首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Nitrogen (N) mineralization from black oat residues (Avena strigosa), with or without previous application of herbicides, and its utilization by corn crop were investigated. The experiments were performed in a completely randomized setup, with three treatments and ten replicates. The treatments were: A) control - corn grown in soil with residues of black oats harvested without herbicide application; B) glyphosate - corn grown in soil with residues of glyphosate-desiccated black oat; and C) glufosinate - corn grown in soil with residues of black oat previously desiccated with glufosinate-ammonium. The remaining black oat residues on the soil surface were smaller in the control treatment than in glyphosate and glufosinate treatments. Black oat residues from the control treatment released 30% and 20% more carbon (C) and nitrogen (N), respectively, than from herbicide treatments. Microbial biomass carbon, total and mineral soil N arising from black oat residues were reduced by herbicide management. Black oat residues treated with glyphosate reduced corn total-N by 16%; however, dry mass yield was not affected by the treatments. Herbicide application on black oat reduced the total amount of residue-released nitrogen in the corn kernels, leaves and the whole plant. Net nitrogen mineralization from black oat residues is affected by the application of glyphosate or glufosinate-ammonium.  相似文献   

2.
The impact of transgenic plants containing Bacillus thuringiensis (Bt) toxin on soil processes has received recent attention. In these studies, we examined the influence of the lepidopterean Bt Cry1Ac toxin on mineralization and bioavailability of the herbicide glyphosate in two different soils. The addition of 0.25-1.0 microg g(-1) soil of purified Cry1Ac toxin did not significantly affect glyphosate mineralization and sorption in either a sandy loam or a sandy soil. In contrast, extractable glyphosate decreased over the 28 day incubation period in both soils. Our findings suggest that the reduction in the bioavailability of glyphosate was not influenced by the presence of Cry1Ac toxin but rather the results of aging or sorption processes. Results from this investigation suggest that the presence of moderate concentrations of Bt-derived Cry1Ac toxin would have no appreciable impact on processes controlling the fate of glyphosate in soils.  相似文献   

3.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

4.
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate. Received: 20 September 1996  相似文献   

5.
Mississippi Delta cotton (Gossypium hirsutum L.) production in rotation with corn (Zea mays L.) was evaluated in field experiments from 2000 to 2005 at Stoneville, Mississippi. Plots maintained under minimum tillage were established in 2000 on a Dundee silt loam with treatments including continuous cotton or corn and alternate cotton-corn rotations. Mineralization and dissipation of 14C [ring]-labeled atrazine were evaluated in the laboratory on soils collected prior to herbicide application in the first, second, third, and sixth years of the study. In soils collected in 2000, a maximum of 10% of the atrazine was mineralized after 30 days. After 1 year of herbicide application, atrazine-treated soils mineralized 52-57% of the radiolabeled atrazine in 30 days. By the sixth year of the study, greater than 59% of the atrazine was mineralized after 7 days in soils treated with atrazine, while soils from plots with no atrazine treatment mineralized less than 36%. The data also indicated rapid development of enhanced atrazine degradation in soils following 1 year of corn production with atrazine use. Atrazine mineralization was as rapid in soils under a rotation receiving biannual atrazine applications as in soils under continuous corn receiving annual applications of atrazine. Cumulative mineralization kinetics parameters derived from the Gompertz model (k and ti) were highly correlated with a history of atrazine application and total soil carbon content. Changes in the soil microbial community assessed by total fatty acid methyl ester (FAME) analysis indicated significant interactions of cropping system and sampling date, with FAME indicators for soil bacteria responsible for differences in community structure. Autoclaved soil lost all ability to mineralize atrazine, and atrazine-mineralizing bacteria were isolated from these plots, confirming the biological basis for atrazine mineralization. These results indicate that changes in degradative potential of a soil can occur rapidly and some changes in soil properties may be associated with cropping systems, which can contribute to enhanced atrazine degradation potential.  相似文献   

