首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在设施栽培条件下,研究甜瓜关键生育期不同叶位SPAD值的变异特征及与叶片、植株氮素含量的相关性,探索提出基于SPAD仪诊断氮素营养最佳的测定叶位。结果表明,在各施氮水平下,不同叶位间叶片SPAD值存在一定差异,各叶位叶片SPAD值随施氮量的增加而增加。在适宜施氮(N 210 kg/hm~2)水平下,各生育期顶3叶和顶4叶SPAD值变异系数显著低于顶1叶和顶2叶,不同叶位叶片SPAD值与叶片、植株含氮量有较好的相关性,其中顶3叶与叶片、植株含氮量相关性最高。因此,用叶绿素SPAD仪诊断甜瓜氮素营养,顶3叶为较理想的指示叶或参照叶。  相似文献   

2.
探明夏玉米氮素营养生化指标(叶绿素a、叶绿素b、类胡萝卜素、叶片氮含量和叶片氮积累量)与叶片SPAD值垂直分布特征及两者间定量回归关系,确立基于叶绿素仪的夏玉米氮营养无损诊断敏感叶位和叶片部位,以实现氮营养时空变化的快捷和精准监测。利用2018-2019年连续2季不同氮营养水平下夏玉米关键生育期主茎各叶位(顶1叶~顶12叶,TL1~TL12)和叶片部位(每张叶片从叶片基部开始根据叶片长度每20%分为1个测试区间) SPAD值及氮营养指标数据,研究基于偏最小二乘(partial least square, PLS)回归模型的夏玉米不同位点SPAD值与氮营养指标间关系,确定可稳定指示夏玉米氮营养空间异质性变化的敏感叶位及叶片部位。结果表明,不同叶位间夏玉米叶片SPAD值和氮营养指标于植株间分布均呈典型的"钟型"特征,至TL5或TL6时达至峰值。同一叶位不同部位间SPAD值由20%至100%位点时则逐步升高,且80%~100%位点间无显著差异(P>0.05)。PLS分析结果显示,夏玉米不同叶位SPAD值与氮营养指标间模型精度决定系数(coefficient of determination, R2)和相对分析误差(relative percent deviation,RPD)范围分别为0.693~0.821和1.425~2.744。不同测试位点R2和RPD值范围则分别为0.660~0.847和1.607~2.451,满足模型精确诊断需求。此后,基于PLS模型中各叶位和叶片部位无量纲评价指标变量重要性投影值(variable importance for projection,VIP),确定顶4叶(TL4)完展叶60%~80%区间为夏玉米氮营养诊断的敏感区域,VIP值均高于临界值1.40,预测效果较为理想。研究可为实现氮营养的高效、快捷诊断和精准施氮提供参考。  相似文献   

3.
氮素是微型盆栽月季生长发育的必需元素,实时监测植株生长过程中氮素的变化,精准估测氮素含量尤为重要。设置4个施氮水平(包含高氮处理),分析施氮量对微型盆栽月季生长发育的影响,测定不同施氮水平下4种微型盆栽月季在不同生长时期、不同叶片层位的SPAD值,利用线性及非线性回归分析等方法,构建基于叶片SPAD值的单一品种和混合品种叶片氮含量估测模型,并对此模型进行检验和通用性评价,利用SPAD氮饱和指数评估临界氮含量。结果显示,4个不同微型月季品种在整个生长发育时期的营养生长趋势相似,且在不同施氮水平下性状指标具有差异。随着施氮量的增加,叶片氮含量和叶片SPAD值均呈先上升后平稳的趋势。叶片SPAD值与叶片氮含量之间存在显著相关性,且不同层位的叶片SPAD值与叶片氮含量的相关性存在差异。多品种混合构建的综合模型在通用性上优于单一品种模型,S1和S2时期的下层叶片、S3和S4时期的上层叶片SPAD值与叶片氮含量回归决定系数较高,构建的模型分别为y=0.0009x2+0.6115x+0.8047、y=0.002x2+0.7118x+2.3382、y=0.1...  相似文献   

