首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Summary The water status and nitrogen metabolism of the groundnut (Arachis hypogaea L.) cultivars, M-13 and M-145 were examined during a period of water stress and recovery. 10 day old seedlings, grown in controlled environment were exposed to solutions of polyethylene glycol (MW 6000, osmotic potential, –0.5 or –0.8 MPa = –5 or –8 bars) for a week when the stress was relieved by replacing the PEG solution with a nutrient solution. Relative turgidity, total protein and free amino acid concentration and nitrate reductase activity were measured during the period of stress and recovery. Cultivar M-13, despite its lower relative turgidity during stress, was better able to preserve its protein concentration and nitrate reductase activity, and recover to a normal state within three days of the relief of stress. M-145, on the other hand, failed to recover within this period. The results are discussed in the light of the known performance of the two cultivars in the field under drought conditions.  相似文献   

2.
Optimal crop production depends greatly on available soil water, and it is therefore important to know when and how much to irrigate in order to attain agronomic potential. In this work, plant indicators are used to assess water stress. These are compared with available soil water to find the critical point for irrigation scheduling of sweet sorghum. The experimental trial was carried out in Bečej, in the Vojvodina region, on a sweet sorghum crop, grown in moderate climatic conditions on a well-drained, deep chernozemolic meadow soil. Plant indicators tested were predawn and midday leaf water potential and crop and air temperature difference. All the methods were sensitive to water deficit in plants, but not all can be used for irrigation scheduling. The predawn leaf water potential was the most reliable parameter among those tested due to its relative independence from weather conditions and a valid indicator of plant water status. This was not the case with canopy-air temperature difference. The predawn leaf water potential corelation with available soil water indicates that the threshold value for irrigation scheduling of sweet sorghum is when the former has decreased to –0.45 MPa. This corresponds to a soil water depletion to about 10% of available water in the active root zone. The canopy-air temperature difference was sufficiently sensitive to indicate the onset of mild plant water stress, although it showed a certain threshold value when water shortage appeared, which occurred when the air and canopy temperature were the same. Received: 9 April 1996  相似文献   

3.
Summary Lysimeters have been frequently used to study crop response to the onset of water stress. To test the representativeness of lysimeter derived criteria for the onset of crop water stress, spring wheat (Triticum aestivum L.) was grown in two field plots with 1.0 m deep lysimeters in the center of each plot. One plot was well-watered while the second was subjected to a drying period with no irrigation. Crop water stress was assessed by monitoring leaf water potential ( l ), stomatal diffusive resistance (r s ), canopy temperature (CT), evapotranspiration (ET), and soil water content in both plots and lysimeters. The rate of change of all these measured parameters, when compared to the well-watered field control-plot revealed that the field-grown plants showed signs of water stress long before the lysimeter-grown plants. Water stress developed gradually for the field crop, but the transition from the well-watered to the stressed condition happened abruptly for the lysimeter-grown plants. Once this transition occurred, the lysimeter-grown plants were more drought stressed than the field-grown plant. Water profiles measured inside the lysimeter were different from those measured in the adjacent plots. An increase in root length density with depths below 0.6 m was observed in the lysimeters as opposed to a quasimonotonic decrease with depth in the field. The response of the lysimeter-grown plants was a result of the anomalous water content and root distribution. We conclude that threshold values of ET, l , r s , and CT for the onset of water stress obtained when deep-rooted crops grown in a shallow lysimeter are subjected to drought periods may not be directly applicable to field situations.  相似文献   

