共查询到20条相似文献,搜索用时 46 毫秒
1.
MA Redua T Doherty P Castro-Queiroz BW Rohrbach 《Veterinary anaesthesia and analgesia》2005,32(4):6-7
This study evaluated the effects of IV lidocaine (L) and ketamine (K), alone and in combination (LK), on the isoflurane MAC (ISOMAC) in goats. It was hypothesized that L and K would reduce ISOMAC and that the effect of LK would be additive. Eight adult goats (24–51 kg) were used in the study. Each goat was studied on four occasions, at weekly intervals, using a randomized crossover design. Anesthesia was induced with isoflurane (ISO) in O2 and goats were intubated and ventilated to normocapnia. End‐tidal ISO (ETISO) and CO2 were monitored with a calibrated infrared analyzer. Body temperature was maintained in the normal range using a heating pad. Approximately 45 minutes after intubation, and with the ETISO having been held constant for at least 20 minutes, determination of the baseline MAC (MACB) was initiated. A noxious stimulus, which consisted of clamping a claw between the jaws of a 10‐inch Vulsellum forceps, was administered for 60 seconds or until purposeful movement occurred. If purposeful movement occurred, the ETISO was increased by 0.1 vols% otherwise it was decreased by 0.1 vols% and the stimulus was reapplied following a 20 minute equilibration period. Following MACB determination treatments were administered as a loading dose (Ld) in 10 mL 0.9% NaCl over 3 minutes followed by a constant rate infusion to a final volume of 60 mL hour–1 in 0.9% NaCl, as follows: L (Ld 2.5 mg kg–1 + 100 μg kg–1 minutes–1); K (Ld 1.5 mg kg–1 + 50 μg kg–1minutes); LK or 0.9% NaCl. Post‐treatment MAC (MACT) determination began 45 minutes after the start of the loading dose. MACB and MACT were determined in triplicate and the mean value was used for data analysis. Difference in percent change in MAC was tested using a mixed‐model anova . Means separation among levels of treatment was tested using the Tukey‐Kramer method. The mean MACB for all treatments was 1.13 ± 0.03 vols%. L, K and LK reduced (p < 0.05) MACB by 19%, 49% and 69%, respectively. No change (p > 0.05) occurred with saline. It was concluded that L and K caused clinically significant decreases in ISOMAC; however, the percent MAC reduction with L was less than expected given the MAC reduction reported with L for other species. The combination (LK) caused a profound decrease in ISOMAC and this effect was additive. 相似文献
2.
OBJECTIVE: To determine the influence of a low-dose constant rate infusion (LCRI; 50 microg kg(-1) minute(-1)) and high-dose CRI (HCRI; 200 microg kg(-1) minute(-1)) lidocaine infusion on the minimum alveolar concentration (MAC) of isoflurane (I) in dogs. STUDY DESIGN: Prospective experimental study. ANIMALS: Ten mongrel dogs (four females, six males), weighing 20-26.3 kg. METHODS: Dogs were anesthetized with I in oxygen and their lungs mechanically ventilated. Baseline MAC was determined using mechanical or electrical stimuli. Lidocaine (2 mg kg(-1) IV) was administered over 3 minutes, followed by the LCRI and MAC determination commenced 30 minutes later. Once MAC was determined following LCRI, the lidocaine infusion was stopped for 30 minutes. A second bolus of lidocaine (2 mg kg(-1), IV) was administered, followed by the HCRI and MAC re-determined. Concentrations of lidocaine and its metabolites were measured at end-tidal I concentrations immediately above and below MAC. Heart rates and blood pressures were measured. RESULTS: Minimum alveolar concentration of I was 1.34 +/- 0.11 (%; mean +/- SD) for both types of stimulus. The LCRI significantly reduced MAC to 1.09 +/- 0.13 (18.7% reduction) and HCRI to 0.76 +/- 0.10 (43.3% reduction). Plasma concentrations (ng mL(-1), median; value below and above MAC, respectively) for LCRI were: lidocaine, 1465 and 1537; glycinexylidide (GX), 111 and 181; monoethylglycinexylidide (MEGX), 180 and 471 and for HCRI were: lidocaine, 4350 and 4691; GX, 784 and 862; MEGX, 714 and 710. Blood pressure was significantly increased at 30 minutes after high dose infusion. CONCLUSION AND CLINICAL RELEVANCE: Lidocaine infusions reduced the MAC of I in a dose-dependent manner and did not induce clinically significant changes on heart rate or blood pressure. 相似文献
3.