4.
玉米不同层位叶片生理生化指标与SPAD值的关系   总被引:1,自引:1,他引:0  
  【目的】  研究不同层位玉米叶片氮素指标的变化,确定在不同生育时期进行营养诊断的最佳叶片,以便能够及时、准确地进行氮素营养光谱诊断,实现玉米高产和肥料高效益。  【方法】  设置两年 (2017和2018) 的盆栽试验,共设6个施氮水平,分别在玉米的关键生育时期 (拔节期、大喇叭口期、开花吐丝期和灌浆期) 按叶片层位取样,分析叶片生理生化指标 (叶片氮含量、叶绿素含量、可溶性蛋白质含量、可溶性糖含量、叶片厚度和净光合速率) 的变化及其与SPAD值的关系,确定利用SPAD值对叶片氮含量进行估算的最佳叶片。  【结果】  1) 叶片氮含量、叶绿素含量、可溶性蛋白质含量、叶片厚度及净光合速率随着氮肥增施呈现先增加后平稳的趋势,与叶片SPAD值呈正相关关系;可溶性糖含量随着氮肥增施呈先减少后平稳的趋势,与SPAD值呈负相关关系。2) 叶片氮含量、叶绿素含量、可溶性蛋白质含量、叶片厚度、净光合速率及SPAD值垂直分布上均表现为上层叶片>下层叶片;可溶性糖含量表现为下层叶片>上层叶片。3) SPAD值与叶片氮含量之间建立的线性回归模型均达极显著水平,拔节期和灌浆期的上层叶片、大喇叭口期和开花吐丝期的中层叶片氮含量与SPAD值回归决定系数 (R2) 较高,分别为0.768、0.865、0.893、0.924。  【结论】  生育期、氮水平和叶片层位显著影响玉米叶片中与氮素营养相关的生理生化指标,呈现一定的空间异质性,在玉米拔节期和灌浆期利用SPAD值进行叶片氮含量营养诊断时应考虑测定上层叶片 (顶两片、三片完全展开叶),而在大喇叭口期和开花吐丝期应测定中层叶片 (中两片完全展开叶、穗位叶及以下两片叶)。  相似文献   

5.
为解决西瓜生产中存在盲目或过量氮肥施用导致的果实品质下降和氮素利用率低下等突出问题,开展了基于叶绿素仪测定值(SPAD值)的西瓜全生育期氮素营养诊断与推荐施肥技术研究,以期为利用SPAD仪建立田间西瓜氮素营养实时诊断技术、开发西瓜精准氮素养分管理模式提供理论依据。试验于2020—2021年在甘肃河西灌区的张掖市以‘金城5号’西瓜为材料,设置了0、80、160、240、320、400 kg/hm2 6个氮肥水平,通过研究不同施氮水平下西瓜关键生育时期不同叶位及叶片不同位置上的SPAD值、叶绿素含量、全氮含量的变化特征及其与西瓜产量、品质指标的相互关系,建立基于SPAD值进行西瓜氮素营养诊断与推荐施肥的实时氮肥管理(RTNM)模式,并开展RTNM模式的生产性验证。西瓜苗期顶一叶叶尖、伸蔓期顶三叶叶中、膨果期功能叶叶中位置SPAD值与叶片叶绿素、全氮含量相关性最佳,且变异系数小,是较为理想的指示叶或参照叶;通过指示叶SPAD值与西瓜产量、品质指标及施氮量的回归分析,获得西瓜产量超过60000 kg/hm2的SPAD阈值范围为苗期49.1~51.0、...  相似文献   

