首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glyphosate is a key component of weed control strategies in Australia and worldwide. Despite widespread and frequent use, evolved resistance to glyphosate is rare. A herbicide resistance model, parameterized for Lolium rigidum has been used to perform a number of simulations to compare predicted rates of evolution of glyphosate resistance under past, present and projected future use strategies. In a 30‐year wheat, lupin, wheat, oilseed rape crop rotation with minimum tillage (100% shallow depth soil disturbance at sowing) and annual use of glyphosate pre‐sowing, L. rigidum control was sustainable with no predicted glyphosate resistance. When the crop establishment system was changed to annual no‐tillage (15% soil disturbance at sowing), glyphosate resistance was predicted in 90% of populations, with resistance becoming apparent after between 10 and 18 years when sowing was delayed. Resistance was predicted in 20% of populations after 25–30 years with early sowing. Risks of glyphosate resistance could be reduced by rotating between no‐tillage and minimum‐tillage establishment systems, or by rotating between glyphosate and paraquat for pre‐sowing weed control. The double knockdown strategy (sequential full rate applications of glyphosate and paraquat) reduced risks of glyphosate and paraquat resistance to <2%. Introduction of glyphosate‐resistant oilseed rape significantly increased predicted risks of glyphosate resistance in no‐tillage systems even when the double knockdown was practised. These increased risks could be offset by high crop sowing rates and weed seed collection at harvest. When no selective herbicides were available in wheat crops, the introduction of glyphosate‐resistant oilseed rape necessitated a return to a minimum‐tillage crop establishment system.  相似文献   

2.
BACKGROUND: Glyphosate-resistant cotton varieties are an important tool for weed control in Australian cotton production systems. To increase the sustainability of this technology and to minimise the likelihood of resistance evolving through its use, weed scientists, together with herbicide regulators, industry representatives and the technology owners, have developed a framework that guides the use of the technology. Central to this framework is a crop management plan (CMP) and grower accreditation course. A simulation model that takes into account the characteristics of the weed species, initial gene frequencies and any associated fitness penalties was developed to ensure that the CMP was sufficiently robust to minimise resistance risks. RESULTS: The simulations showed that, when a combination of weed control options was employed in addition to glyphosate, resistance did not evolve over the 30 year period of the simulation. CONCLUSION: These simulations underline the importance of maintaining an integrated system for weed management to prevent the evolution of glyphosate resistance, prolonging the use of glyphosate-resistant cotton. Copyright (c) 2007 Society of Chemical Industry.  相似文献   

3.
BACKGROUND: Glyphosate‐resistant (GR) crops have changed the way growers manage weeds and implement control strategies. Since the introduction of GR crops, growers in many instances have relied on glyphosate almost exclusively to control a broad spectrum of weeds. This overreliance on glyphosate has resulted in the evolution of glyphosate resistance in some weed species. Growers and scientists are concerned about the sustainability of GR crops and glyphosate. When a grower is making decisions about weed control strategies, economic costs and benefits of the program are primary criteria for selection and implementation. Studies across six states were initiated in 2006 to compare the economics of using a weed resistance best management practice (BMP) system with a grower's standard production system. RESULTS: Resistance BMP systems recommended by university scientists were more costly but provided similar yields and economic returns. Rotation of GR crops resulted in a higher net return (maize and soybean) compared with continuous GR crop (cotton or soybean) or rotating a GR crop with a non‐GR crop (maize). CONCLUSION: Growers can implement weed resistance BMP systems with the confidence that their net returns will be equivalent in the short run, and, in the long term, resistance BMP systems will prevent or delay the evolution of GR weeds in their fields, resulting in substantial savings. Copyright © 2011 Society of Chemical Industry  相似文献   

4.
Glyphosate has performed long and well, but now some weed communities are shifting to populations that survive glyphosate, and growers need new weed management technologies to augment glyphosate performance in glyphosate-resistant crops. Unfortunately, most companies are not developing any new selective herbicides with new modes of action to fill this need. Fortunately, companies are developing new herbicide-resistant crop technologies to combine with glyphosate resistance and expand the utility of existing herbicides. One of the first multiple-herbicide-resistant crops will have a molecular stack of a new metabolically based glyphosate resistance mechanism with an active-site-based resistance to a broad spectrum of ALS-inhibiting herbicides. Additionally, new formulation technology called homogeneous blends will be used in conjunction with glyphosate and ALS-resistant crops. This formulation technology satisfies governmental regulations, so that new herbicide mixture offerings with diverse modes of action can be commercialized more rapidly and less expensively. Together, homogeneous blends and multiple-herbicide-resistant crops can offer growers a wider choice of herbicide mixtures at rates and ratios to augment glyphosate and satisfy changing weed management needs.  相似文献   

