共查询到19条相似文献,搜索用时 62 毫秒
1.
荒漠土壤有机质含量高光谱估算模型 总被引:11,自引:6,他引:11
为解决荒漠土壤有机质含量高光谱估算存在的困难,提高土壤有机质含量估算的精准性,该文对准噶尔盆地东部荒漠土壤进行采样、化验分析和光谱测量、处理,分析土壤光谱与有机质含量的相关性,确定敏感光谱波段,建立荒漠土壤有机质含量多种高光谱估算模型,旨在通过模型精度的比较,确定最优模型。结果表明:反射率、倒数对数光谱与荒漠土壤有机质含量相关性低,而经过一阶微分、二阶微分变换后,相关系数有所提高,部分波段的相关系数通过0.01显著水平的检验,可以用来荒漠土壤有机质含量的估算;一元线性回归建立的估算模型的精度低,不适用荒漠土壤有机质含量高光谱的估算。荒漠土壤有机质多元逐步回归模型的二阶微分、倒数对数二阶微分修正决定系数得到了较大提高,分别提高了0.22和0.31,均方根误差下降了0.66和0.80,建模精度高于一元线性回归模型。荒漠土壤有机质一阶微分、二阶微分光谱的最小偏二乘回归模型的决定系数比其多元逐步回归模型提高了0.07、0.04,一阶微分、二阶微分均方根误差都下降了0.11,二阶微分偏最小二乘法回归模型是该研究所建12个模型的最优估算模型。在多元逐步、偏最小二乘回归模型中,最优估算模型是二阶微分模型,因而用偏最小二乘法回归估算荒漠土壤有机质含量是个可行的方法。该研究的成果为荒漠土壤有机质高光谱遥感分析提供了支撑,实现荒漠土壤有机质监测的时效性、准确性,为区域生态环境的修复提供依据。 相似文献
2.
以黄淮海平原典型县——封丘县为研究区,探讨了在一年两熟、裸土时间窗口较短的区域中,基于两景影像波段组合构建的双时相光谱指数在有机质含量预测中的表现。研究共计采集117个代表性土样,以分析筛选出的裸土期(10月)内双时相(获取时间:2014年10月6日和2017年10月30日)高质量Landsat 8卫星影像作为数据源,构建了4种类型的光谱指数:比值光谱指数、差值光谱指数、归一化光谱指数以及优化光谱指数,并结合最小绝对收缩和选择算子变量筛选方法和支持向量机算法建立了有机质预测模型。留一交叉验证结果表明,与直接使用影像波段反射率或者基于单景影像构建的光谱指数(单时相光谱指数)相比,利用双时相光谱指数可以更好地利用时相信息优势,其有机质预测精度更高(R2=0.53,RMSE=2.01 g/kg)。而且,基于双时相光谱指数所构建的预测模型得到的有机质空间分布格局与真实值较为吻合。可见,本文提出的在黄淮海平原典型县域利用双时相光谱指数预测土壤有机质的方法,可以促进具有短裸土期特点区域的高分辨率土壤属性遥感预测与制图研究。 相似文献
3.
基于多光谱遥感图像的青海湖流域土壤有机质估算初探 总被引:1,自引:1,他引:1
土壤有机质是土壤固相部分的重要组成成分,也是陆地表层重要的碳库,其含量的快速、准确测定关乎农牧业生产活动安排与地表过程研究中关键参数的获取效率。为了探寻适合青藏高原高寒地区土壤有机质遥感反演的响应波段及遥感模型,实现区域像元尺度上的土壤表层有机质估算,本文利用Landsat8-OLI多光谱遥感数据与实地采样数据对青海湖流域表层(0~20 cm)土壤进行了有机质含量反演研究。结果表明:Landsat8-OLI影像的第5、6和7波段是青海湖流域土壤有机质含量的特征波段,基于这3个波段构建的土壤有机质遥感反演三元回归模型(R~2=0.704,P0.001),经实测点验证(RMSE=8.66)与相关文献研究结果验证(RMSE=8.85),精度高、稳定性强、预测趋势平稳。本研究不仅为高寒地区土壤有机质含量快速测定提供了一定的技术支持,也为高寒地区的碳库计算、土壤肥力评价、土壤碳循环、农作物估产、草地退化监测等提供了参考。 相似文献
4.