4.
Summary A field study was conducted on cotton (Gossypium hirsutum L. c.v. Acala SJ-2) to investigate the effects of soil salinity on the responses of stress indices derived from canopy temperature, leaf diffusion resistance and leaf water potential. The four salinity treatments used in this study were obtained by mixtures of aqueduct and well water to provide mean soil water electrical conductivities of 17, 27, 32 and 38 dS/m in the upper 0.6 m of soil profile. The study was conducted on a sandy loam saline-alkali soil in the lower San Joaquin Valley of California on 30 July 1981, when the soil profile was adequately irrigated to remove any interference of soil matric potential on the stress measurements. Measurements of canopy temperature, leaf water potential and leaf diffusion resistance were made hourly throughout the day.Crop water stress index (CWSI) estimates derived from canopy temperature measurements in the least saline treatment had values similar to those found for cotton grown under minimum salinity profiles. Throughout the course of the day the treatments affected CWSI values with the maximum differences occurring in mid-afternoon. Salinity induced differences were also evident in the leaf diffusion resistance and leaf water potential measurements. Vapor pressure deficit was found to indicate the evaporative demand at which cotton could maintain potential water use for the various soil salinity levels studied. At vapor pressure deficits greater than 5 kPa, cotton would appear stressed at in situ soil water electrical conductivities exceeding 15 dS/m. The CWSI was as sensitive to osmotic stress as other, more traditional plant measures, provided a broader spatial resolution and appeared to be a practical tool for assessing osmotic stress occurring within irrigated cotton fields.  相似文献   

5.
土壤水分对辣椒叶片光合特性及保护酶系统的影响   总被引:2,自引:0,他引:2  
在温室条件下通过不同土壤水分水平的小区试验,研究了不同土壤含水率对辣椒叶片叶绿素(SPAD)含量、光合特性以及保护酶活性、游离脯氨酸和丙二醛(MDA)含量的影响,探讨这些生理指标与其抗旱性的关系。以精选牛角椒为研究对象,经土壤含水率分别为田间持水率的40%~55%(A1)、55%~70%(A2)、70%~85%(A3)、85%~100%(A4)处理后,测定叶片叶绿素(SPAD)含量、光合特性以及保护酶活性、游离脯氨酸和丙二醛(MDA)含量的变化规律。结果表明:①随着土壤含水率的减少,叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、胞间CO2浓度(Ci)和蒸腾速率(Tr)均相应降低,而游离脯氨酸和丙二醛(MDA)含量增加;②与A3处理相比,在A1、A2和A4处理下,SOD、CAT、POD活性均有不同程度的提高,表明叶片受到逆境伤害,产生应激反应,且CAT和POD的活性随土壤水分变化表现出相反趋势;③水分利用效率在土壤相对含水率为55%~70%时最大,但各处理总体上差异不显著。综合考虑土壤水分对辣椒叶片叶绿素含量、光合特性以及保护酶活性和水分利用效率的影响后认为,田间持水率的70%~85%作为结果期辣椒理想的土壤灌溉指标是科学合理的。  相似文献   

6.
The physiological behavior and yield response of maize under irrigation with saline water was studied in the laboratory and in the field. In the laboratory, the germination rate decreased only when the electrical conductivity (EC) of the substrate solution was above 17 dS/m. The osmotic potential of germinating maize seedlings decreased in proportion to the decrease in osmotic potential of the substrate.In the field, two maize cultivars (a field maize and a sweet maize) were irrigated alternately with saline (11 days from sowing), fresh (21 days from emergence), and saline (from day 33 to harvest) water and compared with maize irrigated with saline water continuously throughout the season. Four levels of irrigation water salinity were used (ECi = 1.2, 4.5, 7.0 and 10.5 dS/m).In the field no osmotic adjustment by the leaf sheaths of plants in response to salinity was observed. The osmotic potential of corn leaf sheaths (π) decreased with ontogeny in all treatments. The midday leaf water potential (ψL) in maize irrigated with 10.5 dS/m water was 0.75 MPa lower than in plants irrigated with 1.2 dS/m water.In the continuous treatment grain yield was reduced significantly with each increase in salt concentration, and the relationship between relative yield (y) and ECi could be expressed as y = 100?8.7 (ECi-0.84). With alternating irrigation and 7.0 dS/m treatment the grain yield was the same as in the low EC treatment (6.98 kg/m2).  相似文献   

