首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

2.
The pharmacokinetics of carbetocin, which is used to control postpartum hemorrhage after giving birth, was studied in cows and gilts after a single intravenous (IV) or intramuscular (IM) injection. Blood samples from animals were assessed by oxytocin radioimmunoassay, and then the pharmacokinetic parameters were calculated using a noncompartmental model. For gilts, there was no significant difference between half-life (T1/2λZ), mean residue time (MRT), and maximum concentration (Cmax) between IM and IV administration. Conversely, the time to reach the Cmax (Tmax) and MRT were higher following administration of 350 μg/animal in cows via the IM administration compared with IV. The longest T1/2λZ was 0.85 hr, indicating carbetocin was absorbed and eliminated rapidly in both animal species after administration. The Tmax was similar between cows and gilts following IM administration. Moreover, the Cmax after IM injection was about half that of IV administration in both animals. The bioavailability was more than 80% in cows, suggesting administration via the IM route is efficient. This is in agreement with the longer T1/2λZ in cows after IM administration. However, the IV route is recommended for gilts due to a lower bioavailability (35%) and shorter T1/2λZ after IM administration compared with IV.  相似文献   

3.
In this study, the pharmacokinetic profile of flumequine (FMQ) was investigated in blunt snout bream (Megalobrama amblycephala) after intravascular (3 mg/kg body weight (b.w.)) and oral (50 mg/kg b.w.) administrations. The plasma samples were determinedby ultra‐performance liquid chromatography (UPLC) with fluorescence detection. After intravascular administration, plasma concentration–time curves were best described by a two‐compartment open model. The distribution half‐life (t1/2α), elimination half‐life (t1/2β), and area under the concentration–time curve (AUC) of blunt snout bream were 0.6 h, 25.0 h, and 10612.7 h·μg/L, respectively. After oral administration, a two‐compartment open model with first‐order absorption was also best fit the data of plasma. The t1/2α, t1/2β, peak concentration (Cmax), time‐to‐peak concentration (Tmax), and AUC of blunt snout bream were estimated to be 2.5 h, 19.7 h, 3946.5 μg/L, 1.4 h, and 56618.1 h. μg/L, respectively. The oral bioavailability (F) was 32.0%. The pharmacokinetics of FMQ in blunt snout bream displayed low bioavailability, rapid absorption, and rapid elimination.  相似文献   

4.
The pharmacokinetics and bioavailability of butafosfan in piglets were investigated following intravenous and intramuscular administration at a single dose of 10 mg/kg body weight. Plasma concentration–time data and relevant parameters were best described by noncompartmental analysis after intravenous and intramuscular injection. The data were analyzed through WinNolin 6.3 software. After intravenous administration, the mean pharmacokinetic parameters were determined as T1/2λz of 3.30 h, Cl of 0.16 L kg/h, AUC of 64.49 ± 15.07 μg h/mL, Vss of 0.81 ± 0.44/kg, and MRT of 1.51 ± 0.27 h. Following intramuscular administration, the Cmax (28.11 μg/mL) was achieved at Tmax (0.31 h) with an absolute availability of 74.69%. Other major parameters including AUC and MRT were 48.29 ± 21.67 μg h/mL and 1.74 ± 0.29 h, respectively.  相似文献   

5.
This study aimed to define the pharmacokinetic profiles of dexmedetomidine and methadone administered simultaneously in dogs by either an oral transmucosal route or intramuscular route and to determine the bioavailability of the oral transmucosal administration relative to the intramuscular one of both drugs, so as the applicability of this administration route in dogs. Twelve client‐owned dogs, scheduled for diagnostic procedures, were treated with a combination of dexmedetomidine hydrochloride (10 μg/kg) and methadone hydrochloride (0.4 mg/kg) through an oral transmucosal route or intramuscularly. Oral transmucosal administration caused ptyalism in most subjects, and intramuscular administration caused transient peripheral vasoconstriction. The results showed reduced and delayed absorption of both dexmedetomidine and methadone when administered through an oral transmucosal route, with median (range) Cmax values of 0.82 (0.42–1.49) ng/ml and 13.22 (2.80–52.30) ng/ml, respectively. The relative bioavailability was low: 16.34% (dexmedetomidine) and 15.5% (methadone). Intramuscular administration resulted in a more efficient absorption profile, with AUC and Cmax values for both drugs approximately 10 times higher. Dexmedetomidine and methadone administered simultaneously by an oral transmucosal route using injectable formulations were not well absorbed through the oral mucosa. Nevertheless, additional studies on these drugs combination using alternative administration routes are recommended.  相似文献   

