共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment was carried out to evaluate the growth of mycorrhizal Pinus halepensis seedlings planted in a semiarid soil amended with urban refuse in southeast Spain. Three fungal species were used: Pisolithus tinctorius, Rhizopogon roseolus, and Suillus collinitus. After 8 months, inoculated seedlings grown under controlled conditions did not differ significantly from controls with regard to plant height and nutrient assimilation. Other features such as root development and stem dry weight showed that the plants grew better in the absence of mycorrhizal inoculation. The mycorrhizal seedlings and the controls were planted in three experimental plots treated with urban refuse (0, 6, and 12 Kg m-2). After 1 year of growth under field conditions the results showed that the type of fungus inoculated significantly influenced P. halepensis development. This effect varied with the dose of urban refuse. Plant growth was encouraged by the application of refuse but only at the lowest dose. Under these conditions P. tinctorius was the most effective fungus and R. roseolus yielded poorer plant development. The highest application of urban refuse led to notably worse results and a significant decrease in seedling growth compared to controls. In the control plot (without refuse) S. collinitus was the most effective fungus in plant growth improvement. The smallest application of urban refuse had a positive effect on the assimilation of N, P, and K in seedlings inoculated with P. tinctorius and S. collinitus. 相似文献
2.
The knowledge of the survival of inoculated beneficial fungal and bacterial strains in the field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developing. The aim of this study was to monitor, 4 years after plantation into the field site, the effects of Douglas fir (Pseudotsuga menziesii) co-inoculation with the mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 and/or the fungal strain Laccaria bicolor S238N on seedling growth and on the indigenous bacterial and ectomycorrhizal communities using quantitative and qualitative approaches. The field persistence of the inoculated strains was also monitored. The seedling shoot volume estimate was statistically significantly higher in the fungal inoculated plots in comparison to the non-inoculated plots but no treatment-related changes in the quantitave or qualitative microbial measurements were observed and the inoculated strains could not be detected after 4 years. 相似文献
3.
《European Journal of Soil Biology》2008,44(1):122-128
In a controlled potted experiment, citrus (Poncirus trifoliata) seedlings were inoculated with three species of arbuscular mycorrhizal (AM) fungi, Glomus mosseae, G. versiforme or G. diaphanum. Two soil-water levels (ample water, −0.10 MPa; drought stress, −0.44 MPa) were applied to the pots 4 months after transplantation. Eighty days after water treatments, the soils and the citrus seedlings were well colonized by the three AM fungi. Mycorrhizal fungus inoculation improved plant biomass regardless of soil-water status but decreased the concentrations of hot water-extractable and hydrolyzable carbohydrates of soils. Mycorrhizal soils exhibited higher Bradford-reactive soil protein concentrations than non-mycorrhizal soils. Mycorrhizas enhanced >2 mm, 1–2 mm and >0.25 mm water-stable aggregate fractions but reduced 0.25–0.5 mm water-stable aggregates. Peroxidase activity was higher in AM than in non-AM soils whether drought stressed or not, whereas catalase activity was lower in AM than non-AM soils. Drought stress and AM fungus inoculation did not affect polyphenol oxidase activity of soils. A positive correlation between the Bradford-reactive soil protein concentrations, soil hyphal length densities, and water-stable aggregates (only >2 mm, 1–2 mm and >0.25 mm) suggests beneficial effects of the AM symbiosis on soil structure. It concluded that AM fungus colonization enhanced plant growth under drought stress indirectly through affecting the soil moisture retention via glomalin's effect on soil water-stable aggregates, although direct mineral nutritional effects could not be excluded. 相似文献
4.
5.
Liu Wenke 《Acta Agriculturae Scandinavica, Section B - Plant Soil Science》2013,63(3):285-288
Abstract A glasshouse study was conducted to investigate the symbiotic efficiency and soil adaptability of four AMF using glass-bead cultivation systems. The results showed that efficiency and adaptability of four fungi varied among three soils. Particularly, efficiency of BEG167 shifted from positive in Beijing soil to negative in Guangdong soil. Furthermore, BEG167 had high adaptability in all three soils. Intraspecific differences of BRG168 and BEG221 were found in efficiency and adaptability in three soils. Taking efficiency and adaptabilty into consideration, it was concluded that BEG167, BEG168 and BEG221 in Beijing soil, BEG151 in Hubei soil, and BEG151 and BEG168 in Guangdong soil were effective AMF for maize. 相似文献
6.
7.