Escobar A Pypendop BH Siao KT Stanley SD Ilkiw JE 《Journal of veterinary pharmacology and therapeutics》2012,35(2):163-168
This study reports the effects of dexmedetomidine on the minimum alveolar concentration of isoflurane (MAC(iso) ) in cats. Six healthy adult female cats were used. MAC(iso) and dexmedetomidine pharmacokinetics had previously been determined in each individual. Cats were anesthetized with isoflurane in oxygen. Dexmedetomidine was administered intravenously using target-controlled infusions to maintain plasma concentrations of 0.16, 0.31, 0.63, 1.25, 2.5, 5, 10, and 20 ng/mL. MAC(iso) was determined in triplicate at each target plasma dexmedetomidine concentration. Blood samples were collected and analyzed for dexmedetomidine concentration. The following model was fitted to the concentration-effect data: [Formula in text] where MAC(iso.c) is MAC(iso) at plasma dexmedetomidine concentration C, MAC(iso.0) is MAC(iso) in the absence of dexmedetomidine, I(max) is the maximum possible reduction in MAC(iso), and IC(50) is the plasma dexmedetomidine concentration producing 50% of I(max). Mean ± SE MAC(iso.0), determined in a previous study conducted under conditions identical to those in this study, was 2.07 ± 0.04. Weighted mean ± SE I(max), and IC(50) estimated by the model were 1.76 ± 0.07%, and 1.05 ± 0.08 ng/mL, respectively. Dexmedetomidine decreased MAC(iso) in a concentration-dependent manner. The lowest MAC(iso) predicted by the model was 0.38 ± 0.08%, illustrating that dexmedetomidine alone is not expected to result in immobility in response to noxious stimulation in cats at any plasma concentration. 相似文献
4.
5.
OBJECTIVE: To determine effects of epidural administration of morphine and buprenorphine on the minimum alveolar concentration of isoflurane in cats. Animals-6 healthy adult domestic shorthair cats. PROCEDURES: Cats were anesthetized with isoflurane in oxygen. Morphine (100 microg/kg diluted with saline [0.9% NaCl] solution to a volume of 0.3 mL/kg), buprenorphine (12.5 microg/kg diluted with saline solution to a volume of 0.3 mL/kg), or saline solution (0.3 mL/kg) was administered into the epidural space according to a Latin square design. The minimum alveolar concentration (MAC) of isoflurane was measured in triplicate by use of the tail clamp technique. At least 1 week was allowed between successive experiments. RESULTS: The MAC of isoflurane was 2.00 +/- 0.18%, 2.13 +/- 0.11%, and 2.03 +/- 0.09% in the morphine, buprenorphine, and saline solution groups, respectively. No significant difference in MAC was detected among treatment groups. CONCLUSIONS AND CLINICAL RELEVANCE: A significant effect of epidural administration of morphine or buprenorphine on the MAC of isoflurane in cats could not be detected. Further studies are needed to establish whether epidural opioid administration has other benefits when administered as a component of general anesthesia in cats. 相似文献
6.
F. J. Golder P. J. Pascoe C. S. Bailey J. E. Ilkiw L. D. Tripp 《Veterinary anaesthesia and analgesia》1998,25(1):52-56
This study was undertaken to evaluate the effect of 3 different doses of epidurally administered morphine sulphate on the minimum alveolar concentration (MAC) of isoflurane in healthy cats. Five 4-year-old, spayed female cats weighing 4.7 ± 0.8 kg were allocated randomly to receive one of 3 doses of morphine on each study day. The 3 doses of morphine were 0.05, 0.1 and 0.2 mg/kg bwt and each cat was studied 3 times so that each cat received all doses. On each study day, cats were anaesthetised with isoflurane and instrumented. The MAC of isoflurane was determined in triplicate and morphine sulphate was administered via an epidural catheter chronically implanted prior to the study. Maximum MAC reduction was determined over the following 2 h. At the end of the study cats were allowed to recover. There was a significant reduction in MAC of isoflurane, with all doses of epidural morphine (P<0.05). The maximum reduction in MAC of isoflurane after 0.05 mg/kg bwt, 0.10 mg/kg bwt and 0.20 mg/kg bwt morphine was 21.4 ± 9.796, 30.8 ± 9.696, and 30.2 ± 6.8%, respectively, with no significant difference between doses. Systolic, mean and diastolic blood pressure, heart rate, respiratory rate and arterial pH decreased significantly whereas arterial carbon dioxide tension increased significantly after morphine administration (P<0.05). The means for all variables returned to pre-morphine values when the end-tidal isoflurane concentration was reduced to the new MAC point. In conclusion, epidural morphine decreased the concentration of isoflurane required to prevent movement in response to noxious mechanical stimulation to the tail base. A similar effect may be seen clinically allowing lower doses of isoflurane to be used to provide surgical anaesthesia for procedures involving the hind limbs, pelvis and tail. 相似文献
7.