6.
This research concerns the influence of no tillage (NT) or conventional tillage (CT) and a ryegrass (Lolium multiforum Lam.) cover crop in a cotton (Gossypium hirsutum L.) production system on soil and ryegrass microbial counts, enzyme activities, and fluometuron degradation. Fluorescein diacetate hydrolysis, aryl acylamidase, and colony-forming units (CFUs) of total bacteria and fungi, gram-negative bacteria, and fluorescent pseudomonads were determined in soil and ryegrass samples used in the degradation study. Fluometuron (14C-labelled herbicide) degradation was evaluated in the laboratory using soil and ryegrass. The CT and NT plots with a ryegrass cover crop maintained greater microbial populations in the upper 2 cm compared to their respective no-cover soils, and CT soils with ryegrass maintained greater bacterial and fungal CFUs in the 2–10 cm depth compared to the other soils The highest enzymatic activity was found in the 0–2 cm depth of soils with ryegrass compared to their respective soils without ryegrass. Ryegrass residues under NT maintained several hundred-fold greater CFUs than the respective underlying surface soils. Fluometuron degradation in soil and ryegrass residues proceeded through sequential demethylation and incorporation of residues into nonextractable components. The most rapid degradation was observed in surface (0 to 2 cm) soil from CT and NT–ryegrass plots. However, degradation occurred more rapidly in CT compared to NT soils in the 2 to 10 cm depth. Ryegrass cover crop systems, under NT or incorporated under CT, stimulated microbiological soil properties and promoted herbicide degradation in surface soils.  相似文献   

7.
The behavior of glyphosate, extracted from four soils using aqueous triethylamine, was investigated at two temperatures. For each soil, and at both temperatures, there was a marked loss in the amount of extractable glyphosate immediately after addition of the herbicide to soil. This rapid loss of glyphosate was ascribed to adsorption of the herbicide into a nonextractable form. For three of the four soils used when incubated at 25 degrees C, the rates of loss of extractable glyphosate were similar to previously measured rates of degradation of this herbicide in these soils. However, loss of extractable glyphosate from the Culgoa clay loam was due not only to substrate degradation but also to slow sorption of glyphosate into the nonextractable form in this soil over the experimental period. For the Rutherglen and Walpeup soils, when incubated at 10 degrees C, the rates of loss of extractable glyphosate were half of the previously measured rate of degradation of this herbicide in these soils. However, there was no measured loss of extractable glyphosate from the Wimmera clay. As previous work has shown glyphosate to decompose readily in these soils at this temperature, these findings suggest that desorption of glyphosate may occur at a rate greater than degradation at this temperature and, hence, that temperature may play a pivotal role in sorption processes. Investigations with these soils when sterilized by gamma-irradiation showed that for the Walpeup, Wimmera, and Rutherglen soils, sorption was complete soon after the addition of the herbicide; however, for the Culgoa soil, further adsorption occurred over the entire experimental period.  相似文献   

8.
Changes in soil properties and yield response in relation to tillage and residue management treatments in an irrigated groundnut (Arachis hypogea L.)—wheat (Triticum aestivum, L.) rotation on a sandy soil (1972–1974) and on a sandy loam soil (1974–1976) were evaluated. Tillage treatments (T1 and T2) did not cause significant changes in soil properties. Incorporation of crop residues (5 t residue per ha per crop, T3) caused a substantial increase in organic C, available N, and NaHCO3 -extractable P contents in the top 15 cm of both soils. Residue management treatments (T3, T4 and T5) showed no significant effect on soil bulk density and exchangeable K. Crop yields under no-tillage (T1) and conventional tillage (control, T2) were comparable on sandy soil but on the sandy loam soil, no-tillage yielded significantly lower than conventional tillage. Compared with the control, incorporation of crop residues (T3) caused higher yields on sandy soil for groundnut and wheat by 34.1 and 47.4%, respectively, and on sandy loam by 17.1 and 7.2%, respectively. Mulching with crop residues conserved soil moisture and reduced maximum soil temperature (1.5–5.3°C in groundnut and 1.5–2.9°C in wheat) but other measured soil properties were not significantly affected. Significant yield increase due to residue mulching (T4) was observed in sandy soil but it was significantly less than when total crop residue was incorporated (T3). Increased wheat root-weight density in the top 15 cm soil with residue mulching was not reflected in grain yield. Compared with the incorporation of the total amount of crop residue (T3), incorporation of half the amount and application of the other half as mulch (T5) caused lower yields — on sandy soil for groundnut and wheat by 31.5 and 15.7%, respectively, and on sandy loam by 4.8 and 3.6%, respectively.  相似文献   

