首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Meloxicam is a nonsteroidal anti‐inflammatory drug commonly used in avian species. In this study, the pharmacokinetic parameters for meloxicam were determined following single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of the drug (1 mg/kg·b.w.) in adult African grey parrots (Psittacus erithacus; n = 6). Serial plasma samples were collected and meloxicam concentrations were determined using a validated high‐performance liquid chromatography assay. A noncompartmental pharmacokinetic analysis was performed. No undesirable side effects were observed during the study. After i.v. administration, the volume of distribution, clearance and elimination half‐life were 90.6 ± 4.1 mL/kg, 2.18 ± 0.25 mL/h/kg and 31.4 ± 4.6 h, respectively. The peak mean ± SD plasma concentration was 8.32 ± 0.95 μg/mL at 30 min after i.m. administration. Oral administration resulted in a slower absorption (tmax = 13.2 ± 3.5 h; Cmax = 4.69 ± 0.75 μg/mL) and a lower bioavailability (38.1 ± 3.6%) than for i.m. (78.4 ± 5.5%) route. At 24 h, concentrations were 5.90 ± 0.28 μg/mL for i.v., 4.59 ± 0.36 μg/mL for i.m. and 3.21 ± 0.34 μg/mL for p.o. administrations and were higher than those published for Hispaniolan Amazon parrots at 12 h with predicted analgesic effects.  相似文献   

2.
The pharmacokinetic profile of meloxicam in clinically healthy koalas (n = 15) was investigated. Single doses of meloxicam were administered intravenously (i.v.) (0.4 mg/kg; n = 5), subcutaneously (s.c.) (0.2 mg/kg; n = 1) or orally (0.2 mg/kg; n = 3), and multiple doses were administered to two groups of koalas via the oral or s.c. routes (n = 3 for both routes) with a loading dose of 0.2 mg/kg for day 1 followed by 0.1 mg/kg s.i.d for a further 3 days. Plasma meloxicam concentrations were quantified by high‐performance liquid chromatography. Following i.v. administration, meloxicam exhibited a rapid clearance (CL) of 0.44 ± 0.20 (SD) L/h/kg, a volume of distribution at terminal phase (Vz) of 0.72 ± 0.22 L/kg and a volume of distribution at steady state (Vss) of 0.22 ± 0.12 L/kg. Median plasma terminal half‐life (t1/2) was 1.19 h (range 0.71–1.62 h). Following oral administration either from single or repeated doses, only maximum peak plasma concentration (Cmax 0.013 ± 0.001 and 0.014 ± 0.001 μg/mL, respectively) was measurable [limit of quantitation (LOQ) >0.01 μg/mL] between 4–8 h. Oral bioavailability was negligible in koalas. Plasma protein binding of meloxicam was ~98%. Three meloxicam metabolites were detected in plasma with one identified as the 5‐hydroxy methyl derivative. This study demonstrated that koalas exhibited rapid CL and extremely poor oral bioavailability compared with other eutherian species. Accordingly, the currently recommended dose regimen of meloxicam for this species appears inadequate.  相似文献   