Renato G Credie Francisco J Teixeira Neto Tatiana H Ferreira Antônio JA Aguiar Fabio C Restitutti José E Corrente 《Veterinary anaesthesia and analgesia》2010,37(3):240-249
ObjectiveTo investigate the effects of methadone on the minimum alveolar concentration of isoflurane (ISOMAC) in dogs.Study designProspective, randomized cross-over experimental study.AnimalsSix adult mongrel dogs, four males and two females, weighing 22.8 ± 6.6 kg.MethodsAnimals were anesthetized with isoflurane and mechanically ventilated on three separate days, at least 1 week apart. Core temperature was maintained between 37.5 and 38.5 °C during ISOMAC determinations. On each study day, ISOMAC was determined using electrical stimulation of the antebrachium (50 V, 50 Hz, 10 mseconds) at 2.5 and 5 hours after intravenous injection of physiological saline (control) or one of two doses of methadone (0.5 or 1.0 mg kg?1).ResultsMean (±SD) ISOMAC in the control treatment was 1.19 ± 0.15% and 1.18 ± 0.15% at 2.5 and 5 hours, respectively. The 1.0 mg kg?1 dose of methadone reduced ISOMAC by 48% (2.5 hours) and by 30% (5 hours), whereas the 0.5 mg kg?1 dose caused smaller reductions in ISOMAC (35% and 15% reductions at 2.5 and 5 hours, respectively). Both doses of methadone decreased heart rate (HR), but the 1.0 mg kg?1 dose was associated with greater negative chronotropic actions (HR 37% lower than control) and mild metabolic acidosis at 2.5 hours. Mean arterial pressure increased in the MET1.0 treatment (13% higher than control) at 2.5 hours.Conclusions and clinical relevanceMethadone reduces ISOMAC in a dose-related fashion and this effect is lessened over time. Although the isoflurane sparing effect of the 0.5 mg kg?1 dose of methadone was smaller in comparison to the 1.0 mg kg?1 dose, the lower dose is recommended for clinical use because it results in less evidence of cardiovascular impairment. 相似文献
8.
OBJECTIVE: To determine the effect of IV administration of perzinfotel on the minimum alveolar concentration (MAC) of isoflurane in dogs. Animals-6 healthy sexually intact male Beagles. PROCEDURES: Dogs were instrumented with a telemetry device that permitted continuous monitoring of heart rate, arterial blood pressure, and body temperature. Dogs were anesthetized with propofol (4 to 6 mg/kg, IV) and isoflurane for 30 minutes before determination of MAC of isoflurane. Isoflurane MAC values were determined 4 times, separated by a minimum of 7 days, before and after IV administration of perzinfotel (0 [control], 5, 10, and 20 mg/kg). Bispectral index and percentage hemoglobin saturation with oxygen (SpO(2)) were monitored throughout anesthesia. RESULTS: Isoflurane MAC was 1.32 +/- 0.14%. Intravenous administration of perzinfotel at 0, 5, 10, and 20 mg/kg decreased isoflurane MAC by 0%, 24%, 30%, and 47%, respectively. Perzinfotel significantly decreased isoflurane MAC values, compared with baseline and control values. The bispectral index typically increased with higher doses of perzinfotel and lower isoflurane concentrations, but not significantly. Heart rate, body temperature, and SpO(2) did not change, but systolic, mean, and diastolic arterial blood pressures significantly increased with decreases in isoflurane MAC after administration of perzinfotel at 10 and 20 mg/kg, compared with 0 and 5 mg/kg. CONCLUSIONS AND CLINICAL RELEVANCE: IV administration of perzinfotel decreased isoflurane MAC values. Improved hemodynamics were associated with decreases in isoflurane concentration. 相似文献
9.