6.
施氮对不同肥力土壤小麦氮营养和产量的影响   总被引:8,自引:2,他引:6  
【目的】农田养分供应是由土壤基础肥力和肥料投入共同决定的,不同土壤肥力下土壤养分供应能力和特征也不同。本文研究了河南省高、低肥力田块下,不同施氮量对小麦主要生育时期植株氮素营养和土壤硝态氮及产量的影响,以期为河南省同类生产条件下氮肥的合理施用和产量的提升提供参考和依据。【方法】2015—2016年,以小麦品种矮抗58为供试材料进行大田试验,分别设置0、120、225、330 kg/hm^2 4个施氮处理(表示为N0、N1、N2、N3),在开花期到成熟期调查施氮量对土壤硝态氮及产量的影响;在开花期、花后10天和花后20天,测定施氮量对小麦旗叶到倒4叶的叶片氮含量、SPAD值和氮素积累量,以及对植株和所有叶片氮含量的影响。【结果】从开花期到成熟期土壤中硝态氮含量随着施氮量的增加而增加,高肥力田块的土壤硝态氮含量显著高于低肥力田块的土壤硝态氮含量。施氮能显著增加低肥力田块产量,但是高肥力田块的产量均高于低肥力田块,与不施氮相比,低肥力田块的产量最大增幅是高肥力田块产量最大增幅的2.63倍。N1和N2处理下,在开花期和花后10天倒2叶的SPAD值高肥力田块显著高于低肥力田块,但在花后20天低肥力田块显著高于高肥力田块。在N1、N2和N3处理下,旗叶的氮含量在花后10天高肥力田块显著高于低肥力田块,但在花后20天则显著相反。开花期到花后20天,对于低肥力田块旗叶的氮素积累量对上4叶的贡献率最大(N0除外),最高达52.6%;高肥力田块,旗叶和倒2叶对上4叶的氮素积累量贡献率处在同等重要的位置,最高分别达39.9%和39.7%。花后10天到花后20天,高肥力田块不同叶位的氮素转运量和转运率均高于低肥力田块(N0除外)。【结论】增施氮肥可以通过提高土壤硝态氮含量来提高土壤供氮能力,高肥力田块的叶片转运量和转运率比低肥力田块高,低肥力田块通过提高施氮量增加的产量低于高肥力田块下的产量,因此,需改善农田基础肥力来提高产量。通过对高、低肥力条件下产量的分析发现,达到最高产量时的施氮量分别为213kg/hm^2和287 kg/hm^2。  相似文献   

7.
何承刚  黄高宝  姜华 《土壤通报》2003,34(6):529-532
本研究通过在栗钙土上设置田间试验。研究结果表明:开花期小麦不同器官中氮的积累量随着施氮量的增加而增加,以叶片中积累的氮素量最高,其次为穗>茎>叶鞘,但当施氮量达到450kg/hm2时,单作小麦叶片和间套作小麦叶鞘、茎、穗氮的积累量减少,而且间套作小麦相同施氮量各器官的氮素积累量大于相应单作小麦各器官的氮素积累量。成熟时小麦各营养体氮积累量随着施氮量的增加而增加,颖壳+穗轴氮积累量最多,其次为茎>叶鞘>叶;成熟时籽粒氮素的吸收积累量随着施氮量的增加而增加,间套作小麦籽粒氮素的吸收积累量大于相同施氮量单作小麦氮素的吸收积累量。在同一施氮水平下,间套作小麦花前氮同化量和总氮同化量都大于相应单作小麦,而间套作小麦花后氮同化量却小于相应单作小麦;单作和间套作小麦总氮同化量与其蛋白质含量之间呈显著正相关(r分别为0.936 ,0.987 )。  相似文献   

8.
以半湿润地区土垫旱耕人为土为供试土壤,采用田问试验,研究了不同施氮水平下夏玉米(Zea maysL.)拔节期、灌浆期和成熟期3个生育期冠层叶片氮素、叶绿素相对值(SPAt)值)的垂直分布规律及其差异;同时对各层叶片含氮量、SPAR值与施氮量进行相关分析.结果表明,在各生育期不同叶层叶片含氮量按上、中、下层顺序呈明显递减规律,从全生育期不同施氮处理看,上层比中层增加6.64%,中层比下层增加5.18%.随施氮量增加,中上层叶片含氮量差异增大,中下层叶片含氮量差异减小.冠层内叶片SPAD值垂直分布规律与叶片含氮量分布规律相类似.相关分析表明,全生育期各层叶片SPAD值与叶片含氮量呈极显著线性正相关关系(R=0.503**).进一步分析发现,各层叶片SPAD值,叶片含氮量与施氮量的相关性以上层叶关系最为密切,揭示了夏玉米氮素营养诊断的较好叶片是上层叶位.  相似文献   

