首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Matrix metalloproteinases (MMPs) play very important roles in extracellular matrix (ECM) remodeling during ovarian follicular development, ovulation and atresia. The aim of the present study was to determine the content of gelatinases in follicular fluid in various sized bovine follicles. Bovine ovaries were collected from local slaughterhouse and follicular fluid from follicles of 2 to over 25 mm in diameter was collected. Gelatinase activity within the follicular fluid was analyzed by gelatin zymography. The concentration of inhibin in the follicular fluid was also measured by immunoblot analysis. The proMMP-2 and alpha-subunit (alphaN) inhibin was detected in all follicles regardless of their size. The abundance of proMMP-2 varied with follicular size, while alphaN inhibin increased significantly (P<0.01) in follicles of 10-14 and 15-20 mm in size. There was a positive and negative correlation between estradiol (E(2)) and progesterone (P(4)) concentrations with abundance of proMMP-2, respectively. Follicles of diameter over 25 mm had greater proMMP-9 activity than other follicles. These same follicles had significantly (P<0.01) lower inhibin levels than follicles of 10-14 and 15-20 mm in size. In conclusion, these results suggest a significant role of these proteases in growth and development of bovine follicle, particularly proMMP-2 and active MMP-2 activities in the follicular fluid could serve as markers of follicular health while abundance of proMMP-9 may possibly denote a follicular cyst.  相似文献   

2.
A mathematical method was developed for characterizing follicular waves in early pregnant mares. For validation, the results were compared to those derived by a method using day-to-day identification of individual follicles (identity method); the same data set was used for both methods. The following steps were used for each mare: 1) depicting individual diameter profiles over Days 0 to 40 for the 3 largest follicles per ovary without regard to day-to-day follicle identity; 2) separating the follicles into large (>20 to >26 mm) and small categories; 3) using the large category to profile the diameters of individual follicles; and 4) using the small category to detect significant waves of follicular activity on the basis of Tukey's multiple-range test. The identity method detected wave emergence at 15 to 16 mm using the retrospectively identified dominant follicle. The mathematical method detected emergence of waves at a mean diameter of 9.5 ± 0.5 mm, 2 days earlier than did the identity method. Allowing for the 2 days earlier detection, the 2 methods led to similar conclusions on the characteristics of follicular waves. The mathematical method has the following apparent advantages: 1) data can be collected more quickly and with less skill than for the identify method; 2) bias due to inspecting data of the previous days, as required in the identity method, can be eliminated; and 3) days of emergence of a follicular wave can be identified earlier and with greater objectivity. The first step of the procedure (profiling the diameters of the 3 largest follicles perovary) should be useful to practitioners and others engaged in clinical research who need a simple method of characterizing follicular waves.  相似文献   

3.
The objective of the present study was to evaluate changes in concentrations of free insulin-like growth factor (IGF)-I in follicular fluid (FFL) during follicle development in the mare. Mares (n = 14) were classified as either in the follicular phase (n = 8) or luteal phase (n = 6). Follicles (n = 92) were categorized as small (6–15 mm; n = 54), medium (16–25 mm; n = 23) or large (>25 mm; n = 15) and FFL was collected. Free IGF-I levels in FFL in large follicles of follicular phase mares were greater (P < 0.05) than in large follicles of luteal phase mares and small or medium follicles of luteal and follicular phase mares. Free IGF-I concentrations were greater (P < 0.05) in large follicles of luteal phase mares than small but not medium follicles of luteal phase mares. FFL ratio of estradiol:progesterone paralleled changes in free IGF-I. Free IGF-I concentrations were negatively correlated (P < 0.05) with insulin-like growth factor binding protein (IGFBP)-2, -4 and -5 but not IGFBP-3 levels. In addition, free IGF-I concentrations in FFL were positively correlated (P < 0.01) with FFL estradiol, progesterone, androstenedione, estradiol:progesterone ratio, total IGF-I and total IGF-II. We conclude that increases in intrafollicular levels of bioavailable (free) IGF-I are associated with increased steroidogenesis in developing mare follicles.  相似文献   