In sustainable agriculture, arbuscular mycorrhizal (AM) fungal inoculation in agronomical management might be very important, especially when the efficiency of native inocula is poor. Here, we assessed the effect of native and exotic selected AM fungal inocula on plant growth and nutrient uptake in a low input Trifolium alexandrinum-Zea mays crop rotation. We evaluated the effects of four exotic AM fungal isolates on T. alexandrinum physiological traits in greenhouse. Then, the field performances of T. alexandrinum inoculated with the exotic AMF, both single and mixed, were compared to those obtained with a native inoculum, using a multivariate analysis approach. Finally, we tested the residual effect of AM fungal field inoculation on maize as following crop. Multivariate analysis showed that the field AM fungal inoculation increased T. alexandrinum and Z. mays productivity and quality and that the native inoculum was as effective as, or more effective than, exotic AM fungal isolates. Moreover, the beneficial effects of AMF were persistent until the second year after inoculation. The use of native AMF, produced on farm with mycotrophic plants species, may represent a convenient alternative to commercial AM fungal inocula, and may offer economically and ecologically important advantages in sustainable or organic cropping systems. 相似文献
8.
菌根对紫色土上间作玉米生长及磷素累积的影响 总被引:4,自引:2,他引:4
丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在土壤与植物系统的磷素循环中发挥着关键的作用。本文通过盆栽模拟试验研究了不同AMF接种状况[不接种(NM)、接种Glomus mosseae(GM)、接种G.etunicatum(GE)]和玉米/大豆间作体系不同根系分隔方式(不分隔、尼龙网分隔、塑料膜分隔)对间作玉米植株生长及磷素吸收累积的影响。研究结果表明:GM处理下的间作玉米根系侵染率在不同根系分隔方式之间的差异不显著,而GE处理则在塑料膜分隔处理下对玉米的侵染率最高。接种不同AMF对间作玉米促生效果不同,GM和GE处理在不同根系分隔情况下表现出各自的优势,与未接种处理相比,GM处理能使玉米生物量、株高有一定程度增加并在根系不分隔处理下玉米磷吸收较多、生长较好;GE处理能使植株生物量有一定程度增加并在尼龙网分隔处理下的玉米磷吸收较多、生长较好。间作体系不同根系分隔方式对玉米的影响也不同,其中玉米地上部生物量在根系分隔处理下普遍小于不分隔处理,但根系生物量的大小情况则刚好相反。另外,无论何种接种状况,玉米根系磷含量及吸收量均以尼龙网分隔处理显著较高。而根系磷吸收效率则以接种G.mosseae且不分隔根系处理显著高于分隔处理。所有复合处理中,以接种G.etunicatum与尼龙网分隔根系组合处理对间作玉米的生长及磷素累积的促进作用最好,若应用于滇池流域,可望有效控制坡耕地土壤磷素的迁移。 相似文献
9.
接种丛枝菌根真菌(AMF)对施磷石膏云烟87的生长以及砷污染的影响 总被引:2,自引:0,他引:2
【目的】丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)能够促进作物养分的吸收及生长,且对土壤砷污染有一定的抗性。磷石膏(phosphogypsum,PG)因含有丰富的磷、硫等养分可以为作物生长提供必要的养分,同时也可能带来砷污染的风险。【方法】为了探讨接种AMF对云烟87生长的影响以及磷石膏农用可能引起的砷污染风险,通过盆栽模拟试验研究了不同PG添加量(0和40 g/kg以PG0、PG40表示)和接种不同AMF[不接种None mycorrhizal(NM)、接种G.mosseae丛枝菌根真菌(GM)、接种G.aggregatum丛枝菌根真菌(GA)]对云烟87苗期生长及其磷、硫、砷吸收的影响。【结果】试验结果表明:无论接种与否,PG40处理的云烟87植株磷含量、吸收量及吸收效率均显著增加,其地上部硫含量及吸收量也显著增加;除NM处理外,添加PG均显著增加了云烟87根系的硫含量、硫吸收量及吸收效率,并显著增加了其植株的生物量。相同PG添加水平下,与NM处理相比,接种GM显著增加了云烟87根系的磷、硫吸收效率和植株的磷、硫含量及吸收量,另外,GM处理显著降低了其地上部砷含量及吸收量但显著增加了其植株的磷砷吸收比。在PG0处理下,接种GA显著增加了云烟87植株的磷含量及吸收量,并显著增加了其地上部硫含量及吸收量。在PG40处理下,接种GA显著增加了云烟87根系的硫含量和吸收量以及植株的生物量。无论是否添加PG,接种GA不同程度地降低了云烟87地上部砷含量和吸收量从而增加了其地上部的磷砷吸收比。【结论】在所有复合处理中,以添加磷石膏40 g/kg和接种GM对云烟87生长的促进效果较好,对施用磷石膏造成的砷污染有一定程度的抵御作用。 相似文献
10.
酸性土壤中接种耐酸根瘤菌对豆科植物根际微生态的影响 总被引:1,自引:0,他引:1
11.