9.
氮硫互作对冬小麦旗叶衰老、产量和氮素利用效率的影响   总被引:2,自引:0,他引:2  
王丽  王东  周杰  韩坤 《土壤学报》2016,53(6):1476-1488
试验采用裂裂区设计,小麦品种(烟农19和汶农6号)为主区,施氮(N)量为裂区,设0(N0)、120(N120)、240(N240)kg hm-2三个施N水平,施硫(S)量为裂裂区,设0(S0)、20(S20)、40(S40)、60(S60)kg hm-2四个施S水平。结果表明,汶农6号开花后旗叶超氧化物歧化酶(SOD)活性、旗叶净光合速率、产量和氮素利用效率均高于烟农19。在一定施氮水平下适量施硫显著提高烟农19和汶农6号小麦开花后旗叶SOD活性和可溶性蛋白质含量,提高旗叶净光合速率和开花后干物质积累量,增加植株地上部氮素积累量和籽粒产量;当施氮水平为120 kg hm-2施硫量超过40 kg hm-2和施氮240 kg hm-2施硫量超过20 kg hm-2时,汶农6号植株地上部氮素积累量仍继续增加,但旗叶抗氧化能力和光合同化能力均无明显提高,籽粒产量不再增加,烟农19号旗叶SOD活性、可溶性蛋白质含量和光合速率均降低,植株地上部氮素积累量和籽粒产量均减少。在同一施氮水平下,两小麦品种氮素利用效率总体表现为随施硫量增加而降低的趋势。在土壤有效硫为38.9~42.1 mg kg-1的条件下,适量施用氮肥和硫肥有利于延缓小麦花后旗叶衰老,提高光合同化能力,增加籽粒产量,但不同品种小麦对氮肥和硫肥施用量的响应不同,氮素利用效率较高的品种在较高的氮硫供给水平下仍有较好的光合同化和产量表现,而氮素利用效率相对低的品种对高氮高硫的适应性较差,后期易早衰,影响产量和氮素利用效率。  相似文献   

10.
硝酸盐反射仪和SPAD法对玉米氮素营养诊断的比较   总被引:1,自引:0,他引:1  
精准的营养诊断是了解作物氮素营养及推荐施肥的基础。本文在田间滴灌条件下利用SPAD叶绿素仪(SPAD-502 Plus)和硝酸盐反射仪(RQ flex10)两种诊断方法对玉米关键生育时期的氮素营养诊断进行研究,旨在筛选出适宜的诊断方法,并依据诊断值建立滴灌玉米不同生育时期的施肥模型。试验设置0 kg(N)·hm~(-2)(N0)、225 kg(N)·hm~(-2)(N225)、330 kg(N)·hm~(-2)(N330)、435 kg(N)·hm~(-2)(N435)和540 kg(N)·hm~(-2)(N540)5个施氮水平,在不同生育时期测定了玉米叶片SPAD值和叶鞘NO_3~-含量,并分别与施氮量、植株全氮含量、产量进行方程拟合,比较两种诊断方法对玉米氮素营养的响应。研究结果表明:1)玉米叶片SPAD值和叶鞘NO_3~-含量均随施氮量的增加而显著升高,且在拔节期对施氮量的响应最敏感。叶鞘NO_3~-含量对施氮量变化的响应较SPAD值大,其与施氮量及玉米产量的拟合度均高于SPAD值,说明硝酸盐反射仪法对滴灌玉米氮素丰缺的反应更灵敏。2)玉米全氮含量与叶片SPAD值呈显著线性关系,而与叶鞘NO_3~-含量则以线性加平台表示。当叶鞘NO_3~-含量小于186 mg·L~(-1)时,植株全氮与NO_3~-间呈显著线性相关;当叶鞘NO_3~-含量大于186 mg·L~(-1)时,植株全氮随NO_3~-含量增加趋于不变。3)本农作区滴灌玉米最佳经济施氮量为402.5 kg·hm~(-2),对应的玉米产量为17 049 kg·hm~(-2)。玉米拔节期、抽雄吐丝期和灌浆期的临界叶鞘NO_3~-含量分别为729.3 mg·L~(-1)、536 mg·L~(-1)和81.2 mg·L~(-1)。SPAD叶绿素仪和硝酸盐反射仪均可对滴灌玉米进行氮素营养诊断,但硝酸盐速测值能更敏感地反映氮素丰缺状况,基于硝酸盐反射法进行作物氮素营养诊断及推荐施肥具有较好的准确性与适用性。  相似文献   

