首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A hydraulically integrated serial turbidostat algal reactor (HISTAR) for the mass production of microalgae was designed, constructed and preliminarily evaluated. The 9266-l experimental system consists of two enclosed turbidostats hydraulically linked to a series of six open continuous-flow, stirred-tank reactors (CFSTRs). The system was monitored and controlled using GENESIS process control software. A production study was preformed using Isochrysis sp. (C-iso) to assess system stability and production potential under commercial-like conditions. The study was performed at the following target system parameters: system dilution rate of 0.49 per day, pH 7.6, NITROGEN=10 mg l−1, PHOSPHORUS=2 mg l−1, and artificial illumination (photosynthetic photon flux density) from 1000 W metal halide LAMPS=800 μmol s−1 m−2. At steady state conditions, daily harvested algal paste was 1454 g (wet), mean areal system PRODUCTIVITY=47.8±3.04 g m−2 per day (17.1±1.09 g C m−2 per day) and mean CFSTR6 DENSITY=105.5±6.71 mg l−1.  相似文献   

2.
The growth and survival of three size classes of wild caught western rock lobster, Panulirus cygnus (post-pueruli: mean 2.14 ± 0.07 g, 13.2 ± 0.1 mm CL; year 1: post-settlement juveniles, 57.1 ± 1.1 g, 38.7 ± 0.28 mm CL; and year 2 post-settlement juveniles, mean 138.2 ± 2.26 g, 51.9 ± 0.25 mm CL) were examined at combinations of two stocking densities (post-pueruli: 50 and 100 m− 2; year 1: 11 and 23 m− 2; year 2: 10 and 19 m− 2) and two shelter types (a novel rigid plastic mesh shelter or bricks) over a period of 6 months. Survival of lobsters held at the lower densities (90–95%) was significantly greater than for lobsters held at higher densities (post-pueruli = 78%, year 1 = 86%, year 2 = 88%). Post-pueruli survival was significantly higher in tanks with mesh shelters (91.7%) than brick shelters (75.8%) with a similar trend exhibited by year 1 and year 2 lobsters. Densities tested did not significantly affect lobster growth for any size class. Growth of post-pueruli was considerably higher in tanks with mesh shelters (641.7% weight gain; specific growth rate 1.07 BW day− 1) (p < 0.05) but there was no difference in the growth of year 1 and year 2 lobsters between mesh and brick shelters. Feed intake (g pellet dry matter lobster− 1 day− 1) was not significantly different between densities. This study has shown that P. cygnus is well suited for aquaculture based on the collection and ongrowing of wild caught pueruli, as this species exhibits good survival at high densities (up to 100 m− 2) without adverse effects on growth, and shows no captivity-related health problems. We recommend mesh shelters, with stocking densities of 50 m− 2 for post-pueruli and between 20 and 25 m− 2 for year 1 and year 2 juveniles, to maximise survival and production.  相似文献   

3.
Tambaqui (48%) was reared in polyculture with grass carp (27%) and curimbatá (25%) from 75 g mean weight for a period of 164 days. Ponds of 1200 m2 were stocked at a total density of 12720 ha−1. Fish were fed with an experimental diet made from soybean and maize at a daily rate calculated as 3% of the tambaqui biomass. Grass carp received chopped angola grass at a daily rate of 15% of live weight. Ponds were weekly manured with 120 kg of mixed cattle and goat manure. Tambaqui reached a final weight of 492 g. Survival rate was 83%. The experimental polyculture had a mean net yield of 7·5 t ha−1 year−1, with apparent conversion rates of 1·13, 5·5 and 7·7 kg kg−1 of diet, grass and manure, respectively. All three species had a high growth rate (from 1·2 to 2·1 % day−1). Tambaqui's growth was affected by the fall in water temperature in the second part of the experiment. Cost/benefit calculations proved the high profitability of the tested semi-intensive polyculture system.  相似文献   