基于偏最小二乘回归的土壤有机质含量高光谱估算 总被引:14,自引:16,他引:14
为实现基于光谱分析土壤有机质含量的快速测定,该文以江汉平原公安县的土壤为研究对象,进行室内理化分析、光谱测量与处理等一系列工作,在土壤原始光谱反射率(raw spectral reflectance,R)的基础上,提取了其倒数之对数(inverse-log reflectance,LR)、一阶微分(first order differential reflectance,FDR)和连续统去除(continuum removal,CR)3种光谱指标,分析4种不同形式的光谱指标与有机质含量的相关性,对相关系数进行P=0.01水平上的显著性检验来确定显著性波段的范围,并基于全波段(400~2 400 nm)和显著性波段运用偏最小二乘回归(partial least squares regression,PLSR)建立了该区域土壤有机质高光谱的预测模型,通过模型精度的比较确定最优模型。结果表明,进行CR变换后,光谱曲线的特征吸收带更加明显,相关系数在可见光波段范围内有所提高;基于全波段的PLSR建模效果要优于显著性波段,其中以CR的预测精度最为突出,其模型的决定系数R2和相对分析误差RPD分别为0.84、2.58;显著性波段的PLSR模型与全波段对比在模型精度方面虽有一定差距,但从模型的复杂程度来比较,具有模型简单、运算量小、变量更少的特点;最后,综合比较了全波段和显著性波段4种光谱指标的反演精度,发现CR-PLSR模型的建模和预测的效果比R-PLSR、LR-PLSR、FDR-PLSR模型都要显著。该研究可为将CR-PLSR高光谱反演模型用于该区域土肥信息的遥感监测提供参考。 相似文献
5.
以新疆博斯腾湖西岸湖滨绿洲为研究区,利用实测的土壤有机质含量与高光谱数据,通过多元逐步回归与偏最小二乘回归法分别构建反演土壤有机质含量估算模型.结果表明:(1)研究区土壤有机质含量变化范围为5.09~44.00 g·kg-1,均值为16.87 g·kg-1,变异系数为44.69%,呈中等变异;土壤有机质含量与土壤光谱反... 相似文献
6.
利用高光谱和GF-1模拟多光谱进行土壤有机质预测和制图研究 总被引:3,自引:1,他引:3
利用土壤有机质(SOM)高光谱数据和模拟GF-1多光谱影像的波段响应函数生成的宽波段多光谱模拟数据,对比高光谱预处理和构建土壤植被指数,探索模拟GF-1光谱预测SOM的潜力。研究表明,SOM的一阶微分高光谱和模拟GF-1光谱数据构建的土壤指数与SOM的相关性最好。PLSR建模分析表明采用一阶微分高光谱数据可以很好的对SOM进行预,而且模型稳健(R2=0.962,RPD=4.87);模拟GF-1光谱也可以较好的进行SOM的预测,但是模型的稳定性相对较差R2=0.557,RPD=1.43。同时,SOM制图的空间分布表明,采用一阶微分光谱数据和模拟GF-1数据预测得到的SOM含量与实测的SOM表现出相似的空间分布特征。这为采用多光谱数据进行大尺度、大范围的SOM预测提供了基础。 相似文献
7.
草地生物量的高光谱遥感估算模型 总被引:17,自引:2,他引:17
为了推进高光谱遥感在草地生理生化参数定量化方面的研究与应用,从冠层尺度上估算草地生物量,该文选用美国ASD公司的ASD FieldSpec Pro FRTM光谱仪,对内蒙古自治区锡林郭勒盟的天然草地进行高光谱遥感地面观测。在进行天然草地地上生物量与原始光谱和高光谱特征变量相关分析的基础上,将观测数据分成两组:一组观测数据作为训练样本,运用单变量线性、非线性和逐步回归分析方法,建立生物量高光谱遥感估算模型;另一组观测数据作为检验样本,进行精度检验。结果表明:生物量与高光谱吸收特征参数变量的分析中,以840、1132、1579、1769和2012 nm等5个原始高光谱波段反射率为变量的逐步回归估算方程为最佳模型,模型标准差为0.404 kg/m2,估算精度为91.6%,说明可以利用高光谱反射率数据,从冠层上对草地生物量进行量化。 相似文献
8.