11.
Over application of fertilizer N to cotton is not only a potential threat to environment but also leads to increased costs of cultivation. The study aimed to establish the indicator leaf and its critical greenness for in-season management of fertilizer nitrogen (N) in Bt cotton using chlorophyll (SPAD) meter and leaf color chart (LCC). The response of three varieties and N treatments viz. 0, 30, 60, 90,120, 150 and 180?kg N ha?1 applied in two splits {(50% at thinning and 50% at first flowering) and three splits (50% at thinning, 25% at first flowering and 25% at boll formation)} was studied through split plot design. SPAD values and LCC scores of first, second, third and fourth fully opened leaves from the top of the main stem was recorded at first flowering and boll formation. The physiological efficiency and harvest index was highest for 90?Kg N ha?1 applied in two splits. Beyond 120?kg N ha?1, the N use efficiency parameters were higher for the N treatments applied in three split compared to the respective two split N treatments. The fourth leaf from the top in terms of SPAD values and LCC scores correlated best with N concentration compared to other leaves at all growth stages. The calculated critical SPAD values for the fourth leaf were 45 and 41 at first flowering and boll formation, respectively. Critical score of fourth leaf was 4.1 and 4, respectively at first flowering and boll formation, respectively. It is suggested that color of the fourth leaf from the top of Bt cotton can well indicate N supply from the soil and can help in need based N management.  相似文献   

12.
玉米叶片SPAD值、全氮及硝态氮含量的品种间变异   总被引:11,自引:2,他引:9  
研究比较两种土壤肥力条件下,4个春玉米品种在喇叭口期至成熟期间叶片SPAD值、全氮及硝态氮含量的变异程度、及其与氮素积累和产量形成的关系,以期为不同品种植株的氮素营养测试指标的优化提供依据。结果表明,叶片SPAD值与产量、吸氮量及生物量呈显著相关,该值主要受氮肥水平影响,并因土壤肥力而变异。从喇叭口期至灌浆期间平均变异幅度为17.7%,但品种间变异很小,平均仅为4.3%。说明利用SPAD值诊断玉米氮素营养时,其诊断指标不需要因品种而调整,但需要因不同肥力而调整。在新立城低肥力条件下,喇叭口期(V12)和抽雄期(VT)的SPAD临界值指标分别为46.1和57.8;在德惠高肥力条件下,两个时期的SPAD值临界值较为接近,分别为59.9和60.3。植株叶片硝态氮含量在土壤肥力间及品种间变异均较大,变异幅度分别为43.1%和29.3%,且与产量、吸氮量及生物量的相关性均较差,不适于在大面积范围内单独作为玉米氮素营养状况的评价指标。  相似文献   

13.
膜下滴灌棉花氮素推荐施肥模型的研究   总被引:8,自引:1,他引:7  
研究应用叶绿素仪(SPAD-502)在膜下滴灌条件下的棉花氮肥推荐。试验于2006年在石河子乌兰乌苏农业气象实验站进行,以新陆早24为材料。结果表明,不同叶位的叶片含氮量、SPAD值及叶片不同部位的SPAD值存在明显差异,SPAD值与叶绿素含量、叶片含氮量、单株吸氮量等均有较好的相关性;倒四叶的叶尖部位适合作为测试部位。盛蕾期、花期、盛花期和铃期倒四叶SPAD值与施氮量之间呈极显著线性相关;各生育期SPAD值与产量也具极显著相关。滴灌条件下最高籽棉产量为4686.5 kg/hm2,对应的施肥量为293.1 kg/hm2;最大利润(经济最佳)施肥量为207.33 kg/hm2,对应的最佳产量为4565.9 kg/hm2。各生育期SPAD的临界值分别为60.5、60.0、60.8和59.1。盛蕾期、花期、盛花期和铃期SPAD值每变动一格推荐施肥量分别为10.81、8.46、13.42和6.29 kg/hm2。  相似文献   