3.
4.
The objectives of this study were to examine the pharmacokinetics of tobramycin in the horse following intravenous (IV), intramuscular (IM), and intra‐articular (IA) administration. Six mares received 4 mg/kg tobramycin IV, IM, and IV with concurrent IA administration (IV+IA) in a randomized 3‐way crossover design. A washout period of at least 7 days was allotted between experiments. After IV administration, the volume of distribution, clearance, and half‐life were 0.18 ± 0.04 L/kg, 1.18 ± 0.32 mL·kg/min, and 4.61 ± 1.10 h, respectively. Concurrent IA administration could not be demonstrated to influence IV pharmacokinetics. The mean maximum plasma concentration (Cmax) after IM administration was 18.24 ± 9.23 μg/mL at 1.0 h (range 1.0–2.0 h), with a mean bioavailability of 81.22 ± 44.05%. Intramuscular administration was well tolerated, despite the high volume of drug administered (50 mL per 500 kg horse). Trough concentrations at 24 h were below 2 μg/mL in all horses after all routes of administration. Specifically, trough concentrations at 24 h were 0.04 ± 0.01 μg/mL for the IV route, 0.04 ± 0.02 μg/mL for the IV/IA route, and 0.02 ± 0.02 for the IM route. An additional six mares received IA administration of 240 mg tobramycin. Synovial fluid concentrations were 3056.47 ± 1310.89 μg/mL at 30 min after administration, and they persisted for up to 48 h with concentrations of 14.80 ± 7.47 μg/mL. Tobramycin IA resulted in a mild chemical synovitis as evidenced by an increase in synovial fluid cell count and total protein, but appeared to be safe for administration. Monte Carlo simulations suggest that tobramycin would be effective against bacteria with a minimum inhibitory concentration (MIC) of 2 μg/mL for IV administration and 1 μg/mL for IM administration based on Cmax:MIC of 10.  相似文献   

5.
The objective of this study was to assess the pharmacokinetic profile and determine whether any adverse effects would occur in seven healthy adult horses following oral meloxicam tablet administration once daily for 14 days at a dose of 0.6 mg/kg·bwt. Horses were evaluated for health using physical examination, complete blood count, serum chemistry, urinalysis, and gastroscopy at the beginning and end of the study. Blood was collected for the quantification of meloxicam concentrations with liquid chromatography and mass spectrometry. The mean terminal half‐life was 4.99 ± 1.11 h. There was no significant difference between the mean Cmax, 1.58 ± 0.71 ng/mL at Tmax 3.48 ± 3.30 h on day 1, 2.07 ± 0.94 ng/mL at Tmax 1.24 ± 1.24 h on day 7, and 1.81 ± 0.76 ng/mL at 1.93 ± 1.30 h on day 14 (P = 0.30). There was a statistically significant difference between the Tmax on the sample days (P = 0.04). No statistically significant increase in gastric ulcer score or laboratory analytes was noted. Oral meloxicam tablets were absorbed in adult horses, and adverse effects were not statistically significant in this study. Further studies should evaluate the adverse effects and efficacy of meloxicam tablets in a larger population of horses before routine use can be recommended.  相似文献   

6.
The purpose of this study was to compare the pharmacokinetics of meloxicam in mature swine after intravenous (i.v.) and oral (p.o.) administration. Six mature sows (mean bodyweight ± standard deviation = 217.3 ± 65.68 kg) were administered an i.v. or p.o. dose of meloxicam at a target dose of 0.5 mg/kg in a cross‐over design. Plasma samples collected up to 48 h postadministration were analyzed by high‐pressure liquid chromatography and mass spectrometry (HPLC‐MS) followed by noncompartmental pharmacokinetic analysis. Mean peak plasma concentration (CMAX) after p.o. administration was 1070 ng/mL (645–1749 ng/mL). TMAX was recorded at 2.40 h (0.50–12.00 h) after p.o. administration. Half‐life (T½ λz) for i.v. and p.o. administration was 6.15 h (4.39–7.79 h) and 6.83 h (5.18–9.63 h), respectively. The bioavailability (F) for p.o. administration was 87% (39–351%). The results of this study suggest that meloxicam is well absorbed after oral administration.  相似文献   