基于光谱变换的高光谱指数土壤盐分反演模型优选 总被引:6,自引:7,他引:6
该文探索基于光谱变换建立光谱指数,进而建立土壤盐分反演模型的可行性。运用倒数、导数、对数等15种光谱变换对土壤含盐量进行反演,并利用原始光谱的波段反射率构造光谱指数对土壤盐分进行建模。在15种高光谱变换中,一阶微分R'和一阶对倒数(log1/R')变换下土壤盐分估算模型的精度较高。但总体而言,基于单一光谱变换和光谱指数的模型模拟精度均较低。采用光谱变换建立光谱指数,并进一步建立土壤盐分反演模型,结果表明,基于(log1/R')光谱变换构建归一化植被指数,然后建立的土壤盐分精度最高,经验证,其R2为0.89,均方根误差为3.34 g/kg,高于单一方法构建的模型,可为半干旱地区土壤盐分反演提供参考。 相似文献
9.
以卷积神经网络(Convolutional Neural Network,CNN)为代表的深度学习方法因具有强大的特征学习能力已被广泛应用于计算机视觉、自然语言处理等领域,但在土壤高光谱遥感领域研究较少。为探究其在小样本数据集下,通过高光谱数据估算土壤有机质(Soil Organic Matter,SOM)的可行性,以江西省奉新县北部为研究区,248个红壤样本为研究对象。对比分析深度学习方法CNN、多层感知器(Multilayer Perceptron,MLP)、常用的机器学习方法随机森林(Random Forest,RF)和支持向量机(Support Vector Machine,SVM)在不同光谱预处理下的建模效果,在此基础上分别建立5种各具特点的CNN结构模型,以探讨不同网络结构的建模效果,包括最早提出的LeNet-5、具有大卷积核的AlexNet-8、采用小卷积核的VGGNet-7、含有Inception结构的GoogLeNet-7以及使用残差学习的ResNet-13。此外,还探讨了VGGNet模型在5种不同网络深度下的模型效果。结果表明:在使用原始光谱的情况下,CNN模型依然能够取得较好的建模效果(相对分析误差>2.5);浅层CNN结构优于深层建模效果,超参数较小的卷积核、步长和池化范围有助于提取更多的特征数量,提高建模精度;VGGNet-7网络结构在所有模型中表现最为突出,在训练集上决定系数为0.895,均方根误差为4.145 g/kg,相对分析误差为3.447,在验证集上决定系数为0.901,均方根误差为4.647 g/kg,相对分析误差为3.291,具有极好的模型估测能力;680、1 360、1 390、1 920、2 310 nm及其附近是VGGNet-7建模过程中所提取的SOM重要特征波长。因此,CNN能够简化光谱预处理过程,在土壤高光谱遥感小样本建模中具备可行性,具有非常广阔的应用前景,VGGNet-7可以应用于红壤地区通过高光谱数据快速、准确的估算SOM含量。 相似文献
10.
快速准确地估算牧草粗蛋白(crude protein, CP)含量是开展草原牧草生长监测和管理的重要内容之一。高光谱数据是牧草CP含量监测的理想数据源,然而,现有牧草CP含量高光谱反演方法缺乏对光谱多粒度信息的有效利用。针对该问题,提出一种新的多粒度光谱特征提取方法 MGSS(multi-granularity spectral segmentation),以青海高原典型牧场为样区,对MGSS估算牧草CP含量的有效性进行验证。结果表明:1)在相同数量的自变量下,MGSS均能取得优于原始光谱的CP含量估测性能;2)MGSS最优估测模型的决定系数(coefficient of determination, R~2)、均方根误差(root mean squared error, RMSE)和平均相对误差(mean relative error, MRE)分别为0.937、1.906 g/m~2和8.82%,比原始光谱最优模型的R~2高0.06,RMSE和MRE分别低0.75 g/m~2和1.37个百分点。可知,MGSS实现了高光谱影像对牧草CP含量的高性能估算,相比原始光谱性能更优,验证了其有效性,可为牧草CP含量的准确估算提供新的技术手段。 相似文献
11.
