首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为提高Hargreaves-Samani(H-S)模型对参考作物蒸散量(reference crop evapotranspiration,ET0)的计算精度,利用川中丘陵区13个代表站点1954~2013年近60 a逐日数据,依据贝叶斯原理并考虑辐射的影响对H-S模型进行改进,并以Penman-Monteith(P-M)模型为标准,对其在川中丘陵区的适用性进行评价。结果表明:1)H-S改进模型与P-M模型ET0计算结果变化趋势基本一致;2)与H-S模型相比,在3个区域H-S改进模型计算的ET0旬值平均绝对误差分别由0.93、0.95、0.93 mm/d下降到0.15、0.19、0.28 mm/d,且3个区域ET0旬值拟合方程斜率分别由1.45、1.39、1.45变为0.89、0.94、0.90,Kendall一致系数由0.70、0.80、0.82提高到0.88、0.92、0.94,拟合效果与计算精度均明显提高;3)在3~10月的作物主要生长期,3个区域ET0月值平均绝对误差分别由0.89、1.14、1.28 mm/d下降到0.46、0.29、0.21 mm/d,ET0月值回归拟合方程斜率及一致性均明显提高;4)H-S改进模型随海拔升高计算精度有所降低,H-S改进模型全年内计算精度最大可提高47%,尤其在作物主要生长期,精度最大提高了48%。因此,H-S改进模型可显著提高ET0计算精度,在海拔较低的区域尤为明显,可作为川中丘陵区ET0计算的简化推荐模型。  相似文献   

2.
实测草坪蒸散量评价P-M模型在北京地区适用性   总被引:2,自引:5,他引:2  
为了研究北京地区的参考作物蒸散(reference evapotranspiration,ET0)特征以及Penman-Monteith(P-M)模型的适用性,2012-2014年生长季,应用蒸渗仪实测了冷季型高羊茅(Festuca arundinacea)、暖季型野牛草(Buchloe dactyloides)和乡土草种青绿苔草(Carex leucochlora)3种草坪的蒸散,应用自动气象站监测了试验地的太阳辐射、温度、空气相对湿度、风速等气象参数,通过P-M模型计算获得了ET0。将同期的P-M模型计算值与实测值进行了不同天气以及不同尺度下的比较分析,应用线性回归斜率与决定系数(R2)以及均方根误差(root mean square error,RMSE)与一致性指数(d)等统计参数进行了一致性评价。结果表明,P-M模型计算ET0与实测值在日、周、月尺度上均呈现一致的变化趋势。北京地区ET0高峰出现于5月,蒸散速率分别为4.18±0.27(P-M模型)、4.43±0.98(高羊茅)、3.96±0.23(青绿苔草)、3.53±0.25 mm/d(野牛草),10月最低。P-M模型计算的ET0与太阳辐射、平均气温、最高气温均呈极显著的线性关系,其中ET0与太阳辐射回归的R2最高,达到0.885。天气影响P-M模型的准确性,P-M模型计算ET0与草坪实测值的比值随着太阳辐射的降低(从晴天到雨天)而升高。P-M模型高估了阴雨天下的ET0。P-M模型计算ET0与实测值的RMSE和d值均随评价尺度减小而增大。实测ET0在3种草坪间差异显著,高羊茅青绿苔草野牛草。P-M模型计算ET0与高羊茅实测值的一致性最高,具有接近1.0的回归方程斜率(0.99~1.03)、最小的均方根误差(0.62~1.05 mm/d)和最高的一致性指数(0.89~0.90)。P-M模型在北京地区有较好的适用性,但在阴雨天气及春季低温情况下会高估ET0。  相似文献   