7.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

8.
Point-of-care (POC) systems for the joint measurement of Troponin and D-dimers have not been studied in horses. The aim of this study was to perform the validation of a POC system (AQT90 FLEX) for the measurement of cardiac troponin I (cTnI) and D-dimers in the serum of horses with gastrointestinal diseases. The main objective was to evaluate whether or not this system can distinguish healthy animals from diseased animals. A sample of 33 horses was included in the study: control group (n = 10) and horses with gastrointestinal disorders (n = 21), which were classified according to their outcome in survivors (subgroup A = 9) and nonsurvivors (subgroup B = 12). Considering the diagnosis of the process, ill horses were classified into three groups: inflammatory (I = 7), obstructive (O = 9), and strangulating diseases (S = 5). The clinical usefulness of AQT90 FLEX was validated by the study of linearity, coefficient of variation, and detection limits. Later, concentrations of D-dimers and cTnI were measured. A significant increase in both parameters was detected in ill animals (cTnI: control: 0.014 ± 0.01 μg/mL, survivors: 0.27 ± 0.37 μg/mL, nonsurvivors: 0.60 ± 1.21 μg/mL; D-dimers: control: 104.90 ± 30.82 ng/mL, survivors: 1,217.22 ± 1,213.28 ng/mL, nonsurvivors: 1,613.67 ± 1,426.75 ng/mL), although there were no statistically significant differences in concentrations according to diagnosis and outcome. In conclusion, AQT90 FLEX POC analyzer can be used in horses with gastrointestinal diseases to measure cTnI and D-dimer concentrations. It is a quick, practical, and minimally invasive tool that helps in determining the severity of illness.  相似文献   

9.
Malreddy, P. R., Coetzee, J. F., KuKanich, B., Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co‐administered orally in Holstein‐Friesian cows. J. vet. Pharmacol. Therap.  36 , 14–20. Management of neuropathic pain in dairy cattle could be achieved by combination therapy of gabapentin, a GABA analog and meloxicam, an nonsteroidal anti‐inflammatory drug. This study was designed to determine specifically the depletion of these drugs into milk. Six animals received meloxicam at 1 mg/kg and gabapentin at 10 mg/kg, while another group (n = 6) received meloxicam at 1 mg/kg and gabapentin at 20 mg/kg. Plasma and milk drug concentrations were determined over 7 days postadministration by HPLC/MS followed by noncompartmental pharmacokinetic analyses. The mean (±SD) plasma Cmax and Tmax for meloxicam (2.89 ± 0.48 μg/mL and 11.33 ± 4.12 h) were not much different from gabapentin at 10 mg/kg (2.87 ± 0.2 μg/mL and 8 ± 0 h). The mean (±SD) milk Cmax for meloxicam (0.41 ± 80.16 μg/mL) was comparable to gabapentin at 10 mg/kg (0.63 ± 0.13 μg/mL and 12 ± 6.69 h). The mean plasma and milk Cmax for gabapentin at 20 mg/kg P.O. were almost double the values at 10 mg/kg. The mean (±SD) milk to plasma ratio for meloxicam (0.14 ± 0.04) was lower than for gabapentin (0.23 ± 0.06). The results of this study suggest that milk from treated cows will have low drug residue concentration soon after plasma drug concentrations have fallen below effective levels.  相似文献   

10.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

11.
Intravenous benzodiazepines are utilized as first‐line drugs to treat prolonged epileptic seizures in dogs and alternative routes of administration are required when venous access is limited. This study compared the pharmacokinetics of midazolam after intravenous (IV), intramuscular (IM), and rectal (PR) administration. Six healthy dogs were administered 0.2 mg/kg midazolam IV, IM, or PR in a randomized, 3‐way crossover design with a 3‐day washout between study periods. Blood samples were collected at baseline and at predetermined intervals until 480 min after administration. Plasma midazolam concentrations were measured by high‐pressure liquid chromatography with UV detection. Rectal administration resulted in erratic systemic availability with undetectable to low plasma concentrations. Arithmetic mean values ± SD for midazolam peak plasma concentrations were 0.86 ± 0.36 μg/mL (C0) and 0.20 ± 0.06 μg/mL (Cmax), following IV and IM administration, respectively. Time to peak concentration (Tmax) after IM administration was 7.8 ± 2.4 min with a bioavailability of 50 ± 16%. Findings suggest that IM midazolam might be useful in treating seizures in dogs when venous access is unavailable, but higher doses may be needed to account for intermediate bioavailability. Rectal administration is likely of limited efficacy for treating seizures in dogs.  相似文献   