基于灰度关联-岭回归的荒漠土壤有机质含量高光谱估算 总被引:6,自引:7,他引:6
为改善高光谱技术对荒漠土壤有机质的估测效果,该文采集了以色列Seder Boker地区的荒漠土壤,经预处理、理化分析后将土样分为砂质土和黏壤土2类,再通过光谱采集、处理得到6种光谱指标:反射率(reflectivity,REF)、倒数之对数变换(inverse-log reflectance,LR)、去包络线处理(continuum removal,CR)、标准正态变量变换(standard normal variable reflectance,SNV)、一阶微分变换(first order differential reflectance,FDR)和二阶微分变换(second order differential reflectance,SDR)。通过灰度关联(gray correlation,GC)法确定SNV、FDR、SDR为敏感光谱指标,采用偏最小二乘回归(partial least squares regression,PLSR)法和岭回归(ridge regression,RR)法,构建基于敏感光谱指标的土壤有机质高光谱反演模型,并对模型精度进行比较。结果表明:砂质土有机质含量的反演效果要优于黏壤土;基于SNV指标建立的模型决定系数R~2和相对分析误差RPD均为最高、均方根误差RMSE最低,所以SNV是土壤有机质的最佳光谱反演指标;对SNV-PLSR模型和SNV-RR模型综合比较得出,SNV-RR模型仅用全谱4%左右的波段建模,实现了更为理想的反演效果:其中,对砂质土有机质的预测能力极强(R_p~2为0.866,RMSE为0.610 g/kg、RPD为2.72),对黏壤土有机质的预测能力很好(Rp2为0.863,RMSE为0.898 g/kg、RPD为2.37)。荒漠土壤有机质GC-SNV-RR反演模型的建立为高光谱模型的优化、土壤有机质的快速测定提供了一种新的途径。 相似文献
12.
基于分数阶微分预处理高光谱数据的荒漠土壤有机碳含量估算 总被引:3,自引:6,他引:3
对光谱数据进行预处理是提升高光谱建模精度十分必要和有效的途径。为了研究分数阶微分预处理方法在高光谱数据估算荒漠土壤有机碳含量中的应用,该研究以艾比湖流域为研究靶区,利用2015年5月采集的103个表层土壤样本的实测有机碳数据和室内测定的高光谱数据,以0.2阶为步长对原始光谱反射率及对应的倒数变换、对数变换、对数倒数变换、均方根变换的0-2阶微分进行分数阶运算预处理并研究其与土壤有机碳含量相关性,基于通过0.01显著性检验的特征波段对土壤有机碳含量进行偏最小二乘回归建模并进行精度分析。结果表明:1)分数阶微分预处理可以细化土壤有机碳及其光谱反射率相关性的变化趋势;2)各阶微分预处理后的相关系数通过显著性检验波段的数量均呈现先增后减的趋势,但波段数量最多的对应阶数并不统一;3)对数变换的1.6阶微分所建立的模型为最优模型,该模型的RMSEC=2.433 g/kg,R2c=0.786,RMSEP=2.263 g/kg,R2p=0.825,RPD=2.392。说明了分数阶预处理过后的模型精度和稳健性较整数阶微分有了大幅提升,并且运用在高光谱反演土壤有机碳含量上是可行的。 相似文献
13.