4.
The culture of the mulloway (Argyrosomus japonicus), like many other Sciaenidae fishes, is rapidly growing. However there is no information on their metabolic physiology. In this study, the effects of various hypoxia levels on the swimming performance and metabolic scope of juvenile mulloway (0.34 ± 0.01 kg, mean ± SE, n = 30) was investigated (water temperature = 22 °C). In normoxic conditions (dissolved oxygen = 6.85 mg l− 1), mulloway oxygen consumption rate (M·o2) increased exponentially with swimming speed to a maximum velocity (Ucrit) of 1.7 ± < 0.1 body lengths s− 1 (BL s− 1) (n = 6). Mulloway standard metabolic rate (SMR) was typical for non-tuna fishes (73 ± 8 mg kg− 1 h− 1) and they had a moderate scope for aerobic metabolism (5 times the SMR). Mulloway minimum gross cost of transport (GCOTmin, 0.14 ± 0.01 mg kg− 1 m− 1) and optimum swimming velocity (Uopt, 1.3 ± 0.2 BL s− 1) were comparable to many other body and caudal fin swimming fish species. Energy expenditure was minimum when swimming between 0.3 and 0.5 BL s− 1. The critical dissolved oxygen level was 1.80 mg l− 1 for mulloway swimming at 0.9 BL s− 1. This reveals that mulloway are well adapted to hypoxia, which is probably adaptive from their natural early life history within estuaries. In all levels of hypoxia (75% saturation = 5.23, 50% = 3.64, and 25% = 1 .86 mg l− 1), M·o2 increased linearly with swimming speed and active metabolic rate (AMR) was reduced (218 ± 17, 202 ± 14 and 175 ± 10 mg kg− 1 h− 1 for 75%, 50% and 25% saturation respectively). However, Ucrit was only reduced at 50% and 25% saturation (1.4 ± < 0.1 and 1.4 ± < 0.1 BL s− 1 respectively). This demonstrates that although the metabolic capacity of mulloway is reduced in mild hypoxia (75% saturation) they are able to compensate to maintain swimming performance. GCOTmin (0.09 ± 0.01 mg kg− 1 m− 1) and Uopt (0.8 ± 0.1 BL s− 1) were significantly reduced at 25% dissolved oxygen saturation. As mulloway metabolic scope was significantly reduced at all hypoxia levels, it suggests that even mild hypoxia may reduce growth productivity.  相似文献   

5.
The technical features of a laboratory scale water recycling unit for experimental small scale tilapia breeding are described. Two units (1 and 2) were operated during a 6 month period, carrying a similar fish load (7·5 kg) and feeding rate (2% fish body weight/day). Unit 1 received natural illumination, while unit 2 was artificially illuminated (14/10 - light/dark cycle). Both units were equipped with a biological filter bed (substrate surface area, 3500 cm2). In unit 1, total ammonium and nitrite concentrations ranged from 0·05 to 0·5 mg liter−1, while nitrate varied between 10–40 mg liter−1. In unit 2 corresponding values were 0·15-3 mg liter−1, 0·05–0·8 mg liter−1 and 10–40 mg liter−1. Temperatures ranged between 20–29°C and pH values between 7·5–6·9 in both units. Dissolved oxygen concentrations decreased gradually from 5·6 to 3·4 mg liter−1 in unit 1 and from 5·6 to 2·6 mg liter−1 in unit 2. Twenty-six spawnings occurred in unit 1 in March and April, while only eight spawnings occurred in unit 2, possibly because of the absence of sunlight. The significance of these results are discussed.  相似文献   