5.
BACKGROUND: Glyphosate resistance has been confirmed in 58 populations of Lolium rigidum (Gaud.), a major weed of crops in southern Australia. Extensive use of glyphosate in conjunction with minimal soil disturbance has been identified as high risk for resistance to that herbicide. Land managers need a simple method for rapid assessment of the risk of resistance occurring as a result of past and proposed future management practices. Modelled on risk assessment nomographs, a simple calculator for indicating the risk of evolved glyphosate resistance in L. rigidum is described. RESULTS: The calculator uses the generations since first use and the frequency of use of glyphosate in combination with historical cultivation levels as critical factors for determining the risk of glyphosate resistance evolution. Based on the management history of a field, a land manager can graphically determine a glyphosate resistance risk for that field. CONCLUSION: The calculator enables the farmer or the advisor to assess the risk of a weed's population becoming resistant and modify practices accordingly to manage for sustainable glyphosate use. The risk calculator could be modified for other herbicides and different weed species.  相似文献   

6.
Herbicide-resistant crops and weed resistance to herbicides   总被引:10,自引:0,他引:10  
The adoption of genetically modified (GM) crops has increased dramatically during the last 3 years, and currently over 52 million hectares of GM crops are planted world-wide. Approximately 41 million hectares of GM crops planted are herbicide-resistant crops, which includes an estimated 33.3 million hectares of herbicide-resistant soybean. Herbicide-resistant maize, canola, cotton and soybean accounted for 77% of the GM crop hectares in 2001. However, sugarbeet, wheat, and as many as 14 other crops have transgenic herbicide-resistant cultivars that may be commercially available in the near future. There are many risks associated with the production of GM and herbicide-resistant crops, including problems with grain contamination, segregation and introgression of herbicide-resistant traits, marketplace acceptance and an increased reliance on herbicides for weed control. The latter issue is represented in the occurrence of weed population shifts, the evolution of herbicide-resistant weed populations and herbicide-resistant crops becoming volunteer weeds. Another issue is the ecological impact that simple weed management programs based on herbicide-resistant crops have on weed communities. Asiatic dayflower (Commelina cumminus L) common lambsquarters (Chenopodium album L) and wild buckwheat (Polygonum convolvulus L) are reported to be increasing in prominence in some agroecosystems due to the simple and significant selection pressure brought to bear by herbicide-resistant crops and the concomitant use of the herbicide. Finally, evolution of herbicide-resistant weed populations attributable to the herbicide-resistant crop/herbicide program has been observed. Examples of herbicide-resistant weeds include populations of horseweed (Conyza canadensis (L) Cronq) resistant to N-(phosphonomethyl)glycine (glyphosate). An important question is whether or not these problems represent significant economic issues for future agriculture.  相似文献   