12.
The objective of this study was to evaluate the plasma and serum concentrations of cytarabine (CA) administered via constant rate infusion (CRI) in dogs with meningoencephalomyelitis of unknown etiology (MUE). Nineteen client‐owned dogs received a CRI of CA at a dose of 25 mg/m2/h for 8 h as treatment for MUE. Dogs were divided into four groups, those receiving CA alone and those receiving CA in conjunction with other drugs. Blood samples were collected at 0, 1, 8, and 12 h after initiating the CRI. Plasma (n = 13) and serum (n = 11) cytarabine concentrations were measured by high‐pressure liquid chromatography. The mean peak concentration (CMAX) and area under the curve (AUC) after CRI administration were 1.70 ± 0.66 μg/mL and 11.39 ± 3.37 h·μg/mL, respectively, for dogs receiving cytarabine alone, 2.36 ± 0.35 μg/mL and 16.91 + 3.60 h·μg/mL for dogs administered cytarabine and concurrently on other drugs. Mean concentrations for all dogs were above 1.0 μg/mL at both the 1‐ and 8‐h time points. The steady‐state achieved with cytarabine CRI produces a consistent and prolonged exposure in plasma and serum, which is likely to produce equilibrium between blood and the central nervous system in dogs with a clinical diagnosis of MUE. Other medications commonly used to treat MUE do not appear to alter CA concentrations in serum and plasma.  相似文献   

13.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

14.
This study evaluated the effects of follicular phase administration of TAK‐683, an investigational metastin/kisspeptin analog, on follicular growth, ovulation, luteal function and reproductive hormones in goats. After confirmation of ovulation by transrectal ultrasonography (Day 0), PGF2α (2 mg/head of dinoprost) was administered intramuscularly on Day 10 to induce luteal regression. At 12 h after PGF2α administration, intravenous administration of vehicle or 35 nmol (50 μg)/head of TAK‐683 was performed in control (n = 4) and treatment (n = 4) groups, respectively. Blood samples were collected at 6‐h intervals for 96 h and then daily until the detection of subsequent ovulation (second ovulation). After the second ovulation, ultrasound examinations and blood sampling were performed every other day or daily until the subsequent ovulation (third ovulation). Mean concentrations of LH and FSH in the treatment group were significantly higher 6 h after TAK‐683 treatment than those in the control group (12.0 ± 10.7 vs 1.0 ± 0.7 ng/ml for LH, 47.5 ± 28.2 vs 15.1 ± 3.4 ng/ml for FSH, p < 0.05), whereas mean concentrations of oestradiol in the treatment group decreased immediately after treatment (p < 0.05) as compared with the control group. Ovulation tended to be delayed (n = 2) or occurred early (n = 1) in the treatment group as compared with the control group. For the second ovulation, ovulatory follicles in the treatment group were significantly smaller in maximal diameter than in the control group (3.8 ± 0.5 vs 5.4 ± 0.2 mm, p < 0.05, n = 3). Administration of TAK‐683 in the follicular phase stimulates gonadotropin secretion and may have resulted in ovulation of premature follicles in goats.  相似文献   