Wilson J Doherty TJ Egger CM Fidler A Cox S Rohrbach B 《Veterinary anaesthesia and analgesia》2008,35(4):289-296
ObjectiveTo evaluate the effects of intravenous lidocaine (L) and ketamine (K) alone and their combination (LK) on the minimum alveolar concentration (MAC) of sevoflurane (SEVO) in dogs.Study designProspective randomized, Latin-square experimental study.AnimalsSix, healthy, adult Beagles, 2 males, 4 females, weighing 7.8 – 12.8 kg.MethodsAnesthesia was induced with SEVO in oxygen delivered by face mask. The tracheas were intubated and the lungs ventilated to maintain normocapnia. Baseline minimum alveolar concentration of SEVO (MACB) was determined in duplicate for each dog using an electrical stimulus and then the treatment was initiated. Each dog received each of the following treatments, intravenously as a loading dose (LD) followed by a constant rate infusion (CRI): lidocaine (LD 2 mg kg−1, CRI 50 μg kg−1minute−1), lidocaine (LD 2 mg kg−1, CRI 100 μgkg−1 minute−1), lidocaine (LD 2 mg kg−1, CRI 200 μg kg−1 minute−1), ketamine (LD 3 mg kg−1, CRI 50 μg kg−1 minute−1), ketamine (LD 3 mgkg−1, CRI 100 μg kg−1 minute−1), or lidocaine (LD 2 mg kg−1, CRI 100 μg kg−1 minute−1) + ketamine (LD 3 mg kg−1, CRI 100 μg kg−1 minute−1) in combination. Post-treatment MAC (MACT) determination started 30 minutes after initiation of treatment.ResultsLeast squares mean ± SEM MACB of all groups was 1.9 ± 0.2%. Lidocaine infusions of 50, 100, and 200 μg kg−1 minute−1 significantly reduced MACB by 22.6%, 29.0%, and 39.6%, respectively. Ketamine infusions of 50 and 100 μg kg−1 minute−1 significantly reduced MACB by 40.0% and 44.7%, respectively. The combination of K and L significantly reduced MACB by 62.8%.Conclusions and clinical relevanceLidocaine and K, alone and in combination, decrease SEVO MAC in dogs. Their use, at the doses studied, provides a clinically important reduction in the concentration of SEVO during anesthesia in dogs. 相似文献
10.
OBJECTIVE: To determine the effect of 6 plasma ketamine concentrations on the minimum alveolar concentration (MAC) of isoflurane in dogs. ANIMALS: 6 dogs. PROCEDURE: In experiment 1, the MAC of isoflurane was measured in each dog and the pharmacokinetics of ketamine were determined in isoflurane-anesthetized dogs after IV administration of a bolus (3 mg/kg) of ketamine. In experiment 2, the same dogs were anesthetized with isoflurane in oxygen. A target-controlled IV infusion device was used to administer ketamine and to achieve plasma ketamine concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL by use of parameters obtained from experiment 1. The MAC of isoflurane was determined at each plasma ketamine concentration, and blood samples were collected for ketamine and norketamine concentration determination. RESULTS: Actual mean +/- SD plasma ketamine concentrations were 1.07 +/- 0.42 microg/mL, 1.62 +/- 0.98 microg/mL, 3.32 +/- 0.59 microg/mL, 4.92 +/- 2.64 microg/mL, 13.03 +/- 10.49 microg/mL, and 22.80 +/- 25.56 microg/mL for target plasma concentrations of 0.5, 1, 2, 5, 8, and 11 microg/mL, respectively. At these plasma concentrations, isoflurane MAC was reduced by 10.89% to 39.48%, 26.77% to 43.74%, 25.24% to 84.89%, 44.34% to 78.16%, 69.62% to 92.31%, and 71.97% to 95.42%, respectively. The reduction in isoflurane MAC was significant, and the response had a linear and quadratic component. Salivation, regurgitation, mydriasis, increased body temperature, and spontaneous movements were some of the adverse effects associated with the high plasma ketamine concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine appears to have a potential role for balanced anesthesia in dogs. 相似文献
11.