6.
The effects of body weight, water temperature and ration size on ammonia excretion rates of the areolated grouper Epinephelus areolatus and the mangrove snapper Lutjanus argentimaculatus were investigated. Under given experimental conditions, L. argentimaculatus had a higher weight-specific ammonia excretion rate than E. areolatus. Weight-specific ammonia excretion rates of fasted individuals of both species showed an inverse relationship with body weight (W, g wet wt.), but a positive relationship with water temperature (t, °C). The relationships for total ammonia nitrogen (TAN) were: E. areolatus: TAN (mg N kg−1 d−1)=21.4·exp0.11t·W−0.43 (r2=0.919, n=60); L. argentimaculatus: TAN (mg N kg−1 d−1)=121.5·exp0.12t·W−0.55 (r2=0.931, n=60). Following feeding, the weight-specific ammonia excretion rate of E. areolatus increased, peaked at 2 to 12 h (depending on temperature), and returned to pre-feeding levels within 24 h. A similar pattern was observed for L. argentimaculatus, with a peak of TAN excretion being found 6 to 12 h after feeding. Stepwise multiple regression analysis indicated that weight-specific TAN excretion rates of both species increased with increasing temperature and ration (R, percent body wt. d−1): E. areolatus: TAN (mg N kg−1 d−1)=22.8·t−28.8·R−378.2 (r2=0.832, n=24); L. argentimaculatus: TAN (mg N kg−1 d−1)=22.9·t−25.4·R−216.4 (r2=0.611, n=24). The effect of body weight on weight-specific postprandial TAN excretion was not significant in either species (p>0.05). This study provides empirical data for estimating ammonia excretion of these two species under varying conditions. This has application for culture management.  相似文献   

7.
The bacterial flora occurring in brackish pond water, sediment, gills and intestine of healthy tilapia cultured in Saudi Arabia were estimated both quantitatively and qualitatively, and the isolates were identified to genus or species level. Total viable count of bacteria ranged from 1.4±1.5×103 to 8.6±2.7×103 cfu ml−1; 1.2±3.1×106 to 7.3±1.1×107 cfu g−1; 8.7±1.9×105 to 2.1±0.9×106 cfu g−1; and 2.8±2.4×107 to 1.0±1.6×108 cfu g−1 in the pond water, sediment, gills and intestine of brackish water tilapia, respectively. In total, 19 bacterial species were identified. The bacteria were predominantly Gram-negative rods (87%). Pond water and sediment bacteria influenced the bacterial composition of gills and intestine of tilapia. In contrast to gill bacteria, more diversification was observed in intestinal bacteria. The predominant (prevalence >10%) bacterial species were Vibrio parahaemolyticus, Vibrio carchariae, Vibrio alginolyticus, Chryseomonas sp., Vibrio vulnificus, and Streptococcus sp. in all the populations with the exception of the sediment population where Streptococcus sp. was replaced by Shewanella putrefaciens. Vibrio spp. (58% of the total isolates) dominated the total bacterial population.  相似文献   

8.
Juvenile greenlip abalone, Haliotis laevigata, (mean whole weight 4.48±1.9 g, mean±s.d., n=953) were highly sensitive to ammonia as indicated by depressed growth rate and food consumption measured over 2–3 months in bioassay tanks. For growth rate expressed on a whole weight basis, the EC5 and EC50 values (5 and 50% growth reductions) were 0.041 mg FAN l−1 (Free Ammonia–Nitrogen) and 0.158 mg FAN l−1, respectively. Shell growth rates declined over the entire experimental range (0.006–0.188 mg FAN l−1). At the end of the bioassay, groups of abalone were transferred to respiratory chambers. Oxygen consumption rate increased to a maximum of 188% of control values at 0.235 mg FAN l−1 and decreased slightly at the highest concentration of 0.418 mg FAN l−1.  相似文献   