15.
A tulathromycin concentration and pharmacokinetic parameters in plasma and lung tissue from healthy pigs and Actinobacillus pleuropneumoniae (App)‐infected pigs were compared. Tulathromycin was administered intramuscularly (i.m.) to all pigs at a single dose of 2.5 mg/kg. Blood and lung tissue samples were collected during 33 days postdrug application. Tulathromycin concentration in plasma and lung was determined by high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method. The mean maximum plasma concentration (Cmax) in healthy pigs was 586 ± 71 ng/mL, reached by 0.5 h, while the mean value for Cmax of tulathromycin in infected pigs was 386 ± 97 ng/mL after 0.5 h. The mean maximum tulathromycin concentration in lung of healthy group was calculated as 3412 ± 748 ng/g, detected at 12 h, while in pigs with App, the highest concentration in lung was 3337 ± 937 ng/g, determined at 48 h postdosing. The higher plasma and lung concentrations in pigs with no pulmonary inflammation were observed at the first time points sampling after tulathromycin administration, but slower elimination with elimination half‐life t1/2el = 126 h in plasma and t1/2el = 165 h in lung, as well as longer drug persistent in infected pigs, was found.  相似文献   

16.
ObjectiveTo investigate the pharmacokinetics of orally and intravenously (IV) administered meloxicam in semi-domesticated reindeer (Rangifer tarandus tarandus).Study designA crossover design with an 11 day washout period.AnimalsA total of eight young male reindeer, aged 1.5–2.5 years and weighing 74.3 ± 6.3 kg, mean ± standard deviation.MethodsThe reindeer were administered meloxicam (0.5 mg kg–1 IV or orally). Blood samples were repeatedly collected from the jugular vein for up to 72 hours post administration. Plasma samples were analysed for meloxicam concentrations with ultraperformance liquid chromatography combined with triple quadrupole mass spectrometry. Noncompartmental analysis for determination of pharmacokinetic variables was performed.ResultsThe pharmacokinetic values, median (range), were determined. Elimination half-life (t½) with the IV route (n = 4) was 15.2 (13.2–16.8) hours, the volume of distribution at steady state was 133 (113–151) mL kg?1 and clearance was 3.98 (2.63–5.29) mL hour–1 kg–1. After oral administration (n = 7), the peak plasma concentration (Cmax) was detected at 6 hours, t½ was 19.3 (16.7–20.5) hours, Cmax 1.82 (1.17–2.78) μg mL–1 and bioavailability (n = 3) 49 (46–73)%. No evident adverse effects were detected after either administration route.Conclusions and clinical relevanceA single dose of meloxicam (0.5 mg kg–1 IV or orally) has the potential to maintain the therapeutic concentration determined in other species for up to 3 days in reindeer plasma.  相似文献   

17.
Guaifenesin is an expectorant commonly used in performance horses to aid in the clearance of mucus from the airways. Guaifenesin is also a centrally acting skeletal muscle relaxant and as such is a prohibited drug with withdrawal necessary prior to competition. To the authors' knowledge, there are no reports in the literature describing single or multiple oral administrations of guaifenesin in the horse to determine a regulatory threshold and related withdrawal time. Therefore, the objective of the current study was to describe the pharmacokinetics of guaifenesin following oral administration in order to provide data upon which appropriate regulatory recommendations can be established. Nine exercised Thoroughbred horses were administered 2 g of guaifenesin orally BID for a total of five doses. Blood samples were collected immediately prior to drug administration and at various times postadministration. Serum guaifenesin concentrations were determined and pharmacokinetic parameters calculated. Guaifenesin was rapidly absorbed (Tmax of 15 min) following oral administration. The Cmax was 681.3 ± 323.8 ng/mL and 1080 ± 732.8 following the first and last dose, respectively. The serum elimination half‐life was 2.62 ± 1.24 h. Average serum guaifenesin concentrations remained above the LOQ of the assay (0.5 ng/mL) by 48 h postadministration of the final dose in 3 of 9 horses.  相似文献   