9.
Use of the nitrogen balance sheet method as a fertilization strategy in the semi-arid Pampas of Argentina is restricted because of a lack of available information regarding nitrogen mineralization in its coarse soils. Our objective was to determine nitrogen mineralization during corn (Zea mays L.) and following wheat (Triticum aestivum L.) growing cycles under contrasting tillage systems in a representative soil of the region. Mineralized nitrogen from decomposing residues was estimated using the litter bag method and mineralization from soil organic matter using a mass balance approach. Soil water content was higher under no-till during the corn growing season and no differences were detected for wheat during this period. Soil temperature was practically not affected by tillage system. Biomass and nitrogen absorption were higher under no-till than under disk till in corn (p ≤ 0.05), as were nitrogen mineralization from residues and organic matter (p ≤ 0.05). In wheat, no differences in biomass, nitrogen absorption and mineralization were detected between treatments. Mineralization during crop growing cycles accounted for 44.8–67.5% of the absorbed nitrogen. Differences in nitrogen mineralization between tillage systems resulted from the greater water availability under no-till than under disk till during the summer.  相似文献   

10.
Abstract

Wheel‐traffic induced soil compaction has been shown to limit crop productivity, and its interaction with tillage method could affect soil nutrient transformations. A study was conducted during 1993–1994 to determine interactive effects of tillage method (conventional tillage and no‐tillage) and wheel‐traffic (traffic and no traffic) on soil carbon (C) and nitrogen (N) at a long‐term (initiated 1987) research site at Shorter, Alabama. The cropping system at this study site is a corn (Zea mays L.) ‐ soybean [Glycine max (L.) Merr] rotation with crimson clover (Trifolium incarnatum L.) as a winter cover crop. Soil organic C, total N, and microbial biomass carbon (MBC) were not significantly affected by six years of traffic and tillage treatments. However, conventional tillage compared to no‐tillage almost doubled the amount of CO2‐C respired over the entire observation period and during April 1994 field operations. Soil respiration was stimulated immediately after application of wheel‐ traffic, but nontrafficked soils produced greater amounts of CO2‐C compared to trafficked soils during other periods of observation. Nitrogen mineralization was significantly lower from no‐tillage‐trafficked soils compared to conventional tillage‐trafficked and no‐tillage‐nontrafficked soils for the 1993 growing season. A laboratory incubation indicated the presence of relatively easily mineralizable N substrates from conventional tillage‐trafficked soil compared to conventional tillage‐nontrafficked and no‐till‐trafficked soils. For the coarse textured soil used in this study it appears that conventional tillage in combination with wheel‐traffic may promote the highest levels of soil microbial activity.  相似文献   