7.
What have the mechanisms of resistance to glyphosate taught us?   总被引:2,自引:0,他引:2  
The intensive use of glyphosate alone to manage weeds has selected populations that are glyphosate resistant. The three mechanisms of glyphosate resistance that have been elucidated are (1) target-site mutations, (2) gene amplification and (3) altered translocation due to sequestration. What have we learned from the selection of these mechanisms, and how can we apply those lessons to future herbicide-resistant crops and new mechanisms of action? First, the diversity of glyphosate resistance mechanisms has helped further our understanding of the mechanism of action of glyphosate and advanced our knowledge of plant physiology. Second, the relatively rapid evolution of glyphosate-resistant weed populations provides further evidence that no herbicide is invulnerable to resistance. Third, as new herbicide-resistant crops are developed and new mechanisms of action are discovered, the weed science community needs to ensure that we apply the lessons we have learned on resistance management from the experience with glyphosate. Every new weed management system must be evaluated during development for its potential to select for resistance, and stewardship programs should be in place when the new program is introduced. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Glyphosate sustainability in South American cropping systems   总被引:1,自引:0,他引:1  
South America represents about 12% of the global land area, and Brazil roughly corresponds to 47% of that. The major sustainable agricultural system in South America is based on a no-tillage cropping system, which is a worldwide adopted agricultural conservation system. Societal benefits of conservation systems in agriculture include greater use of conservation tillage, which reduces soil erosion and associated loading of pesticides, nutrients and sediments into the environment. However, overreliance on glyphosate and simpler cropping systems has resulted in the selection of tolerant weed species through weed shifts (WSs) and evolution of herbicide-resistant weed (HRW) biotypes to glyphosate. It is a challenge in South America to design herbicide- and non-herbicide-based strategies that effectively delay and/or manage evolution of HRWs and WSs to weeds tolerant to glyphosate in cropping systems based on recurrent glyphosate application, such as those used with glyphosate-resistant soybeans. The objectives of this paper are (i) to provide an overview of some factors that influence WSs and HRWs to glyphosate in South America, especially in Brazil, Argentina and Paraguay soybean cropped areas; (ii) to discuss the viability of using crop rotation and/or cover crops that might be integrated with forage crops in an economically and environmentally sustainable system; and (iii) to summarize the results of a survey of the perceptions of Brazilian farmers to problems with WSs and HRWs to glyphosate, and the level of adoption of good agricultural practices in order to prevent or manage it.  相似文献   

9.
Since 1996, genetically modified herbicide-resistant crops, primarily glyphosate-resistant soybean, corn, cotton and canola, have helped to revolutionize weed management and have become an important tool in crop production practices. Glyphosate-resistant crops have enabled the implementation of weed management practices that have improved yield and profitability while better protecting the environment. Growers have recognized their benefits and have made glyphosate-resistant crops the most rapidly adopted technology in the history of agriculture. Weed management systems with glyphosate-resistant crops have often relied on glyphosate alone, have been easy to use and have been effective, economical and more environmentally friendly than the systems they have replaced. Glyphosate has worked extremely well in controlling weeds in glyphosate-resistant crops for more than a decade, but some key weeds have evolved resistance, and using glyphosate alone has proved unsustainable. Now, growers need to renew their weed management practices and use glyphosate with other cultural, mechanical and herbicide options in integrated systems. New multiple-herbicide-resistant crops with resistance to glyphosate and other herbicides will expand the utility of existing herbicide technologies and will be an important component of future weed management systems that help to sustain the current benefits of high-efficiency and high-production agriculture. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
Herbicide‐resistant crops have had a profound impact on weed management. Most of the impact has been by glyphosate‐resistant maize, cotton, soybean and canola. Significant economic savings, yield increases and more efficacious and simplified weed management have resulted in widespread adoption of the technology. Initially, glyphosate‐resistant crops enabled significantly reduced tillage and reduced the environmental impact of weed management. Continuous use of glyphosate with glyphosate‐resistant crops over broad areas facilitated the evolution of glyphosate‐resistant weeds, which have resulted in increases in the use of tillage and other herbicides with glyphosate, reducing some of the initial environmental benefits of glyphosate‐resistant crops. Transgenic crops with resistance to auxinic herbicides, as well as to herbicides that inhibit acetolactate synthase, acetyl‐CoA carboxylase and hydroxyphenylpyruvate dioxygenase, stacked with glyphosate and/or glufosinate resistance, will become available in the next few years. These technologies will provide additional weed management options for farmers, but will not have all of the positive effects (reduced cost, simplified weed management, lowered environmental impact and reduced tillage) that glyphosate‐resistant crops had initially. In the more distant future, other herbicide‐resistant crops (including non‐transgenic ones), herbicides with new modes of action and technologies that are currently in their infancy (e.g. bioherbicides, sprayable herbicidal RNAi and/or robotic weeding) may affect the role of transgenic, herbicide‐resistant crops in weed management. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