18.
The objective of this study was to evaluate the disposition kinetics of enrofloxacin (ENR) in the plasma and its distribution in the muscle tissue of Nile tilapia (Oreochromis niloticus) after a single oral dose of 10 mg/kg body weight via medicated feed. The fish were kept at a temperature between 28 and 30 °C. The collection period was between 30 min and 120 h after administration of the drug. The samples were analyzed by high‐performance liquid chromatography with a fluorescence detector (HPLC‐FLD). The ENR was slowly absorbed and eliminated from the plasma (Cmax = 1.24 ± 0.37 μg/mL; Tmax = 8 h; T1/2Ke = 19.36 h). ENR was efficiently distributed in the muscle tissue and reached maximum values (2.17 ± 0.74 μg/g) after 8 h. Its metabolite, ciprofloxacin (CIP), was detected and quantified in the plasma (0.004 ± 0.005 μg/mL) and muscle (0.01 ± 0.011 μg/g) for up to 48 h. After oral administration, the mean concentration of ENR in the plasma was well above the minimum inhibitory concentrations (MIC50) for most bacteria already isolated from fish except for Streptococcus spp. This way the dose used in this study allowed for concentrations in the blood to treat the diseases of tilapia.  相似文献   

19.
The pharmacokinetics of doxycycline was studied in plasma after a single dose (20 mg/kg) of intravenous or oral administration to tilapia (Oreochromis aureus × Oreochromis niloticus) reared in fresh water at 24 °C. Plasma samples were collected from six fish per sampling point. Doxycycline concentrations were determined by high‐performance liquid chromatography with a 0.005 μg/mL limit of detection, then were subjected to noncompartmental analysis. Following oral administration, the double‐peak phenomenon was observed, and the first (Cmax1) and second (Cmax2) peaks were 1.99 ± 0.43 μg/mL at 2.0 h and 2.27 ± 0.38 μg/mL at 24.0 h, respectively. After the intravenous injection, a Cmax2 (12.12 ± 1.97 μg/mL) was also observed, and initial concentration of 45.76 μg/mL, apparent elimination rate constant (λz) of 0.018 per h, apparent elimination half‐life (t1/2λz) of 39.0 h, systemic total body clearance (Cl) of 41.28 mL/h/kg, volume of distribution (Vz) of 2323.21 mL/kg, and volume of distribution at steady‐state (Vss) of 1356.69 mL/kg were determined, respectively. While after oral administration, the λz, t1/2λz, and bioavailability of doxycycline were 0.009 per h, 77.2 h, and 23.41%, respectively. It was shown that doxycycline was relatively slowly and incompletely absorbed, extensively distributed, and slowly eliminated in tilapia, in addition, doxycycline might undergo enterohepatic recycling in tilapia.  相似文献   

20.
The objective of this study was to determine the pharmacokinetics of single‐ and multi‐dose ceftiofur crystalline‐free acid (CCFA) administered subcutaneously at a dose of 13.2 mg/kg to 12 neonatal foals 1–3 days of age. Six foals received a single subcutaneous dose, while 6 additional foals received 4 doses of CCFA at 48‐h intervals. Blood samples were collected at pre‐determined times following drug administration, and plasma concentrations of ceftiofur free acid equivalents (CFAE) were measured using high‐performance liquid chromatography. Following single‐dose administration of CCFA, the mean ± standard deviation maximum observed plasma concentration was 3.1 ± 0.6 μg/mL and observed time to maximal plasma concentration was 14.0 ± 4.9 h. Following multi‐dose administration of CCFA, the mean ±standard deviation times above CFAE concentrations of ≥0.5 μg/mL and ≥2.0 μg/mL were 192.95 ± 15.86 h and 78.80 ± 15.31 h, respectively. The mean ± standard deviation area under the concentration vs time curve (AUC0→∝) was 246.2 ± 30.7 h × μg/mL and 172.7 ± 27.14 h × μg/mL following single‐ and multi‐dose CCFA administrations, respectively. Subcutaneous administration of CCFA at 13.2 mg/kg in neonatal foals was clinically well‐ tolerated and resulted in plasma concentrations sufficient for the treatment of most bacterial pathogens associated with neonatal foal septicemia. Multi‐dose administration of four doses at dosing interval of 48 h between treatments maintains appropriate therapeutic concentrations in neonatal foals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号