4.
Ovulation has been likened to an inflammatory process. Inflammatory cells accumulate in the ovulating follicle, presumably because of chemotactic factors. Chemotactic activity was measured in fluid aspirated from follicles of estrous mares 0, 12, 24, and 36 hours after ultrasonographic detection of a 35-mm follicle and IV treatment with 2,500 IU of human chorionic gonadotropin. Chemotaxis was assessed by measuring directional migration of equine neutrophils under agarose. Follicular fluid acted as a chemoattractant for neutrophils, but there was no significant difference in chemotactic activity among different time intervals after administration of human chorionic gonadotropin. On the basis of results of various treatments, chemotactic properties of serum and follicular fluid were similar. Chemotactic activity was significantly reduced by heating (56 C for 30 minutes) and by trypsinization and was virtually removed by charcoal treatment. Dialyzing the follicular fluid (3,500 and 8,000 molecular weight cut-off) significantly reduced the chemotactic activity of follicular fluid and serum. The importance of chemotactic factors in the process of ovulation in the mare is yet to be established.  相似文献   

5.
Four healthy adult mares were each given a single injection of sodium cefoxitin (20 mg/kg of body weight, IV), and serum cefoxitin concentrations were measured serially during a 6-hour period. The mean elimination rate constant was 1.08/hour and the elimination half-life was 0.82 hour. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.12 L/kg and 259 ml/hr/kg, respectively. Each mare and 2 additional mares were then given 4 consecutive IM injections of sodium cefoxitin (400 mg/ml) at a dosage of 20 mg/kg. Cefoxitin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 23.1 micrograms/ml 30 minutes after the 2nd injection. The highest mean synovial concentration was 11.4 micrograms/ml 1 hour after the 4th injection. The highest mean peritoneal concentration was 10.4 micrograms/ml 2 hours after the 4th injection. The highest mean endometrial concentration was 4.5 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 11,645 micrograms/ml. Cefoxitin did not readily penetrate the CSF. Bioavailability of cefoxitin given IM was 65% to 89% (mean +/- SEM = 77% +/- 5.9%). One of the 6 mares developed acute laminitis during the IM experiment.  相似文献   

6.
Six healthy adult mares were each given a single IV injection of trimethoprim (TMP)-sulfamethoxazole (SMZ) at a dosage of 2.5 mg of TMP/kg of body weight and 12.5 mg of SMZ/kg. Serum concentrations of each drug were measured serially over a 24-hour period. For TMP, the mean overall elimination rate constant (K) was 0.43/hr and the elimination half-life (t1/2) was 1.9 hours. The apparent volume of distribution (at steady state) was 1.62 L/kg and TMP clearance was 886 ml/hr/kg. For SMZ, K was 0.22/hr and t1/2 was 3.53 hours. The apparent volume of distribution at steady state was 0.33 L/kg and SMZ clearance was 78.2 ml/hr/kg. Each mare was then given 5 consecutive oral doses of TMP-SMZ at a rate of 2.5 mg of TMP/kg and 12.5 mg of SMZ/kg at 12-hour intervals. Trimethoprim and SMZ concentrations were measured in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium. Although both mean TMP and SMZ serum concentrations were higher after the 5th dose than after the 1st dose, only the mean TMP concentration was significantly (P less than 0.05) different. After the 5th oral dose, concentrations of TMP and SMZ attained in body fluids (except CSF) and endometrial tissue were equal to or exceeded reported minimum inhibitory concentrations for Corynebacterium pseudotuberculosis, Staphylococcus sp, Streptococcus zooepidemicus, and several obligate anaerobes. Absorption of both drugs was variable after oral administration.  相似文献   

7.
Six healthy adult horse mares were each given a single injection of sodium cephapirin (20 mg/kg of body weight, IV), and serum cephapirin concentrations were measured serially over a 6-hour period. The mean elimination rate constant was 0.78 hour-1 and the elimination half-life was 0.92 hours. The apparent volume of distribution (at steady state) and the clearance of the drug were estimated at 0.17 L/kg and 598 ml/hour/kg, respectively. Each mare was then given 4 consecutive IM injections of sodium cephapirin (400 mg/ml) at a dosage level of 20 mg/kg. Cephapirin concentrations in serum, synovial fluid, peritoneal fluid, CSF, urine, and endometrium were measured serially. After IM administration, the highest mean serum concentration was 14.8 micrograms/ml 25 minutes after the 4th injection. The highest mean synovial and peritoneal concentrations were 4.6 micrograms/ml and 5.0 micrograms/ml, respectively, 2 hours after the 4th injection. The highest mean endometrial concentration was 2.2 micrograms/g 4 hours after the 4th injection. Mean urine concentrations reached 7,421 micrograms/ml. Cephapirin did not readily penetrate the CSF. When cephapirin was given IM at the same dose, but in a less concentrated solution (250 mg/ml), serum concentrations peaked at 25.0 micrograms/ml 20 minutes after injection, but the area under the serum concentration-time curve was not significantly different (P greater than 0.05). The bioavailability of the drug was greater than or equal to 95% after IM injection.  相似文献   