Queiroz-Castro P Egger C Redua MA Rohrbach BW Cox S Doherty T 《American journal of veterinary research》2006,67(12):1962-1966
OBJECTIVE: To evaluate the effects of ketamine, magnesium sulfate, and their combination on the minimum alveolar concentration (MAC) of isoflurane (ISO-MAC) in goats. ANIMALS: 8 adult goats. PROCEDURES: Anesthesia was induced with isoflurane delivered via face mask. Goats were intubated and ventilated to maintain normocapnia. After an appropriate equilibration period, baseline MAC (MAC(B)) was determined and the following 4 treatments were administered IV: saline (0.9% NaCl) solution (loading dose [LD], 30 mL/20 min; constant rate infusion [CRI], 60 mL/h), magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h), ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min), and magnesium sulfate (LD, 50 mg/kg; CRI, 10 mg/kg/h) combined with ketamine (LD, 1 mg/kg; CRI, 25 microg/kg/min); then MAC was redetermined. RESULTS: Ketamine significantly decreased ISOMAC by 28.7 +/- 3.7%, and ketamine combined with magnesium sulfate significantly decreased ISOMAC by 21.1 +/- 4.1%. Saline solution or magnesium sulfate alone did not significantly change ISOMAC. CONCLUSIONS AND CLINICAL RELEVANCE: Ketamine and ketamine combined with magnesium sulfate, at doses used in the study, decreased the end-tidal isoflurane concentration needed to maintain anesthesia, verifying the clinical impression that ketamine decreases the end-tidal isoflurane concentration needed to maintain surgical anesthesia. Magnesium, at doses used in the study, did not decrease ISOMAC or augment ketamine's effects on ISOMAC. 相似文献
12.
Effects of oxymorphone and hydromorphone on the minimum alveolar concentration of isoflurane in dogs
OBJECTIVES: To quantify the change in the minimum alveolar concentration (MAC) of isoflurane (ISO) associated with oxymorphone (OXY) or hydromorphone (HYDRO) in dogs. DESIGN: Randomized crossover study with at least 1 week between assessments. ANIMALS: Six young, healthy, mixed-breed dogs (1-3 years old), weighing 24.7 +/- 4.70 kg. METHODS: Following mask induction, anesthesia was maintained with ISO in 100% O(2) using mechanical ventilation. The dogs received 0.05 mg kg(-1) OXY, 0.1 mg kg(-1) HYDRO, or 1 mL saline (control) IV. Following equilibration (15 minutes) at each percentage ISO tested, a supramaximal electrical stimulus was applied to the toe web and the response was assessed. Two separate MAC determinations were carried out during 4.5 hours of anesthesia, with completion of the evaluations at 1.5-2 and 4-4.5 hours after drug administration. A two-factor anova was used to determine whether there was a time or treatment effect on MAC and a Tukey test compared the drug effects at each time. Significance is reported at p < 0.05. RESULTS: The mean MAC values (+/-SD) were 1.2 +/- 0.18 and 1.2 +/- 0.16% for control, 0.7 +/-0.15 and 1.0 +/- 0.15% for OXY, and 0.6 +/- 0.14 and 0.8 +/- 0.17% for HYDRO. The initial MAC with OXY and the MAC determined at both times with HYDRO were significantly different from the control MAC values. CONCLUSIONS: Both OXY and HYDRO significantly reduced the MAC of ISO in dogs at 2 hours. At approximately 4.5 hours, HYDRO had a significant MAC-sparing effect, whereas OXY did not. CLINICAL RELEVANCE: Although both OXY and HYDRO resulted in a significant reduction in the MAC of ISO at approximately 2 hours, HYDRO may be preferred for procedures of long duration and rarely needs repeated dosing before 4.5 hours. 相似文献
13.
OBJECTIVE: To determine the minimum alveolar concentration (MAC) of isoflurane (ISO) in llamas. STUDY DESIGN: Prospective study. ANIMALS: Eight adult neutered male llamas (9 +/- 1 years [x +/- SD], 177 +/- 29 kg). METHODS: Anesthesia was induced and maintained in otherwise unmedicated llamas with a mixture of ISO in oxygen administered through a standard small-animal, semi-closed circle system using an out-of-circle, agent-specific vaporizer. The time from mask placement to intubation was recorded. Inspired and end-tidal (ET) ISO was sampled continuously. At each anesthetic concentration, a constant ET ISO was maintained for at least 20 minutes before application of a noxious electrical stimulus (50 volts, 5 Hz, 10 ms for up to 1 minute). A positive or negative response to the stimulus was recorded, and ET ISO then increased (if positive response) or decreased (if negative response) by 10% to 20%. Individual MAC was the average of multiple determinations. Body temperature was maintained at 37 +/- 1 degrees C. Selected cardiopulmonary variables (heart rate [HR], respiratory rate [RR], arterial blood pressure [ABP]) and ET ISO were recorded at hourly intervals from first ISO. Arterial blood was collected for pH, PCO2, PO2 analysis and measurement of packed cell volume (PCV) and total protein (TP) at 2 hour intervals. Following MAC determination, the anesthetic was discontinued and llamas were allowed to recover. Duration and quality of recovery were noted. RESULTS: The time from start of induction by mask to completion of intubation took 19.1 +/- 4.8 minutes. The MAC of ISO corrected to one atmosphere at sea level (barometric pressure 760 mm Hg) in these llamas was 1.05 +/- 0.17%. Mean ABP increased from 70 +/- 26 mm Hg at the end of the first hour of anesthesia to 102 +/- 7 mm Hg measured at the end of the sixth hour of anesthesia. ET ISO decreased from 2.06 +/- 0.10% to 1.27 +/- 0.07% over the same time period, but MAC did not change with time. The duration from first ISO to discontinuation of ISO averaged 6.19 +/- 0.9 hours. Animals were able to support their heads in a sternal posture at 23 +/- 10 minutes, and stood 62 +/- 26 minutes following discontinuation of the anesthetic. CONCLUSION: The MAC for ISO is similar to, but slightly lower than, values reported for other species. CLINICAL RELEVANCE: Knowledge of MAC may facilitate appropriate clinical use and provide the basis for future investigation of ISO in llamas. 相似文献
14.