6.
Ceftiofur (CEF), a broad‐spectrum third‐generation cephalosporin, exhibits a good activity against a broad range of gram‐negative and gram‐positive bacteria, including many that produce β‐lactamase. To design a rational dosage regimen for the drug in lactating Holstein dairy cows, the pharmacokinetic properties of ceftiofur hydrochloride injection were investigated in six cows after intravenous, intramuscular, and subcutaneous administration of single dose of 2.2 mg/kg BW (body weight). Plasma concentration–time curves and relevant parameters were best described by noncompartmental analysis through WinNonlin 6.3 software. After subcutaneous administration, the absolute bioavailability was 61.12% and the T1/2λz (elimination half‐life) was 8.67 ± 0.72 hr. The Cmax (maximum plasma concentration) was 0.88 ± 0.21 μg/ml and Tmax (the time after initial injection to when Cmax occurs) was 1.50 ± 0.55 hr. The MRT (mean residence time) was 11.00 ± 0.30 hr. Following intramuscular administration, the Cmax (1.09 ± 0.21 μg/ml) was achieved at Tmax (1.20 ± 0.26 hr) with an absolute availability of 70.52%. In this study, the detailed pharmacokinetic profiles of free and total CEF showed that this drug is widely distributed and rapidly eliminated and may contribute to a better understanding of the usage of ceftiofur hydrochloride injection in Holstein dairy cows.  相似文献   

7.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

8.
The comparative pharmacokinetics of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in healthy and Aeromonas hydrophila‐infected crucian carp after a single oral (p.o.) administration at a dose of 10 mg/kg at 25 °C. The plasma concentrations of ENR and of CIP were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR concentrations by noncompartmental modeling. In healthy fish, the elimination half‐life (T1/2λz), maximum plasma concentration (Cmax), time to peak (Tmax), and area under the concentration–time curve (AUC) values were 64.66 h, 3.55 μg/mL, 0.5 h, and 163.04 μg·h/mL, respectively. In infected carp, by contrast, the corresponding values were 73.70 h, 2.66 μg/mL, 0.75 h, and 137.43 μg·h/mL, and the absorption and elimination of ENR were slower following oral administration. Very low levels of CIP were detected, which indicates a low extent of deethylation of ENR in crucian carp.  相似文献   

9.
The aim of this study was to establish an integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach of acetylkitasamycin for designing dosage regimens and decreasing the emergence of drug‐resistant bacteria. After oral administration of acetylkitasamycin to healthy and infected pigs at the dose of 50 mg/kg body weights (bw), a rapid and sensitive LC–MS/MS method was developed and validated for determining the concentration change of the major components of acetylkitasamycin and its possible metabolite kitasamycin in the intestinal samples taken from the T‐shape ileal cannula. The PK parameters, including the integrated peak concentration (Cmax), the time when the maximum concentration reached (Tmax) and the area under the concentration–time curve (AUC), were calculated by WinNonlin software. The minimum inhibitory concentration (MIC) of 60 C. perfringens strains was determined following CLSI guideline. The in vitro and ex vivo activities of acetylkitasamycin in intestinal tract against a pathogenic strain of C. perfringens type A (CPFK122995) were established by the killing curve. Our PK data showed that the integrated Cmax, Tmax, and AUC were 14.57–15.81 μg/ml, 0.78–2.52 hR, and 123.84–152.32 μg hr/ml, respectively. The PD data show that MIC50 and MIC90 of the 60 C. perfringens isolates were 3.85 and 26.45 μg/ml, respectively. The ex vivo growth inhibition data were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC to produce bacteriostasis (4.84 hr), bactericidal activity (15.46 hr), and bacterial eradication (24.99 hr). A dosage regimen of 18.63 mg/kg bw every 12 hr could be sufficient in the prevention of C. perfringens infection. The therapeutic dosage regimen for C. perfringens infection was at the dose of 51.36 mg/kg bw every 12 hr for 3 days. In summary, the dosage regimen for the treatment of C. perfringens in pigs administered with acetylkitasamycin was designed using PK/PD integrate model. The designed dose regimen could to some extent decrease the risk for emergence of macrolide resistance.  相似文献   