基于HJ卫星的棉田土壤有机质空间分布格局反演 总被引:4,自引:2,他引:4
以北疆绿洲区棉田表层土壤为研究对象,利用国产HJ-1A/1B卫星CCD多光谱数据对裸土有机质空间分布格局进行研究。通过分析多光谱数据不同波段的光谱反射率及其变换形式与实地采样得到的土壤有机质含量的相关性,探寻适合绿洲区棉田表层土壤有机质含量快速反演的敏感波段及参数,并针对不同参数分别建立一元线性、二次、三次、对数、倒数、幂函数、生长型、S型回归模型,以及多元回归模型;对生成的模型进行综合对比分析,获取北疆绿洲区棉田表层土壤有机质含量的最佳反演模型,从而实现整个研究区土壤有机质空间格局的遥感反演。结果表明:HJ卫星多光谱数据4个波段的反射率均与土壤有机质含量存在显著的相关性,第3波段的倒数与土壤有机质含量相关性最为显著;且以第3波段光谱反射率作为因变量得到的三次线性回归模型对土壤有机质含量进行反演的效果最佳;通过空间布局反演得到研究区土壤有机质空间分布整体呈现南北两端有机质含量较高,中部有机质含量较低的格局。该研究表明虽然与黑土有机质含量具有差别,但是遥感技术仍能够作为绿洲区土壤有机质含量空间布局反演的方法,为遥感技术在土壤参数监测中更好的发挥作用提供理论支持,同时也为新疆棉田生产管理和农田可持续利用提供科学依据。 相似文献
14.
基于多元地统计的土壤有机质含量空间格局反演 总被引:2,自引:2,他引:2
为了提高土壤有机质含量的空间预测精度,该文采用了一种多元地统计方法来构建遥感定量反演模型。考虑到回归误差在空间上具有一定程度的聚类,该文提出了基于局部变化均值的普通克里金方法,然后用其构建土壤有机质含量遥感定量反演模型。对四川省西南部土壤有机质含量进行空间预测试验,并与普通克里金、普通遥感定量反演、基于回归克里金的遥感定量反演等方法相比较。结果表明:该文提出方法的空间预测结果最优,其原因为该方法通过空间统计来建立采样数据与地表反射率间的联系,充分考虑了数据间的空间相关性,因此可以更精确地获得土壤有机质含量的遥感反演模型;相比基于回归克里金的遥感定量反演方法,基于局部变化均值的普通克里金假设回归误差在局部邻域内的均值也不一定为零,更符合实际情况。该方法为农田养分管理及区域农业的可持续发展提供科学依据。 相似文献
15.
基于Worldview-2影像的玉米倒伏面积估算 总被引:4,自引:5,他引:4
为应用高分辨率遥感影像准确调查玉米倒伏面积,该文使用2012年9月14日获取的Worldview-2多光谱影像研究灌浆期倒伏玉米的光谱、纹理特征及其最优的面积估算方法。通过对影像进行大气校正后得到正常玉米和倒伏玉米的反射率,结果显示玉米倒伏后8个波段的反射率均升高,其中红边、近红外1和近红外2等3个波段的上升数值超过0.1。通过对反射率数据进行滤波得到正常、倒伏玉米的均值纹理特征,统计结果显示各波段纹理特征有差异,其中绿色、红边、近红外1及近红外2等4波段的均值纹理特征数值差距更明显。比较使用不同波段数量、特征及分类方法的倒伏面积估算值,结果表明基于最大似然分类法使用红边、近红外1和近红外2等3波段光谱反射率的倒伏面积估算方法最优,其最小误差为2.2%,最大误差为8.9%,平均误差为4.7%。该研究结果为应用高分辨率多光谱遥感数据调查玉米倒伏面积提供了相关依据。 相似文献
16.
基于连续小波变换的潮土有机质含量高光谱估算 总被引:2,自引:4,他引:2
土壤有机质含量快速估算对于土壤肥力评价、土壤信息化管理和精准施肥具有重要意义。该文通过对北京顺义地区64个土壤样品高光谱曲线进行连续小波变换,估算了该地区潮土有机质质量分数,并与4种常用光谱变换方法进行了比较。结果表明,潮土具有与其他类型土壤类似的光谱曲线,经过去包络线处理后,在可见与近红波段都出现了明显吸收峰;采用连续小波变换方法所确定的潮土有机质估算的敏感波段为1194、486和866nm,对应小波分解尺度为2,3和4;利用小波能量系数与有机质质量分数所构建的多元线性回归模型的决定系数R2为0.67,模型实测值与预测值的检验精度R2为0.75,RMSE为0.21;而采用4种常用光谱变换方法建立的潮土有机质估测模型的R2最高只有0.09,说明连续小波变换方法更适合于潮土有机质质量分数估测。Kringing插值分析表明,应在顺义地区东南部增加取样点,以提高模型估算精度。该研究可为潮土土壤肥力的快速测定提供参考。 相似文献
17.