Campagnol D Teixeira Neto FJ Giordano T Ferreira TH Monteiro ER 《American journal of veterinary research》2007,68(12):1308-1318
Objective-To evaluate the effects of epidural administration of 3 doses of dexmedetomidine on isoflurane minimum alveolar concentration (MAC) and characterize changes in bispectral index (BIS) induced by nociceptive stimulation used for MAC determination in dogs. Animals-6 adult dogs. Procedures-Isoflurane-anesthetized dogs received physiologic saline (0.9% NaCl) solution (control treatment) or dexmedetomidine (1.5 [DEX1.5], 3.0 [DEX3], or 6.0 [DEX6] mug/kg) epidurally in a crossover study. Isoflurane MAC (determined by use of electrical nociceptive stimulation of the hind limb) was targeted to be accomplished at 2 and 4.5 hours. Changes in BIS attributable to nociceptive stimulation and cardiopulmonary data were recorded at each MAC determination. Results-With the control treatment, mean +/- SD MAC values did not change over time (1.57 +/- 0.23% and 1.55 +/- 0.25% at 2 and 4.5 hours, respectively). Compared with the control treatment, MAC was significantly lower at 2 hours (13% reduction) but not at 4.5 hours (7% reduction) in DEX1.5-treated dogs and significantly lower at 2 hours (29% reduction) and 4.5 hours (13% reduction) in DEX3-treated dogs. The DEX6 treatment yielded the greatest MAC reduction (31% and 22% at 2 and 4.5 hours, respectively). During all treatments, noxious stimulation increased BIS; but changes in BIS were correlated with increases in electromyographic activity. Conclusions and Clinical Relevance-In dogs, epidural administration of dexmedetomidine resulted in dose-dependent decreases in isoflurane MAC and that effect decreased over time. Changes in BIS during MAC determinations may not represent increased awareness because of the possible interference of electromyographic activity. 相似文献
15.
OBJECTIVE: To determine the effects of constant rate infusion of morphine, lidocaine, ketamine, and morphine-lidocaine-ketamine (MLK) combination on end-tidal isoflurane concentration (ET-Iso) and minimum alveolar concentration (MAC) in dogs anesthetized with isoflurane and monitor depth of anesthesia by use of the bispectral index (BIS). ANIMALS: 6 adult dogs. PROCEDURE: Each dog was anesthetized with isoflurane on 5 occasions, separated by a minimum of 7 to 10 days. Individual isoflurane MAC values were determined for each dog. Reduction in isoflurane MAC, induced by administration of morphine (3.3 microg/kg/min), lidocaine (50 microg/kg/min), ketamine (10 microg/kg/min), and MLK, was determined. Heart rate, mean arterial blood pressure, oxygen saturation as measured by pulse oximetry (Spo2), core body temperature, and BIS were monitored. RESULTS: Mean +/- SD isoflurane MAC was 1.38 +/- 0.08%. Morphine, lidocaine, ketamine, and MLK significantly lowered isoflurane MAC by 48, 29, 25, and 45%, respectively. The percentage reductions in isoflurane MAC for morphine and MLK were not significantly different but were significantly greater than for lidocaine and ketamine. The Spo2, mean arterial pressure, and core body temperature were not different among groups. Heart rate was significantly decreased at isoflurane MAC during infusion of morphine and MLK. The BIS was inversely related to the ET-Iso and was significantly increased at isoflurane MAC during infusions of morphine and ketamine, compared with isoflurane alone. CONCLUSIONS AND CLINICAL RELEVANCE: Low infusion doses of morphine, lidocaine, ketamine, and MLK decreased isoflurane MAC in dogs and were not associated with adverse hemodynamic effects. The BIS can be used to monitor depth of anesthesia. 相似文献
16.