8.
9.
Six healthy adult mares were each given an oral loading dose of ormetoprim(OMP)-sulfadimethoxine (SDM) at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg, followed by four maintenance doses of 4.6 mg of OMP/kg and 22.9 mg of SDM/kg, at 24 h intervals. Ormetoprim and SDM concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid, urine and endometrium. The highest mean serum OMP concentration was 0.92 micrograms/mL 0.5 h after the first dose; the highest mean SDM concentration was 80.9 micrograms/mL 8 h after the first dose. The highest mean synovial fluid concentrations were 0.14 microgram of OMP/mL and 28.5 micrograms of SDM/mL 12 h after the first dose. The highest mean peritoneal fluid concentrations were 0.19 micrograms of OMP/mL 6 h after the first dose and 25.5 micrograms of SDM/mL 8 h after the fifth dose. The highest mean endometrial concentrations were 0.56 micrograms of OMP/g and 28.5 micrograms of SDM/g 4 h after the fifth dose. The mean cerebrospinal fluid concentrations were 0.08 micrograms of OMP/mL and 2.1 micrograms of SDM/mL 5 h after the fifth dose. Mean trough urine drug concentrations were greater than or equal to 0.4 micrograms of OMP/mL and greater than or equal to 172 micrograms of SDM/mL. Two of the mares were each given a single intravenous (IV) injection of OMP and SDM at a dosage of 9.2 mg of OMP/kg and 45.8 mg of SDM/kg. Excitation and muscle fasciculations were observed in both mares after IV administration and all scheduled blood samples could be collected from only one of the two mares.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Dihydrotestosterone (DHT) induces follicular atresia under experimental conditions. However, whether it causes any antagonistic effect under natural condition is not known. In the present study, we investigated concentrations of DHT in follicular fluid and correlated them with concentrations of estradiol-17beta (E2) and its androgen substrates, androstenedione (A4) and testosterone (T), in healthy and atretic follicles of sheep. Merino ewes were treated twice with PGF2alpha (PG) to synchronize estrus. The ovaries were recovered at 14 days after the second PG (luteal phase) or 24h after the third PG given 14 days after the second PG (follicular phase). Follicles were dissected and their size and appearance were recorded. Follicular fluid was collected from follicles larger than 3.5mm and concentrations of E2, progesterone (P4), A4, T and DHT were determined by RIA. The inhibitory effect of DHT on conversion of T to E2 was tested in cultured granulosa cells. Appreciable levels of DHT were observed in the follicular fluid of ovine preovulatory follicles. The levels of DHT were much lower than those of E2, A4 and T, irrespective of physiological conditions of follicles. No difference was found in DHT concentration between healthy and atretic follicles. Dihydrotestosterone marginally inhibited aromatization of T in granulosa cells but this effect was only observed when the levels of DHT were 10 times higher than that of T in culture medium. These results indicate that DHT is present in ovine preovulatory follicles but its levels are not sufficient to exert any antagonistic effect on follicular development.  相似文献   

11.
12.
Various doses of estradiol-17β (E2) were used in heifers to induce a pulse of 13,14-dihydro-15-keto-prostaglandin F (PGFM). The effect of E2 concentration on the prominence of PGFM pulses and the relationship between prominence and intrapulse concentration of progesterone (P4), LH, and luteal blood flow were studied. A single dose of 0 (vehicle), 0.01, 0.05, or 0.1 mg of E2 was given (n = six/group) 14 d after ovulation. Blood samples were collected, and luteal blood flow was evaluated hourly for 10 h after the treatment. The 0.05-mg dose increased and the 0.1-mg dose further increased the prominence of the induced PGFM pulse, compared with the 0.0-mg dose and the 0.01-mg dose. The PGFM pulses were subdivided into three different prominence categories (<50, 50 to 150, and >150 pg/mL at the peak). In the 50 to 150 category, P4 concentration increased (P < 0.05) between −2 h and 0 h (0 h = peak of PGFM pulse). In the >150 category, P4 decreased (P < 0.05) between −1 h and 0 h, LH increased (P < 0.05) at 1 h, and luteal blood flow apparently decreased (P < 0.05) at 2 h of the PGFM pulse. The novel results supported the following hypotheses: (1) an increase in E2 concentration increases the prominence of a PGFM pulse, and (2) greater prominence of a PGFM pulse is associated with a greater transient intrapulse depression of P4 at the peak of the PGFM pulse. In addition, the extent of the effect of prostaglandin F on the increase in LH and changes in blood flow within the hours of a PGFM pulse was related positively to the prominence of the PGFM pulse.  相似文献   