11.
Herbicide resistance is an evolutionary event resulting from intense herbicide selection over genetically diverse weed populations. In South America, orchard, cereal and legume cropping systems show a strong dependence on glyphosate to control weeds. The goal of this report is to review the current knowledge on cases of evolved glyphosate-resistant weeds in South American agriculture. The first reports of glyphosate resistance include populations of highly diverse taxa (Lolium multiflorum Lam., Conyza bonariensis L., C. canadensis L.). In all instances, resistance evolution followed intense glyphosate use in fruit fields of Chile and Brazil. In fruit orchards from Colombia, Parthenium hysterophorus L. has shown the ability to withstand high glyphosate rates. The recent appearance of glyphosate-resistant Sorghum halepense L. and Euphorbia heterophylla L. in glyphosate-resistant soybean fields of Argentina and Brazil, respectively, is of major concern. The evolution of glyphosate resistance has clearly taken place in those agroecosystems where glyphosate exerts a strong and continuous selection pressure on weeds. The massive adoption of no-till practices together with the utilization of glyphosate-resistant soybean crops are factors encouraging increase in glyphosate use. This phenomenon has been more evident in Argentina and Brazil. The exclusive reliance on glyphosate as the main tool for weed management results in agroecosystems biologically more prone to glyphosate resistance evolution.  相似文献   

12.
Despite frequent use for the past 25 years, resistance to glyphosate has evolved in few weed biotypes. The propensity for evolution of resistance is not the same for all herbicides, and glyphosate has a relatively low resistance risk. The reasons for these differences are not entirely understood. A previously published two‐herbicide resistance model has been modified to explore biological and management factors that account for observed rates of evolution of glyphosate resistance. Resistance to a post‐emergence herbicide was predicted to evolve more rapidly than it did to glyphosate, even when both were applied every year and had the same control efficacy. Glyphosate is applied earlier in the growing season when fewer weeds have emerged and hence exerts less selection pressure on populations. The evolution of glyphosate resistance was predicted to arise more rapidly when glyphosate applications were later in the growing season. In simulations that assumed resistance to the post‐emergence herbicide did not evolve, the evolution of glyphosate resistance was less rapid, because post‐emergence herbicides were effectively controlling rare glyphosate‐resistant individuals. On their own, these management‐related factors could not entirely account for rates of evolution of resistance to glyphosate observed in the field. In subsequent analyses, population genetic parameter values (initial allele frequency, dominance and fitness) were selected on the basis of empirical data from a glyphosate‐resistant Lolium rigidum population. Predicted rates of evolution of resistance were similar to those observed in the field. Together, the timing of glyphosate applications, the rarity of glyphosate‐resistant mutants, the incomplete dominance of glyphosate‐resistant alleles and pleiotropic fitness costs associated with glyphosate resistance, all contribute to its relatively slow evolution in the field.  相似文献   

13.
There is interest in more diverse weed management tactics because of evolved herbicide resistance in important weeds in many US and Canadian crop systems. While herbicide resistance in weeds is not new, the issue has become critical because of the adoption of simple, convenient and inexpensive crop systems based on genetically engineered glyphosate‐tolerant crop cultivars. Importantly, genetic engineering has not been a factor in rice and wheat, two globally important food crops. There are many tactics that help to mitigate herbicide resistance in weeds and should be widely adopted. Evolved herbicide resistance in key weeds has influenced a limited number of growers to include a more diverse suite of tactics to supplement existing herbicidal tactics. Most growers still emphasize herbicides, often to the exclusion of alternative tactics. Application of integrated pest management for weeds is better characterized as integrated weed management, and more typically integrated herbicide management. However, adoption of diverse weed management tactics is limited. Modifying herbicide use will not solve herbicide resistance in weeds, and the relief provided by different herbicide use practices is generally short‐lived at best. More diversity of tactics for weed management must be incorporated in crop systems. © 2014 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Grass seed crops are minor crops that cannot support the development of selective herbicides for grass weed control in grass seed crops. An option is to screen for selective herbicides with the use of logarithmic spraying technology. The aim of this paper is to assess selectivity of various herbicides in grass seed crops by using dose–response curves. RESULTS: Six grass species were subjected to logarithmic spraying with 11 herbicides and with Poa pratensis L. as a weed. The ratio between the doses that caused 10% of damage to the crop and 90% of damage to the weed was used as a selectivity index. Compounds with selectivity indices above 2 can be safely used in a crop. The two ACCase herbicides clodinafop‐propargyl and fenoxaprop‐P‐ethyl and a mixture of the two ALS herbicides mesosulfuron and iodosulfuron could be used selectively to control P. pratensis in Festuca rubra L., although the selectivity indices in no instances were greater than the desired 2.0. CONCLUSION: The logarithmic sprayer can be a rapid screening tool for identifying compounds with favourable selectivity indices. Good experimental design is needed to alleviate rates being systematically distributed and confounded with growth rate and soil fertility gradients. Copyright © 2009 Society of Chemical Industry  相似文献   