3.
以称重式蒸渗仪实测温室茄子日蒸散量为标准值,对基于FAO-56 P-M法(P-M_s)、修正P-M法(P-M_m)、Priestley-Taylor法(P-T)和Irmak-Allen法(I-A)4种模型方法计算的温室茄子日蒸散量进行对比分析,评价各方法在温室内的适用性。结果表明,利用4种模型方法计算得到的温室茄子日蒸散量与实测值(ET_c)均具有相似的生育期变化规律,但各方法的计算精度差异明显。其中基于P-M_m法得到的ET_(c-m)高估了32.1mm,而基于P-M_s、P-T和I-A法计算得到ET_(c-s)、ET_(c-PT)和ET_(c-IA)则分别低估了132.3mm、80.0mm和53.5mm。ET_(c-m)与实测值(ET_c)的相关性最高,方程决定系数R~2为0.905(P0.01),一致性指数达0.944,RMSE仅为0.769mm·d~(-1);而基于I-A法计算得到的ET_(c-IA)与实测蒸散量的方程决定系数也较高(R~2=0.775),一致性指数为0.828。P-M_s和P-T法在温室内应用均有较大误差,其中,ET_(c-s)和ET_(c-PT)仅相当于实测值(ET_c)的59.4%和74.8%,一致性指数分别为0.723和0.748,RMSE则分别达1.672mm·d~(-1)和1.304mm·d~(-1)。因此,计算温室作物蒸散量可优先选择P-M_m法,而在气象数据短缺时,I-A法可作为替代方法在温室内使用。  相似文献   

4.
四川省不同区域参考作物蒸散量计算方法的适用性评价   总被引:2,自引:2,他引:0  
为实现参考作物蒸散量(reference crop evapotranspiration,ET0)在资料缺失情况下的准确计算,对ET0简化算法在四川省不同区域的适用性进行科学评价,将四川省划分为4个区域(I东部盆地区、II盆周山地区、III川西南地区和IV川西高原区),采用46个气象站点1954-2013年逐日气象资料,以1998 FAO-56 Penman-Monteith(PM)法的计算结果为标准,对具有代表性的6种简易算法48 Penman(48PM)法、Hargreaves-Samani(HS)法、Pristley-Taylor(PT)法、Irmark-Allen(IA)法、Makkink(MAK)法和Penman-Van Bavel(PVB)法的计算精度进行对比,结果表明:6种方法在四川省不同区域计算精度差异明显,HS法、PT法和PVB法较为精准,48PM法、IA法和MAK法误差较大,其中I区表现最好的为HS法,II、III和IV区表现最好的方法均为PT法;同时,除PT法和PVB法外,其余方法空间变异性较大(HS法在海拔较低的I、II区较为精准,在海拔较高的III和IV区结果远小于PM法,48PM法在四川东南地区的计算误差为11.1%~37.5%,在浅山丘区和高原区计算误差多大于50%)。因此,计算四川省的参考作物蒸散量时,推荐在东部盆地区使用HS法,盆周山地区、川西南地区与川西高原区使用PT法。  相似文献   

5.
为提高中国三大灌区(都江堰灌区、河套灌区和淠史杭灌区)参考作物蒸散量(reference crop evapotranspiration,ET 0 )温度法的计算精度,选取 8 个代表性站点 1961-2014 年逐日气象资料,采用 Irmark-Allen(IA)、Hargreaves and Samani(HS)、Turc(Tur)、McCloud(MC)、Schendel(Sch)、Trajkovic (Tra)、Droogres and Allen?1(DA-1)和 Droogres and Allen?2(DA-2)共 8 种温度法计算 ET 0 ,以 FAO-56 Penman-Monteith(PM)法计算结果为标准,基于各方法计算的 ET 0 日值线性回归方程(y=kx+b),分别 在都江堰灌区选取 IA 法和 Tra 法,河套灌区选取 HS 法、DA-1 法和 DA-2 法,淠史杭灌区选取 IA 法、 HS 法、DA-1 法和 DA-2 法,引入调差参数对模型进行修订,利用均方根误差(RMSE)、平均相对误差 (MRE)和 Nash-Sutcliffe 系数(NS)对其适应性进行评价。结果表明:都江堰灌区和淠史杭灌区所选 模型修订后计算精度均有明显提高,河套灌区提高不明显;都江堰灌区 IA 修订模型(IA-Du 法)在该灌 区计算精度最高,其日值、旬值的 RMSE、MRE 和 NS 分别为 0.318mm·d-1 、0.120 和 0.923,0.201mm·d-1 、 0.093 和 0.959,且在不同月份均有较高计算精度;河套灌区计算精度最高模型为 HS 法,其日值、旬值 的 RMSE、MRE 和 NS 分别为 0.898mm·d-1 、0.326 和 0.785,0.547mm·d-1 、0.223 和 0.904,且在 1-5 月 和 10-12 月具有较高计算精度;淠史杭灌区 IA 修订模型(IA -Pi 法)在该灌区计算精度最高,其日值、旬 值的 RMSE、MRE 和 NS 分别为 0.534mm·d -1 、0.195 和 0.861,0.390mm·d -1 、0.167 和 0.896,且在不同 月份均具有较高计算精度。因此,推荐 IA -Du 法、HS 法和 IA -Pi 法分别作为都江堰灌区、河套灌区和淠史 杭灌区计算参考作物蒸散量的方法。  相似文献   