The effect of pre-inoculation with arbuscular mycorrhizal fungi (AMF) on post-transplant growth of peach seedlings in replant and non-replant soils was studied for two successive seasons. Seedlings raised in sterile media and pre-inoculated with soil-based Gigaspora margarita inoculum were transplanted in replant and non-replant field soils alongside non-inoculated controls. Pre-inoculated seedlings transplanted in non-replant soils showed greater initial growth in the first year. Plant height, and lateral shoot length and number was highest in non-replant soils irrespective of mycorrhizal pre-inoculation. Similarly, biomass yield was significantly higher in seedlings in non-replant soils, though there were no significant differences in shoot/root ratios, and in tissue mineral content between and within treatments. Seedling infection by indigenous AMF was high in both replant and non-replant soils, and even non-inoculated seedlings recorded high infection levels after the first season. Generally, mycorrhizal activity was lower, and spore populations higher in replant soils, while the opposite was true in non-replant soils. It seems that soil sickness has a negative impact on plant metabolism and limits the capacity of the plant host to support the mycorrhizal symbiosis. 相似文献
12.
We investigated how the rate of colonization by indigenous arbuscular mycorrhizal fungi (AMF) affects the interaction between AMF, Sinorrhizobium meliloti and Medicago truncatula Gaertn. To generate a differential inoculum potential of indigenous AMF, five cycles of wheat, each of 1 month, were grown in sieved or undisturbed soil before M. truncatula was sown. The early colonization of M. truncatula roots by indigenous AMF was faster in undisturbed soil compared with sieved soil, but by pod-fill the frequency of hyphae, arbuscules and vesicles was similar in both treatments. At this latter stage, M. truncatula grown in undisturbed soil had accumulated a greater biomass in aboveground tissues, had a greater P concentration and derived more N from the atmosphere than plants grown in disturbed soil, although soil compaction resulted in plants having a smaller root system than those from disturbed soil. The difference in plant P content could not be explained by modifications in hydrolytic soil enzymes related to the P cycle as the activity of acid phosphatase was greater in sieved than in undisturbed soil, and the activity of alkaline phosphatase was unaffected by the treatment. Thus, the results observed were a consequence of the different rates of AMF colonization caused by soil disturbance. Together with earlier results for soybean, this study confirms that soil disturbance modifies the interaction between indigenous AMF, rhizobia and legumes leading to a reduced efficacy of the bacterial symbiont. 相似文献
13.
U. K. Aryal M. K. Hossain M. A. U. Mridha H. L. Xu H. Umemura 《Journal of plant nutrition》2013,36(7):1049-1059
An experiment was conducted to study the effect of inoculation of Rhizobium suspension in Albizia procera (Roxb.) Benth, Albizia lebbeck (L.) Benth, and Leucaena leucocephala (Lam.) De Wit. seedlings grown in sterilized and non‐sterilized soil media. Control treatments were maintained by non‐inoculation. Inoculation response was observed strong in sterilized and modest in non‐sterilized soil when compared to respective control treatments. Increase in height was found 105.07%, 63.42%, and 109% higher in sterilized soil and 52.1%, 68.6%, and 95.8% in non‐sterilized soil for Albizia procera, Albizia lebbeck, and Leucaena leucocephala, respectively, after a period of 4 months. Nodule number increased up to 10.27 and 3.51 times in Albizia procera, 11.47 and 4.3 times in Albizia lebbeck, and 7.22 and 2.9 times in Leucaena leucocephala due to inoculation in sterilized and non‐sterilized soil media respectively. Significant increase in nodule dry weight and nitrogenase activity was also recorded in both sterilized and non‐sterilized soil for all the species tested. Nitrogenase activity per plant per hour was recorded 68.75,11.58, and 13 times higher in sterilized and 6.7,5.53, and 3.38 times higher in non‐sterilized soil over control for the species respectively after 4 months. In the tree species tested the inoculation of Rhizobium showed higher productivity, modulation and nitrogenase activity than control suggesting the idea that application of Rhizobium suspension greatly enhances plant growth, modulation, and nitrogenase activity. 相似文献
14.