14.
烤烟氮素营养诊断及精准施肥模式研究   总被引:3,自引:3,他引:3  
为解决烤烟生产中存在过高施氮或不合理的施肥技术措施致使烟叶产质量下降和氮素利用效率低下等突出问题,该研究于2008-2010年在广东韶关烟草产区以烤烟品种K326为材料,研究不同施氮水平下不同叶位及叶片不同位置上的叶绿素仪测定值(SPAD值)、叶绿素含量、总氮含量的变化特征及其与产质量的相互关系,分析实时氮肥管理(RTNM)模式下不同SPAD施肥阈值对烟草产质量及氮肥利用率的影响,结果表明:顶三叶的叶中位置SPAD值与叶片叶绿素含量、总氮含量的相关性最好,且变异系数小,是较为理想的指示叶或参照叶;获得较好产质量烤烟时的SPAD值在伸根期和旺长期的阈值范围为38.3~47.2。在设置不同SPAD阈值的RTNM模式下,SPAD阈值40.5~43范围内(氮肥用量为75~110kg/hm2)能获得较高的烟叶产量、产值,最高产量和产值分别为2844.09kg/hm2和26989.24元/hm2,烟叶化学成分较为协调。此外,通过与农民习惯施肥模式(167.8kg/hm2)相比较,在SPAD设定阈值为43的RTNM模式下,相应的氮肥用量为110kg/hm2,氮肥农学利用率和吸收利用率分别提高53.0%、46.5%,产值提高了7.4%,调制后烟叶的淀粉、总氮、烟碱含量显著下降,烟叶化学成分更为协调,内在质量较好。  相似文献   

15.
通过ASD FieldSpec光谱仪测定2个小麦品种3个氮肥处理、3个水分处理下的叶片反射光谱,用SPAD-502仪测定叶片的SPAD(绿度指数)值,并称取叶重。用ViewSpec Pro与Matlab软件处理光谱数据,分析光谱参数与叶片含水量及SPAD值的相关关系,从而明确叶片水分及绿度特征的最佳波段或光谱指数。结果表明,水分指数(WI)、水分胁迫指数(MSI)及中红外植被指数(MSVI1)与叶片含水量的相关关系密切且表现稳定,均通过了0.05水平的显著性检验;Fd664(664nm附近处一阶导数光谱值)、SDr/SDb(红边区域一阶微分总和与蓝边区域一阶微分总和的比值)与小麦叶片SPAD值的相关性达到极显著水平,因而利用光谱法诊断和监测小麦叶片水分及绿度特征具有良好的可行性,可为遥感技术应用于精准农业提供依据。  相似文献   