10.
This study was initiated to determine whether a comparative pharmacokinetic (PK) approach could be used to expand the pool of approved anthelmintics for minor ruminant species. Accordingly, the PK profiles of six anthelmintics (levamisole, albendazole, fenbendazole, moxidectin, doramectin, and ivermectin) in sheep, goats, and cattle were determined. The PK values determined for each anthelmintic included Tmax, Tlast, Cmax, AUC, AUC/dose, and Cmax/dose. The results of this study demonstrate that a comparative PK approach does not show commonality in the way these six anthelmintics are individually processed by these three ruminants. While some drugs demonstrated identical PK profiles between sheep and goats, none of these drugs demonstrated PK profiles in sheep and goats comparable to the PK profiles found in cattle. The results from this study suggest drug approval across these three ruminants is not a viable concept. However, the resulting PK profiles for each combination of drug and ruminant species represents a new dataset that can be used to support the US FDA Center for Veterinary Medicine's Minor Use/Minor Species indexing process for drug approvals in minor species such as sheep and goats.  相似文献   

11.
The bioavailability of three formulations of ivermectin was determined following oral administration to dogs. The average peak plasma level (C max) of ivermectin administered in the standard tablet formulation at 6 and 100 µg/kg of body weight was 2.97 and 44.31 ng/g, respectively. This suggest dose-dependent pharmacokinetics.C max and total ivermectin bioavailability, as assessed from the area under the plasma curve (AUC), were similar between two tablet formulations of ivermectin administered at 100 µg/kg. Furthermore,C max was similar following administration of radiolabelled ivermectin at 6 µg/kg in either a beef-based chewable formulation or in the standard tablet formulation.  相似文献   

12.
The efficacy of amoxicillin sodium for controlling field and experimental Streptococcus iniae and S. parauberis infections in olive flounder (Paralichthys olivaceus) was evaluated after a single intramuscular administration. Furthermore, the minimal inhibitory concentrations (MIC) against 21 Streptococcus strains were determined. In addition, the pharmacokinetics and residue depletion in olive flounder were investigated. Single intramuscular doses of amoxicillin sodium at 20, 40, 80, and 160 mg/kg b.w. fish significantly reduced cumulative mortality rates to 18.8–31.3% (< 0.05) for S. iniae and to 5.0–15.0% (< 0.01) for S. parauberis, whereas the S. iniae‐ and S. parauberis‐infected positive control groups showed cumulative mortality rates of 68.8% and 60.0%, respectively. In a S. parauberis outbreak, amoxicillin sodium reduced the cumulative mortality rate to 7.5% and 4.8% at 20 and 40 mg/kg b.w. fish, respectively, whereas that of the untreated control group was 35.2%. Peak plasma concentrations (Cmax) following a single intramuscular dose of 40 and 80 mg/kg b.w. fish were 62.64 (Tmax, 1.59 h) and 87.61 (Tmax, 3.02 h) μg/mL, respectively, with large AUC0?t/MIC and Cmax/MIC ratios, and sufficient T > MIC (time for maintaining plasma drug concentration greater than MICs) for S. iniae and S. parauberis. The estimated withdrawal period of amoxicillin sodium from muscle of olive flounder was about 8 days at 40 mg/kg b.w. fish (at 22 ± 1 °C). These results demonstrated a single intramuscular administration of amoxicillin sodium to be effective against streptococcosis in olive flounder.  相似文献   