11.
Glyphosate is the most used herbicide in Argentina, accounting for 62% of the commercialized pesticides on the market. It is used as a weed controller in no-till systems, and it is also applied to various genetically modified crops (e.g., soybean, corn, and cotton). Although it has a high solubility in water, it tends to adsorb and accumulate in agricultural soils. The main objectives of this work were to compare the dissipation of glyphosate and the accumulation of its metabolite aminomethylphosphonic acid (AMPA) over time in three soils from agricultural areas of Argentina under long-term management with no-till (NT) and conventional tillage (CT) practices. There were no differences in dissipation between NT and CT, indicating that the glyphosate-degrading microflora was not modified by the different tillage managements. Moreover, tillage practices did not alter the general soil properties; therefore, glyphosate bioavailability was not affected by NT or CT practice. Forty percent of the applied glyphosate was degraded within the first three days in all soils, indicating a fast initial dissipation rate. However, the dissipation rate considerably decreased over time, and the degradation kinetics followed a bi-exponential (or two-compartment) kinetic model. No differences were found between tillage practices. Dissipation was not related to the microbial activity measured as soil respiration. The fast decrease in the concentration of glyphosate at the beginning of the dissipation study was not reflected in an increase in the concentration of AMPA. The estimated half-lives for glyphosate ranged between 9 and 38 d. However, glyphosate bioavailability decreases over time, as it is strongly adsorbed to the soil matrix. This increases its residence time, which may lead to its accumulation in agricultural soils.  相似文献   

12.
Aqueous batch-type sorption-desorption studies and soil column leaching studies were conducted to determine the influence of soil properties, soil and suspension pH, and ionic concentration on the retention, release, and mobility of [14C]imazaquin in Cape Fear sandy clay loam, Norfolk loamy sand, Rion sandy loam, and Webster clay loam. Sorption of [14C]metolachlor was also included as a reference standard. L-type sorption isotherms, which were well described by the Freundlich equation, were observed for both compounds on all soils. Metolachlor was sorbed to soils in amounts 2-8 times that of imazaquin, and retention of both herbicides was related to soil organic matter (OM) and humic matter (HM) contents and to herbicide concentration. Metolachlor retention was also related to soil clay content. Imazaquin sorption to one soil (Cape Fear) increased as concentration increased and as suspension pH decreased, with maximum sorption occurring in the vicinity of pK(a1) = (1.8). At pH levels below pK(a1) imazaquin sorption decreased as hydronium ions (H3O+) increased and competed for sites. NaCl was more effective than water in desorption of imazaquin at pH levels near the pK(a1). Mechanisms of bonding are postulated and discussed. The mobility of imazaquin through soil columns was in the order Rion > or = Norfolk > Cape Fear > or = Webster, whereas for metolachlor it was Rion > or = Norfolk > Webster > or = Cape Fear. Imazaquin was from 2 to 10 times as mobile as metolachlor.  相似文献   

13.
The retention of crop residues as mulch on the soil surface in conservation agriculture systems greatly influences the fate of pesticides, as most of the applied pesticide is intercepted by mulch before moving to the soil. This work was conducted in order to model the effect of maize decomposition on glyphosate degradation in mulch and soil. Labelled 14C‐glyphosate degradation was monitored for 49 days in three treatments with the same soils but with maize residues at different stages of decomposition (0, 20 and 49 days). Fresh residues of maize (0 days) exhibited an evolution of their biochemical fractions to a greater extent than decomposed residues. Glyphosate mineralization was faster in the 0‐day treatment in mulch residues and in the soil layer below the mulch. However, a greater formation of non‐extractable residues (NERs) was observed in mulch residues and soils in the 20‐ and 49‐day treatments than in the 0‐day treatment. Modelling maize mulch decomposition with the COP‐soil model indicated that microbial activity was different in the three treatments and depended on the initial composition of maize residues. Glyphosate mineralization in mulch and soil can be simulated with an assumption of co‐metabolism by coupling the modules of pesticide degradation and mulch carbon decomposition. Glyphosate and its metabolites, including soluble and adsorbed fractions, were simulated with the same adsorption coefficients for all treatments. The simulation of NER formation, however, suggested that more than one microbial population may be involved in the degradation process and could be added in the future development of the model.  相似文献   