9.
This paper describes the performance characteristics of an industrial-scale air-driven rotating biological contactor (RBC) installed in a recirculating aquaculture system (RAS) rearing tilapia at 28 °C. This three-staged RBC system was configured with stages 1 and 2 possessing approximately the same total surface area and stage 3 having approximately 25% smaller. The total surface area provided by the RBC equaled 13,380 m2. Ammonia removal efficiency averaged 31.5% per pass for all systems examined, which equated to an average (± standard deviation) total ammonia nitrogen (TAN) areal removal rate of 0.43 ± 0.16 g/m2/day. First-order ammonia removal rate (K1) constants for stages 1–3 were 2.4, 1.5, and 3.0 h−1, respectively. The nitrite first-order rate constants (K2) were higher, averaging 16.2 h−1 for stage 1, 7.7 h−1 for stage 2, and 9.0 h−1 stage 3. Dissolved organic carbon (DOC) levels decreased an averaged 6.6% per pass across the RBC. Concurrently, increasing influent DOC concentrations decreased ammonia removal efficiency. With respect to dissolved gas conditioning, the RBC system reduced carbon dioxide concentrations approximately 39% as the water flowed through the vessel. The cumulative feed burden – describes the mass of food delivered to the system per unit volume of freshwater added to the system daily – ranged between 5.5 and 7.3 kg feed/m3 of freshwater; however, there was no detectable relationship between the feed loading rate and ammonia oxidation performance.  相似文献   

10.
Several studies have shown that food ration can affect the growth of cultured fish. Determining the optimal food ration would help to achieve better growth and also provide direct economic benefits due to reduced food wastage, which would lead to commercial success. Therefore, we studied the effects of ration levels on growth performance of 0+ juvenile yellowtail flounder to determine the optimal food ration. Two experiments were conducted; the first experiment as a preliminary using ration levels of 1%, 2%, 4%, 6% body weight per day (% bw day−1) held at 7.0 °C with a stocking density of 0.95 kg m−2 (45% bottom coverage). Results of this preliminary experiment indicated that fish fed with 1% bw day−1 had significantly lower growth (weight, length, body depth and specific growth rates (SGR)) than those fed with 2%, 4% and 6% ration. However, fish fed with rations of 1% and 2% showed significantly lower gross food conversion ratios (GFCR) than fish fed with 4% and 6% rations. Survival was not significantly affected by different ration levels. Based on these preliminary results, we used ration levels of 1%, 1.5%, 2% and 3% for the main experiment. Fish were held at 10 °C with a stocking density of 1.45 kg m−2 (34% bottom coverage). Results indicated that fish fed with 1%, 1.5% and 2% bw day−1 had significantly lower growth than fish fed with 3% bw day−1. GFCR was significantly different for all four rations. It was lower for 1% than 1.5%, 2% and 3% rations. Survival was not significantly different between any treatments. We discuss our results with emphasis on growth and economics (i.e., feed wastage) and stress the need to balance both components in a commercial operation.  相似文献   

11.
Filtration rates of hatchery-reared king scallop (Pecten maximus L.) juveniles, fed a single species alga diet (Pavlova lutheri (Droop) Green), were measured at a range of temperatures (6–21 °C). Weight specific filtration rate (ml min−1 g−1 (live weight)) of juveniles of a selected size range of 17–19 mm shell height (0.26–0.36 g live weight) increased with temperature above 16 °C and decreased below 11 °C, but was not significantly different between these two temperatures. Measurements at 16 °C using juveniles with a wider size range of 10–25 mm shell height (0.05–0.8 g live weight) gave the allometric equation: filtration rate (ml min−1)=12.19×weight (g)0.887. Filtration rate decreased significantly when the cell concentration was greater than 200 cells μl−1 (4.25 mg (organic weight) l−1). With six other algae food species, filtration rates similar to those with P. lutheri were only achieved with Chaetoceros calcitrans (Paulsen) Takano. All other algae species tested were cleared from suspension at significantly lower rates. Experiments with diet mixtures of P. lutheri and these other algae suggested that this was usually a reflection of lowered filtration activity, rather than pre-ingestive rejection of cells. In experimental outdoor nursery rearing systems, the filtration rate was inversely proportional to the concentration of cells in the inflow, in the range 5–210 cells μl−1. It was not affected by flow rate (2–130 l h−1, equivalent to 0.12–28.38 l h−1 g−1 (live weight)) with scallop juveniles stocked from 2 to 62 g l−1. The results are discussed in relation to on-growing scallops at field sites.  相似文献   

12.
Florida red tilapia (Oreochromis sp.) were reared in 23 m3 seawater (37 ppt) pools. Monosex males (1.3 g mean weight) were stocked at a density of 25 fish/m3 and reared to fingerling size (>10 g) in pools receiving either chicken manure applied at a rate of 105 kg/ha day−1 or pelletized feed (30% protein) administered ad libitum. Following the nursery period, fingerlings in fed pools were reared through adult, marketable sizes.