16.
《Journal of plant nutrition》2013,36(10):2129-2142
ABSTRACT

Leaf chlorophyll content is closely related to leaf nitrogen (N) content, so it is reasonable to assume that NH4–N:NO3–N ratio in the nutrient solution used to grow tomatoes (Lycopersicon esculentum Mill.) hydroponically may affect leaf greenness, and consequently chlorophyll meter (SPAD) readings. It has also been shown that increasing nutrient solution strength (NSS) increases tomato productivity, but there are no reports regarding how NSS affects SPAD readings under greenhouse conditions. Genotype may also influence SPAD readings, and standardization for cultivar and sampling time may be needed. The objective of this study was to characterize SPAD readings for five tomato cultivars, and SPAD reading response to a combination of two nutrient solutions strength (NSS) (1X and 4X Steiner solution strength daily applied 18 days after transplanting at 7 p.m.) and two concentrations of NH4–N in solution (0 and 25%) in order to evaluate the potential of SPAD readings as a tomato yield predictor in greenhouse production systems. The SPAD readings were not uniform across tomato varieties tested, being consistently higher for “Max” and lower for the other varieties. Initially, SPAD readings for tomato varieties used in this study were low at the vegetative stage, and increased up to 40 days after transplant (DAT), but subsequently decreased at 49 DAT, or the fruit set of the first and second clusters. After this time, SPAD readings showed no variation. Chlorophyll meter readings for Max were higher in the top plant layers, but decreased in the top plant layer of the other tomato varieties. The SPAD readings were higher for plants supplied with 25% NH4–N than those without NH4–N in solution, but the use of a nighttime nutrient solution did not affect SPAD readings. None of the possible interactions among tomato variety, NH4–N:NO3–N ratio, and NSS were consistently significant. SAPD readings may be useful in monitoring low or high supply of N in greenhouse grown tomato plants.  相似文献   

17.
Leaf chlorophyll content is closely related to leaf nitrogen (N) content, so it is reasonable to assume that ammonium‐N (NH4‐N): nitrate‐N (NO3‐N) ratio in the nutrient solution used to grow tomatoes (Lycopersicon esculentum Mill.) hydroponically may affect leaf greenness, and consequently chlorophyll meter (SPAD) readings. It has also been shown that increasing nutrient solution strength (NSS) increases tomato productivity, but there are no reports regarding how NSS affects SPAD readings under greenhouse conditions. Genotype may also influence SPAD readings, and standardization for cultivar and sampling time may be needed. The objective of this study was to characterize SPAD readings for five tomato cultivars and SPAD reading response to a combination of two NSS (1X and 4X Steiner solution strength daily applied 18 days after transplanting at 7 p.m.) and two concentrations of NH4‐N in solution (0 and 25%) in order to evaluate the potential of SPAD readings as a tomato yield predictor in greenhouse production systems. The SPAD readings were not uniform across tomato varieties tested, being consistently higher for ‘Max’ and lower for the other varieties. Initially, SPAD readings for tomato varieties used in this study were low at the vegetative stage, and increased up to 40 DAT, but subsequently decreased at 49 DAT, or the fruit set of the first and second clusters. After this time, SPAD readings showed no variation. Chlorophyll meter readings for ‘Max’ were higher in the top plant layers, but decreased in the top plant layer of the other tomato varieties. The SPAD readings were higher for plants supplied with 25% NH4‐N than those without NH4‐N in solution, but the use of a nighttime nutrient solution did not affect SPAD readings. None of the possible interactions among tomato variety, NH4‐N: NO3‐N ratio, and NSS were consistently significant.  相似文献   

18.
【目的】研究喷施硅肥对茶树生长和茶叶品质的影响,以及硅在茶树中的累积和分布,为优质安全茶叶生产提供依据。【方法】采用室内盆栽与田间试验相结合的方法,供试硅肥为硅酸钠(Na2SiO3·9H2O)。室内盆栽试验设置7个硅喷施浓度:0、50、150、300、500、750、1500 mg/L,每7天喷施一次,共喷施3次。通过测定茶苗生物量、SPAD值、叶绿素荧光特性、植保素含量及气孔特性,以确定最佳喷施硅肥浓度。然后,以该最佳喷施浓度进行室内茶苗盆栽和田间试验,在室内试验中测定了茶苗不同部位和组织的硅含量,在田间试验中测定了茶园春、夏、秋季茶叶产量及新梢品质成分。【结果】喷施硅300、500 mg/L处理的茶苗地上部和根部生物量高于其他处理,幼苗叶绿素含量、叶片光化学猝灭系数(qP)、非光化学荧光淬灭系数(qNP)、表观电子传递速率(ETR)及植保素含量也高于Si0和其他处理,综合茶苗生长和生理指标结果,选用500 mg/L作为最佳硅喷施浓度。第一次喷施硅肥7天后,硅主要积累在叶部,从顶芽往下数的不同叶位硅含量分布为第3叶>第5叶>第1叶;第三次喷施7天后,第5叶硅含量显著高于第...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号