14.
Atrazine is a widely used herbicide and is often a contaminant in terrestrial and freshwater ecosystems. It is uncertain, however, how the activity of soil macrofauna affects atrazine fate and transport. Therefore, we investigated whether earthworms enhance atrazine biodegradation by stimulating herbicide degrading soil microflora, or if they increase atrazine persistence by facilitating herbicide sorption. Short (43 d) and medium term (86 d) effects of the earthworms Lumbricus terrestris and Aporrectodea caliginosa on mineralization, distribution, and sorption of U-ring-14C atrazine and on soil C mineralization was quantified in packed-soil microcosms using silt loam soil. A priming effect (stimulation of soil C mineralization) caused by atrazine supply was shown that likely lowered the earthworm net effect on soil C mineralization in atrazine-treated soil microcosms. Although earthworms significantly increased soil microbial activity, they reduced atrazine mineralization to 14CO2-C from15.2 to 11.7% at 86 d. Earthworms facilitated formation of non-extractable atrazine residues within C-rich soil microsites that they created by burrowing and ingesting soil and organic matter. Atrazine sorption was highest in their gut contents and higher in casts than in burrow linings. Also, gut contents exhibited the highest formation of bound atrazine residues (non-extractable atrazine). Earthworms also promoted a deeper and patchier distribution of atrazine in the soil. This contributed to greater leaching losses of atrazine in microcosms amended with earthworms (3%) than in earthworm-free microcosms (0.003%), although these differences were not significant due to high variability in transport from earthworm-amended microcosms. Our results indicated that earthworms, mainly by casting activity, facilitated atrazine sorption, which increased atrazine persistence. As a consequence, this effect overrode any increase in atrazine biodegradation due to stimulation of microbial activity by earthworms. It is concluded that the affect of earthworms of atrazine mineralization is time-dependent, mineralization being slightly enhanced in the short term and subsequently reduced in the medium term.  相似文献   

15.
In the U.S. Southeastern Coastal Plains conservation tillage (CT) became useful as a management system with the development of in-row subsoiling systems capable of planting into heavy residues. Research priorities associated with the development of CT included: reducing cover crop water loss, improving stand establishment, assessing nutrient and water management requirements, determining optimal subsoiling strategies, understanding long-term conservation tillage effects on soil properties, evaluating the interaction of crop residue removal with tillage systems, and documenting tillage impact on pests and beneficial organisms. Since the late 1970s the Coastal Plains Soil and Water Conservation Research Center in Florence, SC has made a concerted effort to study these interactions and alleviate them as obstructions to the use of CT management. These studies showed that for Coastal Plain soils such as Norfolk sandy loam (fine-loamy, siliceous thermic, Typic Paleudults) winter cover crops such as rye (Secale cereale L.) desiccated the soil profile by evapotranspiration in the spring. This delayed emergence and early season growth of corn (Zea mays L.) but not full-season soybean (Glycine max (L.) Merr.). Conservation tillage helped manage soil strength by gradually increasing soil organic matter content, restricting traffic patterns and maintaining higher soil water contents. Laboratory studies demonstrated a negative correlation (R2=0.85) between proctor soil strength and organic matter content. Conservation tillage affected nematode, Bradyrhizobium japonicum and Heliothis species populations. Alternate cropping systems using rapeseed (Brassica napus L.) as a winter crop or sunflower (Helianthus annuus L.) either before soybean or after corn provided crop cover against potential soil loss from late autumn through early spring, when bare soil is exposed to intense rainfall. Water quality questions associated with CT have been raised but remain unanswered. Although CT can reduce runoff and erosion, the crop residues can support higher insect populations and pathogen inoculum levels, and thus prompt greater pesticide use. Quantifying relationships between soil strength, macropore formation and persistence, and water infiltration with surface and subsurface water quality is the focus of new long-term evaluations. The findings of these studies, published to date, are summarized in this paper.  相似文献   