After 20 days of nursery rearing, mean fish weights (5.7–9.6 g) and survival (77.5–98.6%) in manured pools ranged from less than to greater than values in fed pools (7.9–9.4 g and 95.5–98.2%). By day 33, while mean weights (11.3±0.4 g) and survival (84.5±5.2%) in manured pools were significantly less than those in fed pools (18.0±0.6 g and 95.9±1.4%), fingerling-size fish were obtained from manured pools at an overall productivity of 55 kg/ha day−1.

After 170 days in fed pools, mean fish weight was 467±9 g, survival was 89.7±0.9%, and food conversion was 1.6±0.2. Daily weight gain achieved a maximum of 4.4 g day before a rapid decline in water temperature from 28–29°C to 24–25°C caused a loss of fish appetite and evidence of disease.

The results suggest that while nursery rearing of Florida red tilapia in seawater pools fertilized with chicken manure is feasible, considerable variability in fish performance among pools can be expected, despite identical management methods. In pools receiving prepared feed, high growth rates and survival through adult, marketable sizes suggests a potential for commercial production of Florida red tilapia in seawater.  相似文献   


13.
Video cameras are employed on net pen fish farms for monitoring food pellet levels near the cage bottom. Herein, the accuracy of a new machine-vision system for the identification of a feed-wastage event and its response time are reported. Research involved novel tests and definitions, video footage recorded under different stocking and environmental conditions, and numerical filters to reduce the effects of misclassifications and patchiness of the pellet wastage record on overall system accuracy. Single-frame food pellet detection accuracy was based on the difference between computer-generated and actual frame counts of pellets greater than 30 pixels in size. A pellet wastage event was defined as a median of three or more visible pellets per frame. During tests on still video frames from different feeding events, the system missed 0.1±0.1 to 1.3±0.4 pellets frame−1, and miss-classified as pellets 0±0.1 to 2.3±0.5 objects frame−1 (n=264). Most missed pellet images were on top of fish images. Waste matter accounted for 65% of the misclassifications, while particles associated with poor camera maintenance accounted for approximately 24%. The average response time to a pellet wastage event was 5.1 and 11.4 s for sampling rates of 2 frames s−1 and 0.5 frames s−1, respectively (n=20 different pellet wastage events). The longest response time (26 s) occurred when fish were amassed against the camera and/or covering pellets. Using appropriate camera lens, camera positioning and/or ‘warning’ software can address fish-interference problems.  相似文献   

14.
Ecuadorian Penaeus vannamei were cultured in dirt ponds (each of approximately 163 m2) at four different stocking densities, i.e. 5 shrimp m−2, 10 shrimp m−2, 15 shrimp m−2 and 20 shrimp m−2. Experiments were carried out over three different periods during the year. Each experiment lasted for 11–14 weeks. No commercial feed was given to the shrimp. The only input to the ponds was about 30 kg of cattle manure per pond per week. Chemical composition of the cattle manure was analyzed. Water quality parameters such as temperature, pH, DO and turbidity were recorded twice daily for each experiment; nutrients (nitrite, nitrate, ammonium and phosphate), water ATP, sediment ATP, H2S and chlorophyll were measured twice weekly for each experiment. Shrimp were sampled either weekly or bi-weekly for body weight measurements.

The results showed a negative correlation between stocking density and growth. Weekly growth ranged from 0·44 to 1·58 g week−1. Survival was over 50% in all treatments and averaged at 70·8%. Under these stocking densities, shrimp production ranged from 4·4 to 18·8 kg ha−1 day−1. The stocking density of 15 shrimps m−2 provides better production than the other stocking densities.