《Applied soil ecology》2003,22(2):103-111
The re-establishment of native shrub species in the Mediterranean basin serves to restore the characteristic biodiversity and to prevent the processes of erosion and desertification in semiarid areas. A field experiment was carried out in an abandoned semiarid agricultural Mediterranean area to assess the effectiveness of mycorrhizal inoculation, with a mixture of native arbuscular mycorrhizal (AM) fungi or an allochthonous AM fungus (Glomus claroideum), on the establishment of Olea europaea subsp. sylvestris L., Pistacia lentiscus L., Retama sphaerocarpa (L.) Boissier and Rhamnus lycioides L. seedlings in this area. One year after planting, shoot biomass of inoculated O. europaea and P. lentiscus seedlings was greater, by about 630% and 300%, respectively, than that of non-inoculated plants. Shoot biomass of G. claroideum-colonised R. sphaerocarpa plants was significantly greater than that of seedlings inoculated with the mixed native AM fungi after 12 months. The increase of R. lycioides growth due to inoculation with native AM fungi was significantly greater than that of G. claroideum-colonised seedlings during the same growth period. Inoculation with a mix of native AM fungi was the most effective treatment for increasing shoot biomass and N, P and K contents in shoot tissues of R. lycioides seedlings. The mixture of native AM fungi was the most effective with respect to colonisation of the roots of O. europaea and R. lycioides, but the native AM fungi and G. claroideum achieved similar levels of colonisation in P. lentiscus and R. sphaerocarpa. The use of native mycorrhizal potential as a source of AM inoculum may be considered a preferential inoculation strategy to guarantee the successful re-establishment of native shrub species in a semiarid degraded soil. 相似文献
15.
供硫和丛枝菌根真菌对洋葱生长和品质的影响 总被引:1,自引:1,他引:1
以珍珠岩为植物的生长基质盆栽试验,分别供给0.1、1.75和4 mmol/L三个不同硫水平的Long Ashton营养液,研究接种丛枝菌根真菌Glomus versiform对洋葱(Allium cepa L.)生长和品质的影响。结果表明,接种丛枝菌根真菌显著的改善了宿主植物的磷营养水平,促进了洋葱的生长;而硫处理对洋葱生长的影响差异不显著,但随着供硫水平的提高植株地上部全硫含量和有机硫含量显著增加。接种菌根真菌对洋葱硫营养的影响受外界供硫水平的影响,在供硫0.1 mmol/L时降低了洋葱植株的硫含量;而在供硫1.75和4 mmol/L时显著改善了洋葱的硫营养状况,宿主植物的酶解丙酮酸(enzyme produced pyruvic acid, EPY)的含量也显著增加。说明丛枝菌根真菌能够帮助宿主植物吸收外界环境中硫营养成分,改善洋葱的硫营养状况及品质。 相似文献
16.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake. 相似文献
17.
探讨接种丛枝菌根(AM)真菌和根瘤菌对连作花生作用效果及可能机制,有益于缓解花生连作障碍,促进花生养分高效和持续高产。在花生典型种植区,选择有代表性的酸性砂姜黑土,设置不接种(CK)、接种AM真菌(AM)、接种根瘤菌(Rb)、双接种(AM+Rb)4个处理,采用微区试验,研究AM真菌与根瘤菌对花生生长、根系形态、养分吸收及土壤微生物特性的影响。结果表明:接种处理增加了花生第一侧枝长和分枝数,显著提高了花生根和地上部生物量、荚果重和根瘤数,其中AM+Rb处理提高效果最显著。同时AM+Rb处理的花生根系总根长、总表面积、总体积分别显著提高30.1%、20.2%和59.7%,土壤微生物总量、细菌/真菌、放线菌/真菌明显提高,不同部位氮、磷、钾、钙、镁积累量显著增加,效果优于单接种。比较AM真菌和根瘤菌2种接种方式,Rb处理的花生不同部位氮积累量较高,而AM处理的根系形态状况较好,且花生不同部位磷、钾、钙、镁吸收量较高。可见,在酸性砂姜黑土区,接种AM真菌和根瘤菌尤其是双接种有益于改善根系形态状况和根际微生物环境,增强花生养分吸收能力,从而促进花生的生长及产量的提高。 相似文献
18.
The effects of arbuscular mycorrhizal (AM) fungus, Glomus intraradices, on growth and copper (Cu) tolerance of white clover (Trifolium repens) were investigated in soils with different Cu amounts. The AM inoculation increased plant biomass and the total or bound Cu concentrations in shoots and roots but decreased the total Cu in soils and the exchangeable Cu in shoots, roots and soils at all Cu levels. Mycorrhizal plants had higher levels of root phosphorus and shoot zinc (Zn) at lower Cu levels and more nitrogen and Zn in roots and potassium, calcium and magnesium in shoots and roots at all Cu addition levels. Additionally, AM inoculation enhanced urease, acid phosphatase and catalase activities in rhizosphere soils and mycorrhizal roots showed higher levels of peroxidase, catalase, proline and soluble sugar at all Cu addition levels. These results indicate that mycorrhizal white clover is potentially suitable for Cu phytoremediation based on greenhouse studies. 相似文献
19.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected. 相似文献
20.
Mukesh K. Meghvansi K. Prasad D. Harwani S.K. Mahna 《European Journal of Soil Biology》2008,44(3):316-323
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region. 相似文献