16.
The addition of organic amendments to soil increases soil organic matter content and stimulates soil microbial activity. Thus, processes affecting herbicide fate in the soil should be affected. The objective of this work was to investigate the effect of olive oil production industry organic waste (alperujo) on soil sorption-desorption, degradation, and leaching of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] and terbuthylazine [N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine], two herbicides widely used in olive crops. The soils used in this study were a sandy soil and a silty clay soil from two different olive groves. The sandy soil was amended in the laboratory with fresh (uncomposted) alperujo at the rate of 10% w/w, and the silty clay soil was amended in the field with fresh alperujo at the rate of 256 kg per tree during 4 years and in the laboratory with fresh or composted alperujo. Sorption of both herbicides increased in laboratory-amended soils as compared to unamended or field-amended soils, and this process was less reversible in laboratory-amended soils, except for diuron in amended sandy soil. Addition of alperujo to soils increased half-lives of the herbicides in most of the soils. Diuron and terbuthylazine leached through unamended sandy soil, but no herbicide was detected in laboratory-amended soil. Diuron did not leach through amended or unamended silty clay soil, whereas small amounts of terbuthylazine were detected in leachates from unamended soil. Despite their higher sorption capacity, greater amounts of terbuthylazine were found in the leachates from amended silty clay soils. The amounts of dissolved organic matter from alperujo and the degree of humification can affect sorption, degradation, and leaching of these two classes of herbicides in soils. It appears that adding alperujo to soil would not have adverse impacts on the behavior of herbicides in olive production.  相似文献   

17.
During 2005–2007, studies were carried out in two field experiments in southwest Sweden with separately tile‐drained plots on a sandy soil (three replicates) and on a clay soil (two replicates). The overall aim was to determine the effects of different cropping systems with catch crops on losses of N, P and glyphosate. Different times of glyphosate treatment of undersown ryegrass catch crops were examined in combination with soil tillage in November or spring. Drainage water was sampled continuously in proportion to water flow and analysed for N, P and glyphosate. Catch crops were sampled in late autumn and spring and soil was analysed for mineral N content. The yields of following cereal crops were determined. The importance of keeping the catch crop growing as long as possible in the autumn is demonstrated to decrease the risk of N leaching. During a year with high drainage on the sandy soil, annual N leaching was 26 kg/ha higher for plots with a catch crop killed with glyphosate in late September than for plots with a catch crop, while the difference was very small during 1 yr with less drainage. Having the catch crop in place during October was the most important factor, whereas the time of incorporation of a dead catch crop did not influence N leaching from either of the two soils. However, incorporation of a growing catch crop in spring resulted in decreased crop yields, especially on the clay soil. Soil type affected glyphosate leaching to a larger extent than the experimental treatments. Glyphosate was not leached from the sand at all, while it was found at average concentrations of 0.25 μg/L in drainage water from the clay soil on all sampling occasions. Phosphorus leaching also varied (on average 0.2 and 0.5 kg/ha/yr from the sand and clay, respectively), but was not significantly affected by the different catch crop treatments.  相似文献   

18.
Soil water repellency (SWR) is an intrinsic and dynamic soil property that can influence soil hydrology and crop production. Although several land use systems have been shown to induce water repellency in soil, the specific effects of no‐till cropping on SWR are poorly understood. This article reviews the impacts of no‐till on SWR and identifies research needs. No‐till cropping generally induces 1.5 to 40 times more SWR than conventional tillage, depending on soil type. This may result from near‐surface accumulation of hydrophobic organic C compounds derived from crop residues, microbial activity and reduced soil disturbance. While large SWR may have adverse impacts on soil hydrology and crop production, the level of SWR under no‐till relative to conventional tillage may contribute to aggregate stabilization and intra‐aggregate C sequestration. More research is needed to discern the extent and relevance of no‐till induced SWR. This includes: (1) further assessment of SWR under different tillage systems across a wide range of soil textures and climates, (2) comparison of the various methods for measuring SWR over a range of water contents, (3) inclusion of SWR in routine soil analysis and its use as a parameter to evaluate management impacts, (4) assessment of the temporal and spatial changes in SWR under field conditions, (5) further assessment of the impacts of the small differences in SWR between no‐till and conventionally tilled soils on crop production, soil hydrology and soil C sequestration, and (6) development of models to predict SWR for different tillage systems and soils.  相似文献   

