首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Knych, H. K., Casbeer, H. C., McKemie, D. S., Arthur, R. M. Pharmacokinetics and pharmacodynamics of butorphanol following intravenous administration to the horse. J. vet. Pharmacol. Therap.  36 , 21–30. Butorphanol is a narcotic analgesic commonly used in horses. Currently, any detectable concentration of butorphanol in biological samples collected from performance horses is considered a violation. The primary goal of the study reported here was to update the pharmacokinetics of butorphanol following intravenous administration, utilizing a highly sensitive liquid chromatography‐mass spectrometry (LC‐MS) assay that is currently employed in many drug‐testing laboratories. An additional objective was to characterize behavioral and cardiac effects following administration of butorphanol. Ten exercised adult horses received a single intravenous dose of 0.1 mg/kg butorphanol. Blood and urine samples were collected at time 0 and at various times for up to 120 h and analyzed using LC‐MS. Mean ± SD systemic clearance, steady‐state volume of distribution, and terminal elimination half‐life were 11.5 ± 2.5 mL/min/kg, 1.4 ± 0.3 L/kg, and 5.9 ± 1.5 h, respectively. Butorphanol plasma concentrations were below the limit of detection (LOD) (0.01 ng/mL) by 48 h post administration. Urine butorphanol concentrations were below the LOD (0.05 ng/mL) of the assay in seven of 10 horses by 120 h post drug administration. Following administration, horses appeared excited as noted by an increase in heart rate and locomotion. Gastrointestinal sounds were markedly decreased for up to 24 h.  相似文献   

2.
Dermorphin is a μ‐opioid receptor‐binding peptide that causes both central and peripheral effects following intravenous administration to rats, dogs, and humans and has been identified in postrace horse samples. Ten horses were intravenously and/or intramuscularly administered dermorphin (9.3 ± 1.0 μg/kg), and plasma concentration vs. time data were evaluated using compartmental and noncompartmental analyses. Data from intravenous administrations fit a 2‐compartment model best with distribution and elimination half‐lives (harmonic mean ± pseudo SD) of 0.09 ± 0.02 and 0.76 ± 0.22 h, respectively. Data from intramuscular administrations fit a noncompartmental model best with a terminal elimination half‐life of 0.68 ± 0.24 (h). Bioavailability following intramuscular administration was variable (47–100%, n = 3). The percentage of dermorphin excreted in urine was 5.0 (3.7–10.6) %. Excitation accompanied by an increased heart rate followed intravenous administration only and subsided after 5 min. A plot of the mean change in heart rate vs. the plasma concentration of dermorphin fit a hyperbolic equation (simple Emax model), and an EC50 of 21.1 ± 8.8 ng/mL was calculated. Dermorphin was detected in plasma for 12 h and in urine for 48 or 72 h following intravenous or intramuscular administration, respectively.  相似文献   

3.
Flunixin meglumine is commonly used in horses for the treatment of musculoskeletal injuries. The current ARCI threshold recommendation is 20 ng/mL when administered at least 24 h prior to race time. In light of samples exceeding the regulatory threshold at 24 h postadministration, the primary goal of the study reported here was to update the pharmacokinetics of flunixin following intravenous administration, utilizing a highly sensitive liquid chromatography–mass spectrometry (LC‐MS). An additional objective was to characterize the effects of flunixin on COX‐1 and COX‐2 inhibition when drug concentrations reached the recommended regulatory threshold. Sixteen exercised adult horses received a single intravenous dose of 1.1 mg/kg. Blood samples were collected up to 72 h postadministration and analyzed using LC‐MS. Blood samples were collected from 8 horses for determination of TxB2 and PGE2 concentrations prior to and up to 96 h postflunixin administration. Mean systemic clearance, steady‐state volume of distribution and terminal elimination half‐life was 0.767 ± 0.098 mL/min/kg, 0.137 ± 0.12 L/kg, and 4.8 ± 1.59 h, respectively. Four of the 16 horses had serum concentrations in excess of the current ARCI recommended regulatory threshold at 24 h postadministration. TxB2 suppression was significant for up to 24 h postadministration.  相似文献   