6.
为探明鄱阳湖流域潜在蒸散的变化特征,揭示不同季节潜在蒸散趋势差异及其气候成因,该研究基于1981-2019年鄱阳湖流域74个气象站点的逐日气象资料,利用Penman-monteith公式计算各站点逐日潜在蒸散量(ET0),结合敏感性-贡献率法,分析了1981-2019年鄱阳湖流域ET0在年、季尺度上的变化趋势及其主导气...  相似文献   

7.
基于秦淮河流域内部及周边共7个气象站2000-2013年的逐日气象资料,使用FAO-56 Penman- Monteith、Irmak-Allen、Makkink、Turc、Jensen-Haise和Hargreaves共6种方法估算各站点逐日参考作物蒸散量(ET0)。以FAO-56 Penman-Monteith结果为标准,修正其余5种方法估算公式的原始经验系数,并通过平均绝对误差、平均相对误差、相关系数等精度评价指标和Wilcoxon非参数检验法,分别从年、月尺度对比分析5种方法修正前后的估算结果,旨在获得一种适于秦淮河流域的数据要求低,估算过程简单,精度较高的ET0估算方法。分别以5种方法的ET0日值为自变量,P-M法ET0日值为因变量,建立逐月线性回归方程,寻找经验系数的修正倍数,对5种方法经验系数进行逐月修正。结果表明,使用原始经验系数时,年尺度上,Irmak-Allen、Makkink、Turc法存在较大误差,Hargreaves法相关性较差,均不适于秦淮河流域;月尺度上,Irmak-Allen法在5-8月,Turc在9-11月,Hargreaves法在4月及9-11月适用性较好,其余月份误差较大,Makkink和J-H法分别在1-12月和3-11月存在显著差异,故5种方法均不能代替P-M法在年内12个月使用。使用修正后经验系数,年尺度上Makkink法适用性最好,平均绝对误差和平均相对误差分别为14.9mm·a-1和1.4%,相关系数为0.89,无显著差异,其次为Turc法,I-A法估算结果仍存在显著差异,Hargreaves法相关性仍较差;月尺度上,从估算精度考虑,Turc和Makkink法搭配使用,4-10月推荐使用Turc法,其平均绝对误差为2.1~6.1mm·mon-1,平均相对误差为2.9%~4.3%,无显著差异,月平均相对误差波动较小,稳定性好,1-3月和11-12月推荐使用Makkink法,其平均绝对误差为1.2~2.4mm·mon-1,平均相对误差为3.2%~5.7%,无显著差异,月平均相对误差波动较小,稳定性好,从时间连续性考虑,推荐使用Hargreaves法,其平均绝对误差为1.9~10.4mm·mon-1,平均相对误差为3.9%~9.2%,无显著差异,月平均相对误差波动较小,稳定性好。  相似文献   

8.
河南省参考作物蒸散量变化特征及其气候影响分析   总被引:1,自引:0,他引:1  
基于河南省111个气象站1971-2010年逐日平均气温、最高气温、最低气温、相对湿度、风速和日照时数等气候要素资料,应用Penman-Monteith模型计算各站点逐日参考作物蒸散量(ET0),结合数理统计方法,分析近40a来河南省年ET0的时空变化特征,并对其主要影响因子进行探讨.结果表明,Penman-Monteith模型对河南省ET0的模拟能力较强,模拟值与同期小型蒸发皿蒸发量的相关系数r=0.84(P <0.01).近40a,河南省年ET0平均值为796.1mm(±102.2mm,n=4169),在空间分布上,总体表现出北高南低的特征,并以24.7mm·10a-1(P <0.01)的线性倾向率减少,呈明显减少的站点主要分布在34°N以北地区.偏相关分析表明,全省各地(市)年ETo与各气象要素关系密切,除济源外,年ET0均表现出与风速呈负相关且相关系数最大.逐步回归分析显示,年ETo与平均气温、日照时数、风速和相对湿度的关系密切;风速、日照时数和平均气温对年ET0的贡献为正效应,而相对湿度为负效应.近40a,风速减小是导致河南省年ET0呈显著减小的主要原因;但从综合影响看,这是各气象因素综合作用的效果,且各因子的贡献存在区域差异.  相似文献   