13.
The purpose of this study was to evaluate the pharmacokinetics of cefquinome (CFQ ) following single intravenous (IV ) or intramuscular (IM ) injections of 2 mg/kg body weight in red‐eared slider turtles. Plasma concentrations of CFQ were determined by high‐performance liquid chromatography and analyzed using noncompartmental methods. The pharmacokinetic parameters following IV injection were as follows: elimination half‐life (t 1/2λz) 21.73 ± 4.95 hr, volume of distribution at steady‐state (V dss) 0.37 ± 0.11 L/kg, area under the plasma concentration–time curve (AUC 0–∞) 163 ± 32 μg hr?1 ml?1, and total body clearance (ClT) 12.66 ± 2.51 ml hr?1 kg?1. The pharmacokinetic parameters after IM injection were as follows: peak plasma concentration (C max) 3.94 ± 0.84 μg/ml, time to peak concentration (T max) 3 hr, t 1/2λz 26.90 ± 4.33 hr, and AUC 0–∞ 145 ± 48 μg hr?1 ml?1. The bioavailability after IM injection was 88%. Data suggest that CFQ has a favorable pharmacokinetic profile with a long half‐life and a high bioavailability in red‐eared slider turtles. Further studies are needed to establish a multiple dosage regimen and evaluate clinical efficacy.  相似文献   

14.
This study evaluates changes in the pharmacokinetic behavior of a single oral dose of florfenicol in rainbow trouts experimentally infected with Lactococcus garvieae or Streptococcus iniae. One hundred and fifty fish were randomly divided into three equal groups: 1—healthy fish, 2—fish inoculated with S. iniae (2.87 × 107 CFU/ml, i.p.), and 3—fish inoculated with L. garvieae (6.8 × 105 CFU/ml, i.p.). Florfenicol was administered to all groups at 15 mg/kg by oral gavage. Blood sampling was performed at 0, 2, 3, 6, 8, 12, 24, 48, 72, and 120 hr after drug administration to each group, and plasma concentration of florfenicol was assayed by HPLC method. The MICs of florfenicol were 1.2 μg/ml and 5 μg/ml against L. garviae and S. iniae, respectively. Healthy fish showed higher values for most of the PK/PD parameters as compared to fish infected with L. garvieae which was reversed in fish infected with S. iniae. Fish infected with L. garvieae showed decreased relative bioavailability accompanied by increased volume of distribution at steady‐state (Vdss) and total body clearance (ClB). Infection with S. iniae increased the peak concentration of drug after administration (Cmax) and decreased elimination half‐life (T1/2 β), central compartment volume (Vc), and Vdss. In conclusion, infection with these bacteria can affect the pharmacokinetic behavior of florfenicol in rainbow trouts as shown by decreased bioavailability and increased total body clearance and volume of distribution in L. garvieae infection and decreased volume of distribution accompanied by increased Cmax in S. iniae‐infected fish.  相似文献   

15.
The pharmacokinetics of oleandomycin OLD) after intravenous and oral administration, both alone and after intramuscular pretreatment with metamizole or dexamethasone, were studied in healthy dogs. After intravenous injection of OLD alone 10 mg/kg as bolus), the elimination half-life t 1/2, volume of distribution V d, area), body clearance CLB) and area under the concentration-time curve AUC) were 1.60 h, 1.11 L/kg, 7.36 ml/kg)/min and 21.66 µg h/ml, respectively. There were no statistically significant differences following pretreatment with metamizole or dexamethasone. After oral administration of OLD alone, the t frac12;, maximum plasma concentrations C max), time of C max t max), mean absorption time MAT) and absolute bioavailability F abs) were 1.68 h, 5.34 µg/ml, 1.5 h, 1.34 h and 84.29%, respectively. Pretreatment with metamizole caused a significantly decreased value for C max 2.93 µg/ml) but the MAT value 2.23 h) was significantly increased. Statistically significant changes in the pharmacokinetic parameters of OLD following oral administration were also observed as a result of pretreatment with dexamethasone. The C max was increased 8.24 µg/ml) and the t max 0.5 h) and MAT 0.45 h) were lower.  相似文献   