13.
Chronic, subclinical intramammary infection depresses fertility. We previously found that 30% of subclinical mastitic cows exhibit delayed ovulation, low circulating estradiol levels, and delayed luteinizing hormone surge. We examined the function of preovulatory follicles of cows experiencing subclinical mastitis or a past event of acute clinical mastitis. Cows were diagnosed for mastitis by somatic cell count and bacteriological examination. All clinical infections were caused by Escherichia coli, and most subclinical infections were caused by Streptococcus dysgalactiae and coagulase-negative staphylococci. On day 6 of the cycle, cows received PGF2α; 42 h later, follicular fluids and granulosa cells or theca cells were aspirated from preovulatory follicles in vivo or following slaughter, respectively. Overall, follicular estradiol and androstenedione concentrations in the subclinical group (n = 28) were 40% lower (P < 0.05) than those in uninfected cows (n = 24) and lower than in past clinical mastitic cows (n = 9). Distribution analysis revealed a clear divergence among subclinical cows: one-third (9/28) exhibited low follicular estradiol; the other two-thirds had normal levels similar to all uninfected (P < 0.01) and most clinical cows (P < 0.08) that had normal follicular estradiol levels. Subclinical normal-estradiol cows had twofold higher (P < 0.05) circulating estradiol concentrations and sevenfold and fourfold higher (P < 0.05) follicular androstenedione levels and estradiol-to-progesterone ratio, respectively, than subclinical low-estradiol cows. Follicular progesterone level was not affected. Reduced expression (P < 0.05) of LHCGR in theca and granulosa cells, CYP11A1 (mRNA and protein) and CYP17A1 in theca cells, and CYP19A1 in granulosa cells may have contributed to the lower follicular steroid production in the subclinical low-estradiol subgroup. StAR and HSD3B1 in theca cells and FSHR in granulosa cells were not affected. Mastitis did not alter follicular growth dynamics, and no carryover effect of past clinical mastitis on follicular function was detected. These data indicate that a considerable proportion (one-third) of subclinical mastitic cows have abnormal follicular steroidogenesis, which can explain the reproductive failure associated with this disease.  相似文献   

14.
After single oral administration of ketoconazole (30 mg/kg bodyweight [bwt]) in 50 ml of corn syrup to a healthy mare, the drug was not detected in serum. Ketoconazole in 0.2 N HC1 was administered intragastrically to six healthy adult horses in five consecutive doses of 30 mg/kg bwt at 12 h intervals. Ketoconazole concentrations were measured in serum, synovial fluid, peritoneal fluid, cerebrospinal fluid (CSF), urine and endometrium. Mean peak serum ketoconazole concentration was 3.76 micrograms/ml at 1.5 to 2 h after intragastric administration. Mean peak synovial concentration was 0.87 micrograms/ml 3 h after the fifth dose. Similarly, mean peritoneal concentration peaked 3 h after the fifth dose at 1.62 micrograms/ml. Mean endometrial concentrations peaked at 2.73 micrograms/ml 2 h after the fifth dose. Ketoconazole was detected in the CSF of only one of the six mares at a concentration of 0.28 micrograms/ml 3 h after the fifth dose. The highest measured concentration of ketoconazole in urine was 6.15 micrograms/ml 2 h after the fifth dose. A single intravenous injection of ketoconazole (10 mg/kg bwt) was given to one of the six mares; the overall elimination rate constant was estimated at 0.22/h and bioavailability after oral administration was 23 per cent.  相似文献   

15.
The objective of this study was to test the hypothesis that supra-basal concentrations of progesterone during the follicular phase are associated with the development of follicular cysts. Twenty-five non-lactating dairy cows were used in the study, which was performed over five identical replicate trials. Luteolysis was induced during the mid-luteal phase. Transrectal ultrasonography was performed daily to determine the occurrence/timing of ovulation. Plasma samples were collected for progesterone, oestradiol and luteinizing hormone (LH) analysis. Three cows failed to ovulate (cystic anovulatory) but did ovulate in a subsequent replicate (cystic ovulatory). Eight cows from the appropriate replicates were used as control cows (normal group). Follicular growth patterns and plasma oestradiol concentrations were similar between the three groups. However, the plasma progesterone concentrations during the follicular phase were twofold higher in the cystic anovulatory group (P < 0.01). Furthermore, no LH surge was detected in these animals. While LH pulse amplitude was similar between groups, LH pulse frequency in the cystic anovulatory group was attenuated (P < 0.05). In conclusion, the formation of follicular cysts were preceded by elevated plasma progesterone concentrations and the suppression of the LH surge.  相似文献   