19.
土壤类型和施氮量对连作春玉米产量及氮素平衡的影响   总被引:7,自引:0,他引:7  
冯国忠  王寅  焉莉  米国华  高强 《土壤学报》2017,54(2):444-455
以吉林省春玉米连作体系为研究对象,采用多因素方差分析的方法,对多年田间定位试验结果进行分析比较,以探讨土壤类型变异对土壤―作物系统氮素平衡的影响。通过在相同气候条件下,2种土壤类型(黑土(黏化湿润均腐土)和风砂土(湿润冲积新成土))上开展的连续4年的氮肥施用量(0、168、312 kg hm~(-2))田间定位试验,研究了不同土壤类型间玉米产量、氮素矿化、残留及氮素表观损失的差异。结果表明,土壤类型显著影响玉米产量,黑土的玉米籽粒产量较高(6 469~10 106 kg hm~(-2)),平均为8 623 kg hm~(-2),风砂土的玉米籽粒产量较低(1 386~8 196kg hm~(-2)),平均为5911 kg hm~(-2);黑土和风砂土玉米籽粒产量的年际间(2009―2012年)变异系数分别为13.4%和59.1%,黑土的玉米籽粒产量稳定性显著大于风砂土;黑土连续4季氮素总表观矿化量为328 kg hm~(-2),为风砂土的2.2倍;受土壤质地影响,黑土收获后0~100 cm土层土壤矿质氮残留量为99~321 kg hm~(-2),显著高于风砂土(38~77 kg hm~(-2));在中等施氮(168 kg hm~(-2))条件下,黑土与风砂土的氮肥表观损失量无显著差异,分别为320 kg hm~(-2)和315 kg hm~(-2);当施氮量增加至312 kg hm~(-2)时,黑土和风砂土的氮肥表观损失量均显著增加,且风砂土的氮肥表观损失量达到827 kg hm~(-2),显著高于黑土。由于受土壤质地和土壤供肥能力的影响,土壤类型会对玉米产量、氮素矿化和表观损失有一定的影响,因此,在氮肥优化管理中应考虑土壤类型的变异。  相似文献   

20.
Active fractions of soil carbon (C) and nitrogen (N) can undergo seasonal changes due to environmental and cultural factors, thereby influencing plant N availability and soil organic matter (SOM) conservation. Our objective was to determine the effect of tillage (conventional and none) on the seasonal dynamics of potential C and N mineralization, soil microbial biomass C (SMBC), specific respiratory activity of SMBC(SRAC), and inorganic soil N in a sorghum [Sorghum bicolor (L.) Moench]-wheat (Triticum aestivum L.)/soybean [Glycine max (L.) Merr.] rotation and in a wheat/soybean double crop. A Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas was sampled to 200 mm depth 57 times during a 2-yr period. Potential C mineralization was lowest (≈?2 to 3 g · m?2 · d?1) midway during the sorghum and soybean growing seasons and highest (≈?3 to 4 g · m?2 · d?1) at the end of the wheat growing season and following harvest of all crops. Addition of crop residues increased SMBC for one to three months. Potential N mineralization was coupled with potential C mineralization, SRAC, and changes in SMBC at most times, except during the wheat growing season and shortly after sorghum and soybean residue addition when increased N immobilization was probably caused by rhizodeposition and residues with low N concentration. Seasonal variation of inorganic soil N was 19 to 27%, of potential C and N mineralization and SRAC was 8 to 23%, and of SMBC was 7 to 10%. Soil under conventional tillage experienced greater seasonal variation in potential C and N mineralization, SRAC, bulk density, and water-filled pore space than under no tillage. High residue input with intensive cropping and surface placement of residues were necessary to increase the long-term level of active C and N properties of this thermic-region soil due to rapid turnover of C input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号