9.
安徽省参考作物蒸散模型参数化   总被引:1,自引:1,他引:0  
模型参数优化是准确估算参考作物蒸散(reference crop evapotranspiration,ET0)的关键问题之一。该研究基于安徽省81个地面气象站点1961—2011年逐日气象数据和合肥、武汉、南京、杭州和南昌5个辐射站1993—2011年的逐日辐射数据,评估日尺度的净长波辐射、气压和水汽压模型在安徽地区的适用性;并结合已有研究获得的最优逐日太阳辐射参数化估算模型,建立安徽省本地化逐日ET0模型的最优参数化方案,探讨模型参数优化对ET0估算的影响。结果表明:7种净长波辐射估算参数化方案中,邓根云法的精度最高,在安徽地区的适用性优于其他方案,建议作为安徽本地化方案使用;FAO56 Penman-Monteith公式中推荐的气压估算模型和基于实测平均气温和相对湿度估算水汽压的模型在安徽省基本适用,但该研究认为在资料能够获取的情况下直接使用实测值为最优。与基于实测资料计算的ET0相比,该研究建立的本地化最优模型估算的ET0在日、月和年尺度上的相对误差分别为15.5%、9.05%和6.12%,能较好地适用于安徽地区。FAO56 Penman-Monteith公式推荐的参数化方案由于高估了安徽地区的太阳辐射,低估了净长波辐射,导致其与基于实测资料计算的ET0值相比,在日、月和年尺度上高估ET0达40.0%以上,不推荐安徽地区直接使用。研究可为安徽省准确估算作物需水量、农业旱涝评估和合理调度水资源等提供依据。  相似文献   

10.
基于BCC_CPSv2模式的淮河流域月参考作物蒸散概率订正预报   总被引:1,自引:1,他引:0  
参考作物蒸散(Reference Crop Evapotranspiration,ET0)预报在农业水资源配置、区域干湿演变评估方面有着重要作用。该研究基于国家气候中心第二代气候预测系统(Beijing Climate Center Second-Generation Climate Prediction System,BCC_CPSv2)模式预报数据和1991-2020年淮河流域地面气象观测数据,利用分位数映射法对模式预报的气象要素进行概率订正,采用Penman-Monteith公式计算ET0,并评估了订正前后BCC_CPSv2模式对淮河流域月ET0和气象要素的预报性能。结果表明:1)模式对平均气温、净辐射和相对湿度的预报值较观测值偏小,风速预报值在3-6月偏小,其他月份偏大,4个气象要素预报的均方根误差(Root Mean Square Error,RMSE)分别为1.84 ℃、1.70 MJ/m2d、15.79%和1.39 m/s;气象要素预报偏差导致2-6月ET0预报值较计算值偏小,1月和7-12月偏大,区域平均RMSE为0.59 mm/d,绝对百分比误差(Mean Absolute Percentage Error,MAPE)为21.9%。2)概率订正有效降低了气象要素和ET0的预报误差。气温、净辐射、相对湿度和风速预报订正值的RMSE均小于订正前;80%月份ET0预报订正值的RMSE小于订正前,区域平均RMSE减小了0.23 mm/d,MAPE减小了11.2%。3)夏半年和冬半年ET0预报误差的首要来源分别是净辐射和相对湿度,主要是由于模式对这2个要素的预报精度较低且ET0对其敏感,误差容易传递。可见,基于模式概率订正的月尺度ET0预报方法精度较高,可以为水资源优化管理、灌溉制度制定和农业中长期需水决策提供参考。  相似文献   

11.
目前,测算农田蒸散的方法有许多种,但都难以准确地求出大面积范围内的平均蒸散.红外测温技术由蒸散的估算提供了一种新的方法,本文在对几种冠层温度——蒸散模型评述的基础上,由实测资料用Brown-Rosenbefg模型计算了冬小麦郁闭地面后的农田蒸散并与波文比方法计算的蒸散做了比较.结果表明,该模型可以较好地用于计算作物郁闭地面后的农田蒸散.  相似文献   