4.
Romifidine is an alpha‐2 adrenergic agonist used for sedation and analgesia in horses. As it is a prohibited substance, its purported use at low doses in performance horses necessitates further study. The primary goal of the study reported here was to describe the serum concentrations and pharmacokinetics of romifidine following low‐dose administration immediately prior to exercise, utilizing a highly sensitive liquid chromatography–tandem mass spectrometry assay that is currently employed in many drug testing laboratories. An additional objective was to describe changes in heart rate and rhythm following intravenous administration of romifidine followed by exercise. Eight adult Quarter Horses received a single intravenous dose of 5 mg (0.01 mg/kg) romifidine followed by 1 h of exercise. Blood samples were collected and drug concentrations measured at time 0 and at various times up to 72 h. Mean ± SD systemic clearance, steady‐state volume of distribution and terminal elimination half‐life were 34.1 ± 6.06 mL/min/kg and 4.89 ± 1.31 L/kg and 3.09 ± 1.18 h, respectively. Romifidine serum concentrations fell below the LOQ (0.01 ng/mL) and the LOD (0.005 ng/mL) by 24 h postadministration. Heart rate and rhythm appeared unaffected when a low dose of romifidine was administered immediately prior to exercise.  相似文献   

5.
Background: Despite frequent clinical use, information about the pharmacokinetics (PK), clinical effects, and safety of butorphanol in foals is not available. Objectives: The purpose of this study was to determine the PK of butorphanol in neonatal foals after IV and IM administration; to determine whether administration of butorphanol results in physiologic or behavioral changes in neonatal foals; and to describe adverse effects associated with its use in neonatal foals. Animals: Six healthy mixed breed pony foals between 3 and 12 days of age were used. Methods: In a 3‐way crossover design, foals received butorphanol (IV and IM, at 0.05 mg/kg) and IV saline (control group). Butorphanol concentrations were determined by high‐performance liquid chromatography and analyzed using a noncompartmental PK model. Physiologic data were obtained at specified intervals after drug administration. Pedometers were used to evaluate locomotor activity. Behavioral data were obtained using a 2‐hour real‐time video recording. Results: The terminal half‐life of butorphanol was 2.1 hours and C0 was 33.2 ± 12.1 ng/mL after IV injection. For IM injection, Cmax and Tmax were 20.1 ± 3.5 ng/mL and 5.9 ± 2.1 minutes, respectively. Bioavailability was 66.1 ± 11.9%. There were minimal effects on vital signs. Foals that received butorphanol spent significantly more time nursing than control foals and appeared sedated. Conclusions and Clinical Importance: The disposition of butorphanol in neonatal foals differs from that in adult horses. The main behavioral effects after butorphanol administration to neonatal foals were sedation and increased feeding behavior.  相似文献   

6.
The neurokinin‐1 (NK) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood and likely under‐recognized in horses. Use of NK‐1 receptor antagonists in horses has not been reported. The purpose of this study was to determine the pharmacokinetic profile of maropitant in seven adult horses after single intravenous (IV; 1 mg/kg) and intragastric (IG; 2 mg/kg) doses. A randomized, crossover design was performed. Serial blood samples were collected after dosing; maropitant concentrations were measured using LC‐MS/MS. Pharmacokinetic parameters were determined using noncompartmental analysis. The mean plasma maropitant concentration 3 min after IV administration was 800 ± 140 ng/ml, elimination half‐life was 10.37 ± 2.07 h, and volume of distribution was 6.54 ± 1.84 L/kg. The maximum concentration following IG administration was 80 ± 40 ng/ml, and elimination half‐life was 9.64 ± 1.27 hr. Oral bioavailability was variable at 13.3 ± 5.3%. Maropitant concentrations achieved after IG administration were comparable to those in small animals. Concentrations after IV administration were lower than in dogs and cats. Elimination half‐life was longer than in dogs and shorter than in cats. This study is the basis for further investigations into using maropitant in horses.  相似文献   