Campagnol D Teixeira-Neto FJ Peccinini RG Oliveira FA Alvaides RK Medeiros LQ 《Veterinary journal (London, England : 1997)》2012,192(3):311-315
The effects of epidural and intravenous (IV) methadone (0.5mg/kg) on the minimum alveolar concentration of isoflurane (ISO(MAC)) were compared in dogs. Six dogs (16.5 ± 2.5 kg bodyweight) received three treatments in random order during isoflurane anaesthesia, with a 7 day washout interval between each study. Methadone was injected via a lumbosacral epidural catheter introduced 10 cm cranially into the epidural canal and the electrical stimulation for ISO(MAC) determination was applied either to the thoracic (EP(T) treatment) or to the pelvic limb (EP(P) treatment) during separate study days. In the IV treatment, ISO(MAC) was determined via electrical stimulation of the pelvic limb. Variables were recorded before (baseline), 2.5 and 5h after drug injection. The ISO(MAC) decreased significantly (P<0.05) from baseline at 2.5 and 5h after methadone in all treatments. At 2.5h, the magnitude of ISO(MAC) reduction did not differ between treatments (mean decreases from baseline: 30-33%). The ISO(MAC) reduction lasted longer following epidural methadone in the thoracic limb (decreases from baseline: 30% at 5h in the EP(T) treatment vs. 19% and 16% in the EP(P) and IV treatments, respectively). Although the isoflurane sparing effect provided by epidural methadone was not significantly greater than IV methadone during the initial stage (2.5h), it was more prolonged than the IV route in specific dermatomes (5h in the thoracic limb) with the epidural technique employed. Methadone may therefore provide a greater isoflurane sparing effect when administered epidurally, compared to IV, when noxious stimulation occurs in specific dermatomes. 相似文献
17.
Mosley CA Dyson D Smith DA 《Journal of the American Veterinary Medical Association》2003,222(11):1559-1564
OBJECTIVE: To determine minimum alveolar concentration (MAC) of isoflurane in green iguanas and effects of butorphanol on MAC. DESIGN: Prospective randomized trial. ANIMALS: 10 healthy mature iguanas. PROCEDURE: in each iguana, MAC was measured 3 times: twice after induction of anesthesia with isoflurane and once after induction of anesthesia with isoflurane and IM administration of butorphanol (1 mg/kg [0.45 mg/lb]). A blood sample was collected from the tail vein for blood-gas analysis at the beginning and end of the anesthetic period. The MAC was determined with a standard bracketing technique; an electrical current was used as the supramaximal stimulus. Animals were artificially ventilated with a ventilator set to deliver a tidal volume of 30 mL/kg (14 mL/lb) at a rate of 4 breaths/min. RESULTS: Mean +/- SD MAC values during the 3 trials (2 without and 1 with butorphanol) were 2.0 +/- 0.6, 2.1 +/- 0.6, and 1.7 +/- 0.7%, respectively, which were not significantly different from each other. Heart rate and end-tidal partial pressure of CO2 were also not significantly different among the 3 trials. Mean +/- SD heart rate was 48 +/- 10 beats/min; mean end-tidal partial pressure of CO2 was 22 +/- 10 mm Hg.There were no significant differences in blood-gas values for samples obtained at the beginning versus the end of the anesthetic period. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that the MAC of isoflurane in green iguanas is 2.1% and that butorphanol does not have any significant isoflurane-sparing effects. 相似文献
18.
Jeong SM Nam TC 《The Journal of veterinary medical science / the Japanese Society of Veterinary Science》2003,65(1):145-147
The effect of electroacupuncture (EA) on minimum alveolar concentration (MAC) of isoflurane was evaluated in dogs. After determination of baseline MAC, EA was applied at each acupoints (LI-4, SP-6, ST-36 and TH-8) and nonacupoint for 30 min. MAC was determined again. EA at acupoints significantly lowered the MAC of isoflurane in dogs (17.5 +/- 3.1%, 21.3 +/- 8.0%, 21.2 +/- 7.5% and 15.4 +/- 3.1%, respectively). In control group and nonacupoint electrical stimulation group MAC were not decreased significantly. From these results, electroacupuncture at each acupoints used in the present study would have an advantage in isoflurane anesthesia with reducing its requirement. 相似文献
19.