12.
非水分胁迫条件下作物腾发的模拟研究   总被引:5,自引:3,他引:2  
建立了一个充分供水条件下的作物腾发量计算模型NWSE(Non-Water Stress Evapo-transpiration)并用田间实验资料进行了验证。模型将作物冠层蒸腾和土壤蒸发作为一个耦联的整体来考虑,可以同时计算棵间蒸发和作物蒸腾。田间实验资料对NWSE模型验证结果表明地表温度模拟值与观测值吻合良好。利用NWSE模型和Penman-Monteith公式以及常规气象资料分别计算了作物的最大腾发量。计算结果比较表明,在叶面积指数较小时,NWSE模型计算结果与Penman-Monteith计算结果存在差别。在叶面积指数较大时,二者的一致性较好。  相似文献   

13.
云贵高原区干旱遥感监测中各干旱指数的应用对比   总被引:3,自引:1,他引:2  
王文  黄瑾  崔巍 《农业工程学报》2018,34(19):131-139
为从年和月尺度上监测云贵地区2000—2014年的干湿变化情况以及蒸散发在干旱中的作用,该文利用MODIS MOD16遥感观测和GLDAS数据模拟逐月实际蒸散发(ETa)与潜在蒸散发(ETp)数据,结合气象站观测降水数据计算3种干旱指数(标准化降水指数SPI,侦测干旱指数RDIst及蒸散发胁迫指数ESI),通过Mann-Kendall趋势检验方法分析了云贵地区近15 a的干湿变化特征,并以2009—2010年西南干旱为例来分析干旱期间蒸散发的作用。结果表明:1)2000—2014年云南中部存在明显的干旱化现象;2)云贵地区2009—2010年干旱期间,ETa和ETp在干旱发展前期的作用较小,但在干旱的演变过程中,逐渐对干旱有加剧作用,其中ETa比ETp对干旱的影响时间更长;3)干旱指数SPI和RDIst受控于降水量的变化,一致反映云贵地区2009—2010年严重干旱的准确发生时间为2009-09—2010-02,而基于ETa和ETp的干旱指数ESI则显示云贵地区干旱发生在2009-11—2010-06,更符合实际干旱演变情况,说明同时考虑ETa和ETp的干旱指数比考虑单一蒸散发因素的干旱指数在监测干旱方面更有效。该研究为提高气象干旱监测可靠性提供了参考。  相似文献   

14.
联合国粮农组织推荐的蒸散计算方法中,蒸散系数是计算实际蒸散必不可少的参数。本文从蒸散系数的定义出发,在2005年额济纳绿洲生长季连续观测的基础上,运用波文比能量平衡法计算额济纳绿洲草地的实际蒸散量,利用FAO 56Penman-Monteith模型计算草地的参考蒸散,将实际蒸散与参考蒸散相除即得到额济纳绿洲草地的蒸散系数。通过研究发现:生长季草地的蒸散量(ETc)为446.96mm,从生长季初期开始,草地的蒸散量开始增加,在6月后半月达到最大值6.724mm/d,此后蒸散量开始快速下降,在生长季末期达到最低值1.215mm/d;蒸散系数(Kc)呈现出与蒸散量(ETc)相同的变化趋势,自生长季初期开始蒸散系数快速上升,在6月后半月达到生长季最大值0.623,之后随着草地生长减缓,蒸散系数快速下降,直至生长季末期草地停止生长。对额济纳绿洲草地蒸散系数的计算可以为该地区准确估算草地生态需水量提供依据。  相似文献   

15.
在温室内研究了香蕉树蒸腾量和小气候的关系,用5种方法计算了温室内的参考作物腾发量,用20 cm蒸发皿测定温室内的水面蒸发力,并和测定的香蕉树蒸腾量进行对比。试验结果显示香蕉树蒸腾量和蒸发皿水面蒸发量的回归系数(R2)最高,为0.94,而和5种公式计算的参考作物腾发量的回归系数为0.47~0.60,以蒸发皿水面蒸发量计算温室内的作物蒸腾量要优于以参考作物腾发量计算作物蒸腾量的方法。温室内香蕉树的蒸腾量和20 cm蒸发皿蒸发量线性相关,可以此计算温室内作物的蒸腾量。  相似文献   