7.
为了探讨番茄苗期生理特性在水分胁迫胁迫下的响应,试验设置充分灌溉的对照(T)和轻度(T1)、中度(T2)、重度(T3)水分胁迫处理.在试验开始的第5,10,15和20 d,测定各处理番茄幼苗的叶绿素荧光参数、气孔特征及抗氧化酶等指标.与对照相比,不同程度水分胁迫条件下,随胁迫程度的增大,各处理番茄幼苗的PSⅡ光化学效率(Fv/Fm)、光化学淬灭(qP)及电子传递速率(ETR)均有所下降,且由大到小基本表现为T,T1,T2,T3;处理T1,T2和T3的气孔密度、长度及宽度均有所减小,重度水分胁迫条件下,气孔关闭;叶片中的超氧化物歧化酶、过氧化物酶及过氧化氢酶活性随着水分胁迫的加重而增加.轻度水分胁迫番茄幼苗各生理指标与对照差异较小,故可在番茄苗期进行50%~60%田间持水量的参考灌溉制度.  相似文献   

8.
不同生育期干旱对棉花生长发育及产量的影响   总被引:4,自引:0,他引:4  
在防雨棚隔绝降雨的条件下,通过在棉花的各生育阶段设置不同的干旱处理,分析了不同生育期干旱对棉花生长发育及产量的影响,并对桶栽棉花施加不同程度的水分胁迫,在花铃期测定了棉花的某些生理活动(如光合、蒸腾等),以揭示光合速率、蒸腾速率、叶片水分利用效率在不同土壤水分条件下的变化规律  相似文献   

9.
Waterlogging of field-grown plants can occur either when the surface of slowly permeable soils is inundated or when the water-table rises so that part or all of the root zone is saturated. The effects of short-term waterlogging on field crop growth and yield have not been well quantified. To study these effects, a sloping, repacked slab of soil underlain by an impermeable membrane was constructed. The sloping plot (45 m long × 6 m wide × 0.6 m deep) was flooded by introducing water through a drainage network and gravel bed so that a gradient of water-table depth ranging from 0.1 m above to 0.66 m below the soil surface was obtained. Cotton (Gossypium hirsutum cv. Deltapine 61) was grown in the facility and the responses of plants to two periods of flooding were monitored. Soil matric potential and oxygen partial pressure data indicated that plants were subjected to a continuum of conditions ranging from complete inundation to no water-table within the root zone.The first flooding event began 82 days after sowing just prior to the main flowering period. Plants with more than 55% of their root system below the water table showed decreased leaf growth about 3–4 days after the flooding started with visible wilt symptoms and decreased leaf water potential observed on days 7 and 8 of flooding. In the second flooding event (131 days after sowing), plants showed no signs of waterlogging stress apart from reduced leaf growth despite 16 days of flooding. Plant growth response was probably more the result of reduced nutrient status (mostly nitrate) rather than a water deficit stress effect with some plant acclimatization between the first and second flooding event. Seed cotton yield data indicated that the observed stress during the first flooding event may have promoted reproductive growth in plants where the short-term water-table was greater than 0.2 m below the soil surface.  相似文献   

10.
国内外甘薯茎叶处理收获机的发展研究   总被引:2,自引:0,他引:2  
甘薯茎叶处理收获机械的研制与推广对于提高我国甘薯种植机械化水平和促进甘薯产业发展具有重要意义。在介绍国内外甘薯茎叶处理收获机械研究开发现状的基础上,分析并指出我国甘薯茎叶处理收获机械未来的发展趋势。  相似文献   

11.
通过测定高温处理后水培和土培樱桃番茄的几项生理指标,研究了樱桃番茄在高温胁迫条件下的叶水势、光合速率、SOD酶活性等生理指标的变化特征,结果表明,高温胁迫条件下土培番茄叶水势、光合速率和SOD活性大幅度下降,而水培番茄上述生理指标虽有下降,但幅度远较土培番茄为少,因此,水培樱桃番茄对高温的抵抗能力要强于土培。  相似文献   

