌含量,从而增强土壤供锌能力。  相似文献   

20.
Variations in temperature and moisture play an important role in soil organic matter (SOM) decomposition. However, relationships between changes in microbial community composition induced by increasing temperature and SOM decomposition are still unclear. The present study was conducted to investigate the effects of temperature and moisture levels on soil respiration and microbial communities involved in straw decomposition and elucidate the impact of microbial communities on straw mass loss. A 120-d litterbag experiment was conducted using wheat and maize straw at three levels of soil moisture (40%, 70%, and 90% of water-holding capacity) and temperature (15, 25, and 35°C). The microbial communities were then assessed by phospholipid fatty acid (PLFA) analysis. With the exception of fungal PLFAs in maize straw at day 120, the PLFAs indicative of Gram-negative bacteria and fungi decreased with increasing temperatures. Temperature and straw C/N ratio significantly affected the microbial PLFA composition at the early stage, while soil microbial biomass carbon (C) had a stronger effect than straw C/N ratio at the later stage. Soil moisture levels exhibited no significant effect on microbial PLFA composition. Total PLFAs significantly influenced straw mass loss at the early stage of decomposition, but not at the later stage. In addition, the ratio of Gram-negative and Gram-positive bacterial PLFAs was negatively correlated with the straw mass loss. These results indicated that shifts in microbial PLFA composition induced by temperature, straw quality, and microbial C sources could lead to changes in straw decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号