Water quality data did not relate to any shrimp growth. Water nutrient levels in pond discharge water were less than or equal to the nutrients in the incoming water in spite of the weekly addition of cattle manure and did not increase with the addition of cattle manure. No coliform bacteria were detected in any pond water samples through the study period. This indicates digestion of cattle manure in marine shrimp ponds would not pollute the environment with high concentrations of dissolved nutrients.

Thus, a marine shrimp pond can be considered a dissolved nutrient marine treatment plant converting unwanted cattle manure (1841 kg cattle manure ha−1 week−1 in this study) into a valuable commodity — shrimp.  相似文献   


15.
An experiment was conducted to determine the amount of P needed to saturate simulated fish pond sediments, formulated to contain six levels of clay (0, 30, 41, 64, 73 and 81% by weight). A series of cylindrical cement tanks were filled to 20 cm depth with the six sediment types and triple superphosphate (TSP) solution was added to reach P saturation in sediment. Results showed that all sediment types reached constant inorganic-P concentration in the upper 5 cm after 12 weeks of TSP application, and P adsorption capacity of sediment increased with increasing clay content. Sediment P adsorption was slower and not significant (P > 0·05) below 5 cm depth except in the sediment type containing 0% clay. Regression analysis showed that the rate and adsorption capacity of P in sediment are primarily governed by clay content and its dominant minerals. While organic-P and loosely bound-P are commonly deposited in sediment, most inorganic-P is adsorbed by cations to form cation-P complexes. The linear relationship between cation-P saturation level and the percentage of clay in sediment is highly significant (r2 = 0·84, P < 0·001) and, therefore, maximum adsorption capacity of cation-P in pond sediment can be approximated by Y = 0·019X (where Y represents the 100% saturation level in mg P g−1 soil, and X is the percentage of clay in the sediment). In practice, the level of P saturation in sediment can be approximated by the initial cation-P and clay contents in the top 5 cm of pond mud using the equation: P saturation (%) = initial cation-P (mg g−1 soil) × 100/P adsorption capacity (mg g−1 soil).  相似文献   

16.
The aim was to assess whether selection for increased growth rate in Atlantic salmon (Salmo salar) is associated with increased feed intake and/or better feed utilization. Growth responses of offspring from selected and wild lines of Atlantic salmon (initial weight 814±14 g and 533±12 g, respectively) were tested in a 14-week experiment. Selected and wild salmon increased body weight by 79 and 39%, respectively, during the experiment. Relative feed intake (DFI), thermal growth coefficient (TGC) and feed efficiency ratio (FER) were significantly higher in the selected (DFI: 0.67% BW d−1, TGC: 2.96×10−3 and FER: 1.16), than in the wild, line (DFI: 0.48% BW d−1, TGC: 1.39×10−3 and FER: 0.93). FER was positively correlated with mean growth rate (r=0.90, n=6, P<0.05), and differences between the lines indicated a 4.6% increase in FER per generation of selection. Fish of the selected line had a significantly lower intake of protein and energy per kilogram gain, so the higher growth rate of the selected line was the result of both greater feed consumption and more efficient feed utilization for growth. This implies that selection for increased growth rate in Atlantic salmon may improve both of these traits.  相似文献   