15.
Agricultural weeds descended from domesticated ancestors, directly from crops (endoferality) and/or from crop–wild hybridization (exoferality), may have evolutionary advantages by rapidly acquiring traits pre-adapted to agricultural habitats. Understanding the role of crops on the origin and evolution of agricultural weeds is essential to develop more effective weed management programs, minimize crop losses due to weeds, and accurately assess the risks of cultivated genes escaping. In this review, we first describe relevant traits of weediness: shattering, seed dormancy, branching, early flowering and rapid growth, and their role in the feralization process. Furthermore, we discuss how the design of “super-crops” can affect weed evolution. We then searched for literature documenting cases of agricultural weeds descended from well-domesticated crops, and describe six case studies of feral weeds evolved from major crops: maize, radish, rapeseed, rice, sorghum, and sunflower. Further studies on the origin and evolution of feral weeds can improve our understanding of the physiological and genetic mechanisms underpinning the adaptation to agricultural habitats and may help to develop more effective weed-control practices and breeding better crops. © 2022 Society of Chemical Industry.  相似文献   

16.
Evolved glyphosate-resistant weeds around the world: lessons to be learnt   总被引:2,自引:0,他引:2  
Glyphosate is the world's most important herbicide, with many uses that deliver effective and sustained control of a wide spectrum of unwanted (weedy) plant species. Until recently there were relatively few reports of weedy plant species evolving resistance to glyphosate. Since 1996, the advent and subsequent high adoption of transgenic glyphosate-resistant crops in the Americas has meant unprecedented and often exclusive use of glyphosate for weed control over very large areas. Consequently, in regions of the USA where transgenic glyphosate-resistant crops dominate, there are now evolved glyphosate-resistant populations of the economically damaging weed species Ambrosia artemissifolia L., Ambrosia trifida L., Amaranthus palmeri S Watson, Amaranthus rudis JD Sauer, Amaranthus tuberculatus (Moq) JD Sauer and various Conyza and Lolium spp. Likewise, in areas of transgenic glyphosate-resistant crops in Argentina and Brazil, there are now evolved glyphosate-resistant populations of Sorghum halepense (L.) Pers and Euphorbia heterophylla L. respectively. As transgenic glyphosate-resistant crops will remain very popular with producers, it is anticipated that glyphosate-resistant biotypes of other prominent weed species will evolve over the next few years. Therefore, evolved glyphosate-resistant weeds are a major risk for the continued success of glyphosate and transgenic glyphosate-resistant crops. However, glyphosate-resistant weeds are not yet a problem in many parts of the world, and lessons can be learnt and actions taken to achieve glyphosate sustainability. A major lesson is that maintenance of diversity in weed management systems is crucial for glyphosate to be sustainable. Glyphosate is essential for present and future world food production, and action to secure its sustainability for future generations is a global imperative.  相似文献   

17.
Liebman  & Davis 《Weed Research》2000,40(1):27-47
Greater adoption and refinement of low-external-input (LEI) farming systems have been proposed as ways to ameliorate economic, environmental and health problems associated with conventional farming systems. Organic soil amendments and crop diversification are basic components of LEI systems. Weed scientists can improve the use of these practices for weed management by improving knowledge of four relevant ecological mechanisms. First, multispecies crop rotations, intercrops and cover crops may reduce opportunities for weed growth and regeneration through resource competition and niche disruption. Secondly, weed species appear to be more susceptible to phytotoxic effects of crop residues and other organic soil amendments than crop species, possibly because of differences in seed mass. Thirdly, delayed patterns of N availability in LEI systems may favour large-seeded crops over small-seeded weeds. Finally, additions of organic materials can change the incidence and severity of soil-borne diseases affecting weeds and crops. Our research on LEI sweetcorn and potato production systems in central and northern Maine (USA) suggests that these mechanisms can reduce weed density and growth while maintaining crop yields. Low-external-input farming systems will advance most quickly through the application of interdisciplinary research focused on these and other ecological mechanisms.  相似文献   