7.
Cefuroxime pharmacokinetic profile was investigated in 6 Beagle dogs after single intravenous, intramuscular, and subcutaneous administration at a dosage of 20 mg/kg. Blood samples were withdrawn at predetermined times over a 12‐h period. Cefuroxime plasma concentrations were determined by HPLC. Data were analyzed by compartmental analysis. Peak plasma concentration (Cmax), time‐to‐peak plasma concentration (Tmax), and bioavailability for the intramuscular and subcutaneous administration were (mean ± SD) 22.99 ± 7.87 μg/mL, 0.43 ± 0.20 h, and 79.70 ± 14.43% and 15.37 ± 3.07 μg/mL, 0.99 ± 0.10 h, and 77.22 ± 21.41%, respectively. Elimination half‐lives and mean residence time for the intravenous, intramuscular, and subcutaneous administration were 1.12 ± 0.19 h and 1.49 ± 0.21 h; 1.13 ± 0.13 and 1.79 ± 0.24 h; and 1.04 ± 0.23 h and 2.21 ± 0.23 h, respectively. Significant differences were found between routes for Ka, MAT, Cmax, Tmax, t½(a), and MRT. T > MIC = 50%, considering a MIC of 1 μg/mL, was 11 h for intravenous and intramuscular administration and 12 h for the subcutaneous route. When a MIC of 4 μg/mL is considered, T > MIC = 50% for intramuscular and subcutaneous administration was estimated in 8 h.  相似文献   

8.
The objective of this study was to evaluate the pharmacokinetic properties and physiologic effects of a single oral dose of alprazolam in horses. Seven adult female horses received an oral administration of alprazolam at a dosage of 0.04 mg/kg body weight. Blood samples were collected at various time points and assayed for alprazolam and its metabolite, α‐hydroxyalprazolam, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of alprazolam was analyzed by a one‐compartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of alprazolam were as follows: Cmax 14.76 ± 3.72 ng/mL and area under the curve (AUC0–∞) 358.77 ± 76.26 ng·h/mL. Median (range) Tmax was 3 h (1–12 h). Alpha‐hydroxyalprazolam concentrations were detected in each horse, although concentrations were low (Cmax 1.36 ± 0.28 ng/mL). Repeat physical examinations and assessment of the degree of sedation and ataxia were performed every 12 h to evaluate for adverse effects. Oral alprazolam tablets were absorbed in adult horses and no clinically relevant adverse events were observed. Further evaluation of repeated dosing and safety of administration of alprazolam to horses is warranted.  相似文献   

9.
The anti‐anxiety and calming effects following activation of the GABA receptor have been exploited in performance horses by administering products containing GABA. The primary goal of the study reported here was to describe endogenous concentrations of GABA in horses and the pharmacokinetics, selected pharmacodynamic effects, and CSF concentrations following administration of a GABA‐containing product. The mean (±SD) endogenous GABA level was 36.4 ± 12.5 ng/mL (n = 147). Sixteen of these horses received a single intravenous and oral dose of GABA (1650 mg). Blood, urine, and cerebrospinal fluid (n = 2) samples were collected at time 0 and at various times for up to 48 h and analyzed using LC‐MS. Plasma clearance and volume of distribution was 155.6 and 147.6 L/h and 0.154 and 7.39 L for the central and peripheral compartments, respectively. Terminal elimination half‐life was 22.1 (intravenous) and 25.1 (oral) min. Oral bioavailability was 9.81%. Urine GABA concentrations peaked rapidly returning to baseline levels by 3 h. Horses appeared behaviorally unaffected following oral administration, while sedative‐like changes following intravenous administration were transient. Heart rate was increased for 1 h postintravenous administration, and gastrointestinal sounds decreased for approximately 30 min following both intravenous and oral administration. Based on a limited number of horses and time points, exogenously administered GABA does not appear to enter the CSF to an appreciable extent.  相似文献   