17.
The aim of this trial was to study the utilization of dietary protein by seabass juveniles with 5.5 g mean body weight, at two water temperatures: 18°C and 25°C. For that purpose, the fish were fed for 12 weeks, four isoenergetic diets with different protein levels (36, 42, 48, and 56%). At the end of the trial, growth rate and feed utilization were significantly better at the higher water temperature. Within each temperature, specific growth rate and feed efficiency were significantly higher with the 48 and 56% protein diets than with the other diets. At 25°C, feed efficiency was also significantly better with the 56% than with the 48% protein diet. N retention (g kg average body weight−1 day−1) was higher at 25°C than at 18°C but, as a % N intake the inverse was true. Although at 25°C N retention (% N intake) was not different among groups, retention in g kg ABW−1 day−1 was significantly higher with the 56% protein diet than with 36 and 42% protein diets. On the contrary, at 18°C N retention (g kg ABW−1 day−1) was similar among groups while as a percentage of N intake it was inversely related to the dietary protein level. Regarding energy utilization, at each temperature, there were no differences among dietary treatments on energy retention (g kg ABW−1 day−1). As a % of energy intake, energy retention significantly increased with the increase of dietary protein level at 25°C, while at 18°C, there were no significant differences among groups. Within each temperature, at the end of the trial, there were no differences among groups in proximate composition of whole fish. Apparent digestibility coefficients of dry matter, protein and energy significantly improved with the increase of water temperature but, within each temperature, there were no significant differences among groups. The results of this study indicate that, regardless of water temperature, the dietary protein requirement for growth seems to be satisfied with a diet containing 48% protein. Growth and feed efficiency were significantly higher at the higher temperature, however, protein utilization was more efficient at the lower temperature.  相似文献   

18.
The role of dietary ratios of docosahexaenoic acid (DHA, 22:6n−3), eicosapentaenoic acid (EPA, 20:5n−3) and arachidonic acid (AA, 20:4n−6) on early growth, survival, lipid composition, and pigmentation of yellowtail flounder was studied. Rotifers were enriched with lipid emulsions containing high DHA (43.3% of total fatty acids), DHA+EPA (37.4% and 14.2%, respectively), DHA+AA (36.0% and 8.9%), or a control emulsion containing only olive oil (no DHA, EPA, or AA). Larvae were fed differently enriched rotifers for 4 weeks post-hatch. At week 4, yellowtail larvae fed the high DHA diet were significantly larger (9.7±0.2 mm, P<0.05) and had higher survival (22.1±0.4%), while larvae fed the control diet were significantly smaller (7.3±0.2 mm, P<0.05) and showed lower survival (5.2±1.9%). Larval lipid class and fatty acid profiles differed significantly among treatments with larvae fed high polyunsaturated fatty acid (PUFA) diets having higher relative amounts of triacylglycerols (18–21% of total lipid) than larvae in the control diet (11%). Larval fatty acids reflected dietary levels of DHA, EPA and AA while larvae fed the control diet had reduced amounts of monounsaturated fatty acids (MUFA) and increased levels of PUFA relative to dietary levels. A strong relationship was observed between the DHA/EPA ratio in the diet and larval size (r2=0.75, P=0.005) and survival (r2=0.86, P=0.001). Following metamorphosis, the incidence of malpigmentation was higher in the DHA+AA diet (92%) than in all other treatments (50%). Results suggest that yellowtail larvae require a high level of dietary DHA for maximal growth and survival while diets containing elevated AA exert negative effects on larval pigmentation.  相似文献   

19.
A laboratory-scale packed column aerator filled with ceramic Raschig rings was tested for its performance with hydraulic loadings in the range of 16–86·3 m3 m−2 h−1. Two columns of 0·19 m and 0·24 m inside diameter and packing sizes of 15, 25 and 36 mm were used. The system equation developed by previous workers for trickling filters in waste-water treatment was not generally applicable across the lower hydraulic loadings. The system coefficient incorporating the oxygen absorption coefficient (kLa) was found to vary within the range of hydraulic loadings studied. The oxygen transfer rate equation developed for surface and submerged aerators was used for estimating standard oxygen transfer efficiency of the packed column aerator, which, in this case, ranged from 6·2 to 22·6 kg O2 kWh−1.  相似文献   

20.
Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5±5.6 mg C m−2 and 39.2±8.7 mg C m−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control (45.2±11.3 mg C m−2 per day and 22.0±4.3 mg C m−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mg N m−2 per day and 126±36 mg N m−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of new bacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224±92 mg C m−2) relative to undisturbed sediment (650±254 mg C m−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation were found in sediments with and without mullet but nitrification was reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号