18.
Taking stock of herbicide-resistant crops ten years after introduction   总被引:11,自引:0,他引:11  
Since transgenic, bromoxynil-resistant cotton and glufosinate-resistant canola were introduced in 1995, planting of transgenic herbicide-resistant crops has grown substantially, revolutionizing weed management where they have been available. Before 1995, several commercial herbicide-resistant crops were produced by biotechnology through selection for resistance in tissue culture. However, non-transgenic herbicide-resistant crops have had less commercial impact. Since the introduction of glyphosate-resistant soybean in 1996, and the subsequent introduction of other glyphosate-resistant crops, where available, they have taken a commanding share of the herbicide-resistant crop market, especially in soybean, cotton and canola. The high level of adoption of glyphosate-resistant crops by North American farmers has helped to significantly reduce the value of the remaining herbicide market. This has resulted in reduced investment in herbicide discovery, which may be problematic for addressing future weed-management problems. Introduction of herbicide-resistant crops that can be used with selective herbicides has apparently been hindered by the great success of glyphosate-resistant crops. Evolution of glyphosate-resistant weeds and movement of naturally resistant weed species into glyphosate-resistant crop fields will require increases in the use of other herbicides, but the speed with which these processes compromise the use of glyphosate alone is uncertain. The future of herbicide-resistant crops will be influenced by many factors, including alternative technologies, public opinion and weed resistance. Considering the relatively few recent approvals for field testing new herbicide-resistant crops and recent decisions not to grow glyphosate-resistant sugarbeet and wheat, the introduction and adoption of herbicide-resistant crops during the next 10 years is not likely to be as dramatic as in the past 10 years.  相似文献   

19.
Glyphosate: a once-in-a-century herbicide   总被引:7,自引:0,他引:7  
Since its commercial introduction in 1974, glyphosate [N-(phosphonomethyl)glycine] has become the dominant herbicide worldwide. There are several reasons for its success. Glyphosate is a highly effective broad-spectrum herbicide, yet it is very toxicologically and environmentally safe. Glyphosate translocates well, and its action is slow enough to take advantage of this. Glyphosate is the only herbicide that targets 5-enolpyruvyl-shikimate-3-phosphate synthase (EPSPS), so there are no competing herbicide analogs or classes. Since glyphosate became a generic compound, its cost has dropped dramatically. Perhaps the most important aspect of the success of glyphosate has been the introduction of transgenic, glyphosate-resistant crops in 1996. Almost 90% of all transgenic crops grown worldwide are glyphosate resistant, and the adoption of these crops is increasing at a steady pace. Glyphosate/glyphosate-resistant crop weed management offers significant environmental and other benefits over the technologies that it replaces. The use of this virtually ideal herbicide is now being threatened by the evolution of glyphosate-resistant weeds. Adoption of resistance management practices will be required to maintain the benefits of glyphosate technologies for future generations.  相似文献   

20.
The development of acetolactate synthase (ALS) tolerant sugar beet provides new opportunities for weed control in sugar beet cultivation. The system consists of an ALS?inhibiting herbicide (foramsulfuron + thiencarbazone‐methyl) and a herbicide‐tolerant sugar beet variety. Previously, the use of ALS‐inhibitors in sugar beet was limited due to the susceptibility of the crop to active ingredients from this mode of action. The postulated benefits of cultivation of the ALS‐tolerant sugar beet are associated with potential risks. Up to now, with no relevant proportion of herbicide‐tolerant crops in Germany, ALS‐inhibitors are used in many different crops. An additional use in sugar beet cultivation could increase the selection pressure for ALS‐resistant weeds. To evaluate the impact of varying intensity of ALS‐inhibitor use on two weed species (Alopecurus myosuroides and Tripleurospermum perforatum) in a crop rotation, field trials were conducted in Germany in two locations from 2014 to 2017. Weed densities, genetic resistance background and crop yields were annually assessed. The results indicate that it is possible to control ALS‐resistant weeds with an adapted herbicide strategy in a crop rotation including herbicide‐tolerant sugar beet. According to the weed density and species, the herbicide strategy must be extended to graminicide treatment in sugar beet, and a residual herbicide must be used in winter wheat. The spread of resistant biotypes in our experiments could not be attributed to the integration of herbicide‐tolerant cultivars, although the application of ALS‐inhibitors promoted the development of resistant weed populations. Annual use of ALS‐inhibitors resulted in significant high weed densities and caused seriously yield losses. Genetic analysis of surviving weed plants confirmed the selection of ALS‐resistant biotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号