12.
Summary Concurrent diurnal measurements of water potential, osmotic potential and conductance were made on leaves of lucerne grown under weekly (W) and fortnightly (F) irrigation on gypsum-treated (G) and untreated soil (C). Measurements were made throughout the period of vegetative growth.Leaf water potentials were lower both at dawn and in the afternoon under fortnightly as compared to weekly irrigation. Gypsum application led to a slower decline in water potential under fortnightly irrigation, although the effect was small compared with more frequent irrigation. Stomatal conductance was reduced under treatments FG and FC during the later stages of vegetative growth, coinciding with leaf water potentials of less than c. –1.6 MPa.The relationship between leaf water potential and turgor potential changed with time such that positive turgor was maintained as leaf water potential declined. Turgor maintenance was achieved through a decrease in leaf osmotic potential. These data suggest that lucerne is capable of osmotic adjustment.Stomatal conductance declined rapidly below a leaf turgor potential of c. 0.1 MPa. It is hypothesised that osmotic adjustment enabled stomatal adjustment, which contributed to continued assimilation despite increasing soil moisture deficits.  相似文献   

13.
Summary A simulation model of water uptake by a crop was developed to facilitate synthesis of field and laboratory observations with existing knowledge, and to analyze and predict affects of management practices, such as tillage, on water uptake from a drying soil. Radial water flow resistance in soil Rs was estimated by the single root flow model. Leaf stomata closure was represented by an observed minimal leaf water potential. Flow resistances, per unit root length Rr and in the plant Rp, were assumed to be constant and were evaluated together with an effective root length factor Frl, in the course of simulating a ten week period of observed soil water depletion by a crop of oats. Rr, Rp, and Frl were found to have similar values to those reported in the literature. Potential transpiration and evaporation and their ratio were estimated by the methods of Van Bavel (1966) and Denmead (1973). Evaporation reduction due to soil drying was estimated empirically.Cessation of soil water depletion (attainment of a permanent wilting soil water content) in the 0 – 20 cm soil layer, during the last ten-day period, was explained to be the net result of soil water extraction by the roots and backflow of water from the roots into the soil. Simulated onset of crop stress (closure of stomata) was found to be characterized by: (a) a steady decrease in average soil water potential, at a rate of about 500 cm-water per cm-soil water depletion; (b) a tenfold increase in the average soil resistance to radial flow, to about the same magnitude as average radial flow resistance in the roots; and (c) soil water diffusivities in the 0 – 50 cm layer being about 6 cm2/day. Sensitivity analyses showed that the ratio of actual to potential cumulative transpiration RCT depended primarily on potential evapotranspiration, rainfall, the unsaturated-to-saturated hydraulic conductivity exponent and plant cover. RCT was affected similarly by changes in Rr and in Rs. Under the conditions tested, zero tillage may increase RCT significantly only if it increases deep rooting beyond the 50 cm depth.Joint contribution from the Georg-August University, Göttingen, FRG, and the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, A.R.O. No. 207-E, 1980 Series  相似文献   

14.
叶片膨压探针(LPCP)技术是通过测定在恒定磁压力下叶片输出压力的衰减情况,能够实现原位连续无损监测植物叶片膨压变化,对植物水分状况的指示具有较高的准确性和敏感性.利用LPCP技术进行相关植物气孔生理、水分状况监测,并在此基础上指导灌溉,是近年来相关领域的研究热点.在梳理现有植物水分状况诊断方法的基础上,概括了 LPC...  相似文献   

15.
针对甘薯分段收获技术需求,结合国内外甘薯收获技术及装备,提出一种甘薯秧蔓收获方式,并设计甘薯秧蔓收获机专用割台。该甘薯秧蔓收获割台主要由拨禾切割装置和防堵防缠输送装置组成,可以实现甘薯秧蔓的切—送—归集。首先,理论分析该割台的关键部件结构参数及传动配置关系,确定拨禾切割装置上仿垄型排列的割刀和弹齿的安装高度和安装密度,以及拨禾轮、割刀和弹齿的结构参数。其次,通过对拨禾切割装置、捡拾装置和螺旋输送装置进行运动学和力学分析,明确拨禾轮、捡拾器、螺旋输送绞龙转速和结构决定秧蔓切割效果和收获质量,并确定捡拾器和螺旋输送绞龙的关键结构参数,最后进行田间试验验证该机具的切—送—归集收获效果。结果表明:当整机前进速度为0.6 m/s,拨禾轮转速为46 r/min,捡拾器转速为43 r/min,割台损失率仅为1.3%,整机作业效率为0.45 hm2/h。割台搭配48 kW拖拉机在工作过程中运行稳定,割台在工作过程中无堵塞、无缠绕,满足甘薯秧蔓联合收获机的设计需求。  相似文献   