基于HJ-1卫星的农田土壤有机质含量监测 总被引:3,自引:1,他引:3
土壤状况是决定农田潜在生产力的主要因素,土壤性状及肥力状况信息可以为精准农田管理提供响应依据。利用遥感技术监测土壤养分含量是一种快速、准确、高效、经济的方法。以农田土壤有机质为研究对象,以HJ-1卫星数据为数据源,采用多元线性回归分析方法,构建有机质含量地面监测模型,通过直方图匹配方法求地面监测模型与HJ-1卫星监测模型之间的傅里叶转换函数,将地面监测模型应用到HJ-1卫星数据,并构建有机质含量遥感监测模型。实现了利用HJ-1卫星遥感数据对试验区土壤有机质含量进行监测。该模型监测结果与地面实际养分具有良好的线性关系,其决定系数0.93,标准差0.57%。在保持了较高精度的同时,避免了其他高光谱模型数据过于昂贵的问题,实现了有机质含量快速、经济监测,易于在农业中应用。 相似文献
18.
黑土区田块尺度土壤有机质含量遥感反演模型 总被引:5,自引:4,他引:5
为了对田块尺度土壤有机质进行空间反演并提高模型精度和稳定性,该文以黑龙江省黑土带41.3 hm~2田块为例,获取2016年5月中下旬两期(受限于拍摄周期和天气原因而选择不同卫星影像,2016年5月17日Landsat 8影像和5月25日Sentinel-2A影像)裸土时期遥感影像和4 m分辨率DEM数据;分析单期影像与土壤有机质(soil organic matter,SOM)的关系,两期影像所包含的土壤含水量变化信息与地形因素对SOM预测模型精度的影响,建立基于BP神经网络的SOM遥感反演模型。结果表明:该田块内SOM含量差异较大;利用单期影像预测SOM时,基于红波段和785~899 nm波段建立的预测模型精度(建模均方根误差RMSE 1.033,检验RMSE 1.079)和稳定性(建模决定系数R2 0.677,检验R20.644)较高;两期影像时,基于红波段和1 570~1 650 nm波段建立的预测模型精度(建模RMSE 0.855,检验RMSE 0.898)和稳定性(建模R2 0.792,检验R2 0.797)显著提高;在两期影像模型基础上,加入地形因子作为输入量,模型精度(建模RMSE 0.492,检验RMSE 0.499)和稳定性(建模R2 0.917,检验R2 0.928)进一步提高。研究成果可为土壤碳库估算和农田精准施肥提供理论与技术支持。 相似文献
19.
基于多源遥感数据的草地生物量估算方法 总被引:2,自引:4,他引:2
为了寻求有效的草地生物量估算方法和精确估计荒漠草原草地生物量及其变化规律,该文探讨了利用全极化RADARSAT-2 C波段雷达数据和HJ1B图像及野外调查获得的样方生物量数据,估算荒漠草原人工柠条灌木林地上生物量的方法。在对柠条灌木林地上生物量和雷达后向散射系数及HJ1B图像归一化植被指数(normalized difference vegetation index,NDVI)进行相关分析的基础上,采用多元逐步回归分析从RADARSAT-2数据及HJ1B植被指数NDVI建立了人工柠条林生物量模型,用实测草地生物量值对模型进行验证,同时将光学和雷达图像进行融合和分类处理,在此基础上对草地生物量进行分布制图,并将其结果与HJ1B的NDVI模型生物量估算结果进行对比。结果表明:柠条林地上生物量与RADARSAT-2雷达后向散射系数之间存在较好的定量关系(决定系数R2=0.71,均方根误差(root mean square error,RMSE)=14.2 kg/hm2,P0.001),其估算生物量与实测生物量一致性较好,估算生物量精度优于HJ1B的NDVI指数估算结果(R2=0.27,RMSE=20.58 kg/hm2)。由此可见,利用光学图像HJ1B和雷达数据RADARSAT-2融合分类能进行地物有效识别,雷达遥感数据可以用于草地结构参数的定量研究。利用光学和微波协同遥感进行草地生态系统监测研究具有一定的应用潜力。 相似文献