Lídia M Matsubara MV MSc Valéria N L S Oliva† MV PhD Daniela T Gabas MV MSc Guillermo C V Oliveira MV & Maria L Cassetari‡ MSc 《Veterinary anaesthesia and analgesia》2009,36(5):407-413
Objective To investigate the effects of a low-dose constant rate infusion (LCRI; 50 μg kg−1 minute−1 ) and high-dose CRI (HCRI; 200 μg kg−1 minute−1 ) lidocaine on arterial blood pressure and on the minimum alveolar concentration (MAC) of sevoflurane (Sevo), in dogs.
Study design Prospective, randomized experimental design.
Animals Eight healthy adult spayed female dogs, weighing 16.0 ± 2.1 kg.
Methods Each dog was anesthetized with sevoflurane in oxygen and mechanically ventilated, on three separate occasions 7 days apart. Following a 40-minute equilibration period, a 0.1-mL kg−1 saline loading dose or lidocaine (2 mg kg−1 intravenously) was administered over 3 minutes, followed by saline CRI or lidocaine LCRI or HCRI. The sevoflurane MAC was determined using a tail clamp. Heart rate (HR), blood pressure and plasma concentration of lidocaine were measured. All values are expressed as mean ± SD.
Results The MAC of Sevo was 2.30 ± 0.19%. The LCRI reduced MAC by 15% to 1.95 ± 0.23% and HCRI by 37% to 1.45 ± 0.21%. Diastolic and mean pressure increased with HCRI. Lidocaine plasma concentration was 0.84 ± 0.18 for LCRI and 1.89 ± 0.37 μg mL−1 for HCRI. Seventy-five percent of HCRI dogs vomited during recovery.
Conclusion and clinical relevance Lidocaine infusions dose dependently decreased the MAC of Sevo, did not induce clinically significant changes in HR or arterial blood pressure, but vomiting was common during recovery in HCRI. 相似文献
Study design Prospective, randomized experimental design.
Animals Eight healthy adult spayed female dogs, weighing 16.0 ± 2.1 kg.
Methods Each dog was anesthetized with sevoflurane in oxygen and mechanically ventilated, on three separate occasions 7 days apart. Following a 40-minute equilibration period, a 0.1-mL kg
Results The MAC of Sevo was 2.30 ± 0.19%. The LCRI reduced MAC by 15% to 1.95 ± 0.23% and HCRI by 37% to 1.45 ± 0.21%. Diastolic and mean pressure increased with HCRI. Lidocaine plasma concentration was 0.84 ± 0.18 for LCRI and 1.89 ± 0.37 μg mL
Conclusion and clinical relevance Lidocaine infusions dose dependently decreased the MAC of Sevo, did not induce clinically significant changes in HR or arterial blood pressure, but vomiting was common during recovery in HCRI. 相似文献
20.
The effects of fentanyl on the minimum alveolar concentration (MAC) of isoflurane and cardiovascular function in mechanically ventilated goats were evaluated using six healthy goats (three does and three wethers). Following induction of general anaesthesia with isoflurane delivered via a mask, endotracheal intubation was performed and anaesthesia was maintained with isoflurane. The baseline MAC of isoflurane (that is, the lowest alveolar concentration required to prevent gross purposeful movement) in response to clamping a claw with a vulsellum forceps was determined. Immediately after baseline isoflurane MAC determination, the goats received, on separate occasions, one of three fentanyl treatments, administered intravenously: a bolus of 0.005 mg/kg followed by constant rate infusion (CRI) of 0.005 mg/kg/hour (treatment LFENT), a bolus of 0.015 mg/kg followed by CRI of 0.015 mg/kg/hour (treatment MFENT) or a bolus of 0.03 mg/kg followed by CRI of 0.03 mg/kg/hour (treatment HFENT). Isoflurane MAC was redetermined during the fentanyl CRI treatments. Cardiopulmonary parameters were monitored. A four-week washout period was allowed between treatments. The observed baseline isoflurane MAC was 1.32 (1.29 to 1.36) per cent. Isoflurane MAC decreased to 0.98 (0.92 to 1.01) per cent, 0.75 (0.69 to 0.79) per cent and 0.58 (0.51 to 0.65) per cent following LFENT, MFENT and HFENT respectively. Cardiovascular function was not adversely affected. The quality of recovery from general anaesthesia was good, although exaggerated tail-wagging was observed in some goats following MFENT and HFENT. 相似文献