16.
干旱区不同水盐处理对向日葵生理性状的影响研究   总被引:14,自引:3,他引:11  
以美国油料向日葵G101为材料,研究在干旱区不同水盐处理对作物(油葵)的生理性状及产量形成的影响。结果表明:作物群体叶面积、叶片水势和产量随土壤含盐量的增加而呈下降趋势。在不同水盐处理下,轻度盐土结合(55%~65%)θfc的水分处理是适宜的。含水率在(65%~75%)θfc,含盐量在0.3%~0.5%时对油葵的生长及最终产量的形成影响不大,其叶面积指数、叶水势和产量与轻度盐土的分别相差5.90%、0.27MPa和5.92%。而含盐量超过0.5%时,高水分处理也对油葵的生长及最终产量的形成产生严重抑制,其产量是轻盐土的57.39%,低水分处理减产率达62.32%。  相似文献   

17.
冬小麦品种幼苗对水分胁迫的响应及其抗旱性   总被引:2,自引:0,他引:2  
在不同土壤干旱条件下,选择洛麦9133等4个在河南种植的冬小麦品种,测定幼苗叶水势、脯氨酸含量、膜透性以及叶片SOD、POD活性等指标。经综合评价,幼苗抗旱性为洛麦9133最强,济麦21和济麦20次之,兰考矮早8最弱。  相似文献   

18.
河西绿洲灌区主要作物需水量及作物系数试验研究   总被引:2,自引:0,他引:2  
利用Penman-Monteith公式计算了甘肃张掖绿洲主要作物各生育期参考作物蒸散量,利用农田水量平衡方程及土壤水分胁迫系数计算了作物实际蒸发蒸腾量,并计算比较了充分灌溉和非充分灌溉条件下不同生育期作物需水特征,确定了非充分灌溉条件下主要作物的作物系数。结果表明,非充分灌溉条件下,主要作物各生育期需水规律和充分灌溉具有一致变化趋势。非充分灌溉条件下,小麦、玉米、马铃薯全生育期作物系数平均值分别为0.81、0.7和0.73。在全生育期当中,随生育期的延续,主要作物叶面蒸腾比例逐渐增大,棵间蒸发逐渐减少。  相似文献   

19.
周艺 《农业工程》2016,6(6):113-116
甘薯是我国重要的粮食作物,机械化移栽是制约其发展的关键因素之一。针对垄作铺膜农艺要求,设计了一种结构简单、使用可靠的甘薯苗开穴注水移栽机,介绍了其整机结构、工作原理及关键部件的设计,并进行了田间试验验证。试验结果表明,其性能指标达到了设计与标准要求,能够提高工作效率,降低生产成本,推广应用前景广阔。   相似文献   

20.
王林华  张敏  吕淑敏  侯红琴 《农业工程》2021,11(10):137-141
以衡观35、开麦21、郑麦366这3个河南省种植面积较大的小麦品种为试验材料,通过室内培养箱与田间试验,研究3种不同冬小麦品种的水分利用率差异。结果表明:灌浆期相同干旱胁迫条件下,衡观35与开麦21抗旱性要比郑麦366高,只有在重度干旱胁迫下产量才有显著降低;不同品种冬小麦水分利用率皆于中度干旱胁迫下增加,在重度胁迫下降低,而衡观35、开麦21水分利用率在重度胁迫下降幅均较郑麦366小;不同水分处理措施对不同品种小麦旗叶水分利用率影响有所差异,影响时间从长到短依次是郑麦366、衡观35、开麦21;整体来看,衡观35、开麦21属于抗旱性较强的小麦品种;郑麦366虽是抗旱性较弱的品种,但在正常灌水条件下其产量最高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号