16.
17.
During the 1997 breeding season persistent follicles were diagnosed in 17 mares. In 16 of these mares a total of 17 follicles were transabdominally punctured and the steroids oestradiol, progesterone and testosterone were measured in the follicular fluid and in blood serum. In ten mares serving as a control group preovulatory follicles were punctured. The follicular fluid of the persistent follicles revealed a very high variability of the steroid concentrations. Depending on the steroid ratio within the follicles, eight follicles were rated as being intact, three follicles were undergoing atresia and five follicles were luteinized. Because of the high oestradiol levels of the follicular fluid within the control group, all of these follicles were considered to be intact. In both groups, no correlation of the steroid concentration between serum and follicular fluid was detectable. This fact argues against a passive diffusion of the steroids through the follicular wall. By puncturing the persistent follicles it was possible to bring the affected mares back into a physiological oestrus cycle within a normal dioestrus period.  相似文献   

18.
The focus of this study was to investigate the effect of subclinical endometritis (scEndo) on ovarian follicular steroid concentrations in early postpartum pasture-fed dairy cows. Mixed-age lactating dairy cows (n = 169) were examined to ascertain uterine health status on d 21 postpartum (±3 d). From this herd, a cohort of scEndo and uninfected cows (n = 47) were selected using uterine cytology to determine scEndo. To ensure cows with scEndo were selected for the study, a conservative threshold [>18% polymorphonuclear (PMN) cells among uterine nucleated cells] was chosen as a selection threshold. Ovarian follicular dynamics were assessed by ultrasonography on d 21, 42, and 63 postpartum. On the latter 2 d, all follicles >4 mm in diameter were ablated, and 4 d later, the largest (F1) and second largest (F2) follicles were measured and their follicular fluid aspirated. Hematological variables and plasma metabolites were measured also on these days to further characterize scEndo cows. On d 21, the prevalence of scEndo was approximately 9% in this herd; by d 42 infections had self-resolved in the majority (81%) of those cows classified as having scEndo on d 21. The scEndo cows had a delayed return to cyclicity; however, no effect was evident on ovarian follicle size or growth rate. Weeks after scEndo had self-resolved and cyclicity was restored, decreased (P = 0.07) testosterone and increased (P = 0.07) cortisol concentrations were evident in F1 follicles of scEndo compared with uninfected cows. Progesterone concentrations of F1 increased (P < 0.05) in 11- to 16-mm diameter follicles of scEndo cows, whereas estradiol, androstendione, and dehydroepiandrosterone concentrations were decreased (P < 0.05) in F1 8- to 10-mm diameter follicles of scEndo cows. These 3 steroids also differed (P < 0.05) between F1 follicle size categories of scEndo but not uninfected cows. On d 21, mean plasma albumin concentration was decreased (P = 0.02) in scEndo cows. In summary, early postpartum scEndo had surprisingly long-term influences on the steroid concentrations of ovarian follicles long after infections had self-resolved. This is likely to affect oocyte quality and may partially explain the reduced conception rates and longer interval between calving and conception that are often associated with scEndo, although more detailed investigations are required to substantiate this theory.  相似文献   

19.
Six mares were given 5 IM injections (at 12-hour intervals between doses) of amikacin sulfate at a dosage of 7 mg/kg of body weight. Serum amikacin concentrations were measured serially throughout the study; synovial, peritoneal, endometrial, and urine concentrations were determined after the last injection. Amikacin concentrations of the CSF were measured serially in 3 of the 6 mares; 1 of the 3 mares had septic meningitis. Mean serum amikacin concentrations peaked at 1 to 2 hours after IM injection. The highest mean serum concentration was 19.2 micrograms/ml (1.5 hours after the 5th injection). The highest mean synovial concentration was 10.8 micrograms/ml at 2 hours after the 5th injection; the highest mean peritoneal concentration was 16.2 micrograms/ml at 3 hours after the 5th injection. The mean endometrial amikacin concentration was 2.5 micrograms/g (1.5 hours after the 5th injection). Amikacin reached a CSF concentration of 0.97 micrograms/ml in the mare with meningitis, but amikacin was not detected in CSF of healthy mares. Urine concentrations reached 1,458 micrograms/ml. Pharmacokinetic values were estimated after the 1st injection (elimination rate constant = 0.31/hour; half-life = 2.3 hours; apparent volume of distribution = 0.26 L/kg), and after the 5th injection (elimination rate constant = 0.28/hour; half-life = 2.6 hours; apparent volume of distribution = 0.30 L/kg); significant differences were not observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号