16.
[目的]研究全国二级流域实际蒸散分布式模型,为估算流域实际蒸散提供可靠的依据。[方法]基于研究区1956—1979年的水文、气象数据,运用水量平衡方程和蒸散互补相关理论,提出了改进的流域实际蒸散的通用模型。[结果](1)全国二级流域多年平均实际蒸散发量的空间总体分布具有明显的地带性特征;(2)湿润区和半湿润区的流域实际蒸散与可能蒸散的趋势线有明显的闭合趋势,干旱区和半干旱区流域的实际蒸散与可能蒸散的趋势线之间距离较大,但仍呈现闭合趋势;(3)全国77个二级流域实际蒸散通用模型的模拟误差均在10%以内。[结论]不同二级流域实际蒸散与可能蒸散的互补关系明显存在,改进的通用模型提高了估算流域实际蒸散的精度。  相似文献   

17.
在综合分析气候、植物生物学特性和土壤湿度三方面因素的基础上,利用多年的白杨农田防护林试验资料,建立了塔里木河流域白杨农田防护林蒸散量的计算模式,并利用白杨林实际蒸散量的测量值,对模式进行了验证。结果表明,该模式计算精度较高,可以作为计算塔里木河流域白杨农田防护林蒸散量的一种方法而使用。  相似文献   

18.
三种草本植物蒸散量的对比试验研究   总被引:9,自引:1,他引:9  
利用盆栽试验,对宁夏南部地区3种主要牧草的蒸散量进行了对比研究,结果表明,在生长季中后期人工牧草苜蓿蒸散量的日平均值为4.15mm,分别比芨芨草和长芒草高出24.34%和29.88%。芨芨草由于植株形体高大,其植物蒸腾耗水量相应也较大,故在生长季内总的蒸散量高于长芒草;然而在生长季末由于植物几乎无蒸腾作用而使其总蒸散量略低于长芒草。3种草本植物的蒸散量与土壤含水量呈高度相关,并在此基础上建立了回归方程。  相似文献   

19.
太行山山前平原区蒸散量和作物灌溉需水量的分析   总被引:11,自引:2,他引:9  
应用Penman-Montieth、Priestley-Taylor和FAO-24 Blaney-Criddle 3种方法计算了太行山山前平原高产区的参考作物蒸散量并对计算结果和利用实际蒸散量计算的作物系数进行了分析,结果表明:Penman-Montieth公式和FAO-24 Blaney-Criddle公式估算的参考作物蒸散量结果相近,而Priestley-Taylor方法结果偏低;在不同公式基础上计算的作物系数也存在着明显的差异,以Penman-Montieth公式为基础计算的作物系数比较合理,FAO-24 Blaney-Criddle计算的作物系数在4月到10月之间比较合理,Priestley-Taylor公式计算的作物系数偏高;在分析了多年作物系数的基础上,对不同水分年型下的作物需水量和灌溉需水量进行了计算,冬小麦和夏玉米季的灌溉需水量分别在270~400 mm和0~330 mm之间。  相似文献   

20.
两种Penman-Monteith公式计算草坪草参考腾发量的适用性   总被引:2,自引:0,他引:2  
为了揭示ASCE和FAO56两种Penman-Monteith公式在计算小时参考作物腾发量(ET0)时的差异,开展了充分供水草坪草腾发量观测试验。基于自动气象站的小时气象数据和蒸渗仪试验结果,在对比两公式计算结果差异基础上,以实测的日草坪腾发量为标准评价了2种计算公式小时ET0的日累积结果及以日的计算结果。结果表明:2种Penman-Monteith公式计算的小时ET0结果存在一定差异,ET0较高的时段差异也比较大。白天FAO56 Penman-Monteith公式的计算结果低于ASCE Penman-Monteith公式的计算结果,夜晚则正好相反,原因在于Cd取值的差异。与实测日ET0结果相比2种公式小时时段的ET0结果的累积值误差均比较大,ASCE的改进并没有使Penman-Monteith在计算结果上取得实质性的改进,相比之下以日为时段的Penman- Monteith公式(ASCE同FAO56)取得了与实测结果最为一致的效果。进一步根据实测的小时ET0数据以及更长序列的日ET0实测结果,评价FAO56 Penman-Monteith和ASCE Penman-Monteith结果的地区适用性将是今后研究内容之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号