16.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) dose of 10 mg/kg body weight (b.w.) in snakehead fish at 24–26 °C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. The plasma concentration–time data were described by an open two‐compartment model for both routes. After intravenous administration, the elimination half‐life (T1/2β), area under the concentration–time curve (AUC) and total body clearance of EF were 19.82 h, 75.79 μg h/mL and 0.13 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (Cmax), T1/2β and AUC of EF were 1.86 μg/mL, 35.8 h and 49.98 μg h/mL, respectively. Absorption of EF was good with a bioavailability (F) of 65.82%, which was higher than that calculated in most seawater fish. CF, an active metabolite of EF, was detected occasionally in this study, which indicates a low extent of deethylation of EF in snakehead fish.  相似文献   

17.
Two premix products containing the endectocide ivermectin were compared for pharmacokinetic profiles and bioequivalence in young pigs. Test and reference articles were administered to individual pigs in‐feed at 12‐h intervals for a total of 14 doses. Plasma concentration–time profiles were compared after provision of the final doses of medicated feed, by which time steady‐state concentrations of ivermectin had been achieved. The pharmacokinetic variables monitored were peak concentration (Cmax), area under the curve (AUC)0–last, elimination half‐life of the terminal phase (T1/2 λz) and average steady‐state concentration (Css), determined by noncompartmental analysis. Logarithmic transformation of the variables was carried out when appropriate. Analysis of data by the Classic Method yielded confidence intervals of 80.59–114.47 (for AUC0–last), 90.38–119.68 (for Cmax) and 84.70–111.96 (for Css). It was concluded that the two articles were bioequivalent for ivermectin.  相似文献   

18.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

19.
AIM: To determine the half life (T1/2), time taken to reach maximum plasma concentration (Tmax) and maximum plasma concentration (Cmax) of thalidomide in sheep following I/V, oral and topical treatment with a single dose of thalidomide.

METHOD: Three groups of 4–6-month-old ram lambs were treated with thalidomide dissolved in dimethylsulphoxide (DMSO). The first group (n=10) was treated I/V with 100?mg thalidomide in 2?mL DMSO; the second group (n=8) received 400?mg thalidomide in 2?mL DMSO orally, and the third group (n=8) had 400?mg thalidomide in 4?mL DMSO applied topically. Plasma samples were collected up to 36 hours after treatment, snap-frozen at ?80°C and analysed for concentrations of thalidomide using high performance liquid chromatography.

RESULTS: Following I/V administration, T1/2 was 5.0 (SEM 0.4) hours, volume of distribution was 3,372.0 (SEM 244.3) mL/kg and clearance was 487.1 (SEM 46.1) mL/hour.kg. Topical application of 400?mg thalidomide did not increase plasma concentrations. Following oral administration, thalidomide bioavailability was 89%, with T1/2, Tmax, and Cmax being 7.2 (SEM 0.8) hours, 3.0 (SEM 0.4) hours and 1,767.3 (SEM 178.1) ng/mL, respectively.

CONCLUSION: Topical administration using DMSO as a solvent did not increase concentrations of thalidomide in plasma. The mean pharmacokinetic parameters determined following oral treatment with 400?mg of thalidomide were similar to those reported in humans receiving a single 400?mg oral dose (T1/2 7.3 hours; Tmax 4.3 hours and Cmax 2,820?ng/mL). There is potential for thalidomide to be used as a model for the treatment of chronic inflammatory conditions in sheep, such as Johne's disease, where tumour necrosis factor alpha plays a pathogenic role.  相似文献   

20.
This study was performed to determine the pharmacokinetic profile of mosapride in fasting and fed states. A single 5‐mg oral dose of mosapride was administered to fasted (n = 15) and fed (n = 12) beagle dogs, and the plasma concentrations of mosapride were measured by liquid chromatography–tandem mass spectrometry. The resultant data were analyzed by noncompartmental analysis (NCA). Mosapride was absorbed in fasted and fed dogs with similar Tmax. Both Cmax and AUC were significantly higher in the fasting group than in fed dogs, being four times (10.51 μg/mL vs. 2.76 μg/mL) and 3.5 times higher (38.53 h·μg/mL vs. 10.22 h·μg/mL), respectively. These findings suggest that food intake affects the pharmacokinetics of mosapride and that the dosage regimen for this drug need to be reconsidered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号