10.
The objective of this study was to determine the pharmacokinetics of single‐ and multi‐dose ceftiofur crystalline‐free acid (CCFA) administered subcutaneously at a dose of 13.2 mg/kg to 12 neonatal foals 1–3 days of age. Six foals received a single subcutaneous dose, while 6 additional foals received 4 doses of CCFA at 48‐h intervals. Blood samples were collected at pre‐determined times following drug administration, and plasma concentrations of ceftiofur free acid equivalents (CFAE) were measured using high‐performance liquid chromatography. Following single‐dose administration of CCFA, the mean ± standard deviation maximum observed plasma concentration was 3.1 ± 0.6 μg/mL and observed time to maximal plasma concentration was 14.0 ± 4.9 h. Following multi‐dose administration of CCFA, the mean ±standard deviation times above CFAE concentrations of ≥0.5 μg/mL and ≥2.0 μg/mL were 192.95 ± 15.86 h and 78.80 ± 15.31 h, respectively. The mean ± standard deviation area under the concentration vs time curve (AUC0→∝) was 246.2 ± 30.7 h × μg/mL and 172.7 ± 27.14 h × μg/mL following single‐ and multi‐dose CCFA administrations, respectively. Subcutaneous administration of CCFA at 13.2 mg/kg in neonatal foals was clinically well‐ tolerated and resulted in plasma concentrations sufficient for the treatment of most bacterial pathogens associated with neonatal foal septicemia. Multi‐dose administration of four doses at dosing interval of 48 h between treatments maintains appropriate therapeutic concentrations in neonatal foals.  相似文献   

11.
The objectives of this study were to investigate the pharmacokinetics of danofloxacin and its metabolite N‐desmethyldanofloxacin and to determine their concentrations in synovial fluid after administration by the intravenous, intramuscular or intragastric routes. Six adult mares received danofloxacin mesylate administered intravenously (i.v.) or intramuscularly (i.m.) at a dose of 5 mg/kg, or intragastrically (IG) at a dose of 7.5 mg/kg using a randomized Latin square design. Concentrations of danofloxacin and N‐desmethyldanofloxacin were measured by UPLC‐MS/MS. After i.v. administration, danofloxacin had an apparent volume of distribution (mean ± SD) of 3.57 ± 0.26 L/kg, a systemic clearance of 357.6 ± 61.0 mL/h/kg, and an elimination half‐life of 8.00 ± 0.48 h. Maximum plasma concentration (Cmax) of N‐desmethyldanofloxacin (0.151 ± 0.038 μg/mL) was achieved within 5 min of i.v. administration. Peak danofloxacin concentrations were significantly higher after i.m. (1.37 ± 0.13 μg/mL) than after IG administration (0.99 ± 0.1 μg/mL). Bioavailability was significantly higher after i.m. (100.0 ± 12.5%) than after IG (35.8 ± 8.5%) administration. Concentrations of danofloxacin in synovial fluid samples collected 1.5 h after administration were significantly higher after i.v. (1.02 ± 0.50 μg/mL) and i.m. (0.70 ± 0.35 μg/mL) than after IG (0.20 ± 0.12 μg/mL) administration. Monte Carlo simulations indicated that danofloxacin would be predicted to be effective against bacteria with a minimum inhibitory concentration (MIC) ≤0.25 μg/mL for i.v. and i.m. administration and 0.12 μg/mL for oral administration to maintain an area under the curve:MIC ratio ≥50.  相似文献   

12.
DiMaio Knych, H.K., Steffey, E.P., Deuel, J.L., Shepard, R.A., Stanley, S.D. Pharmacokinetics of yohimbine following intravenous administration to horses. J. vet. Pharmacol. Therap. 34 , 58–63. Yohimbine is an alpha 2 adrenergic receptor antagonist used most commonly in veterinary medicine to reverse the effects of the alpha 2 receptor agonists, xylazine and detomidine. Most notably, yohimbine has been shown to counteract the CNS depressant effects of alpha 2 receptor agonists in a number of species. The recent identification of a yohimbine positive urine sample collected from a horse racing in California has led to the investigation of the pharmacokinetics of this compound. Eight healthy adult horses received a single intravenous dose of 0.12 mg/kg yohimbine. Blood samples were collected at time 0 (prior to drug administration) and at various times up to 72 h post drug administration. Plasma samples were analyzed using liquid chromatography–mass spectrometry (LC‐MS) and data analyzed using both noncompartmental and compartmental analysis. Peak plasma concentration was 114.5 + 31.8 ng/mL and occurred at 0.09 + 0.03 h. Mean ± SD systemic clearance (Cls) and steady‐state volume of distribution (Vdss) were 13.5 + 2.1 mL/min/kg and 3.3 + 1.3 L/kg following noncompartmental analysis. For compartmental analysis, plasma yohimbine vs. time data were best fitted to a two compartment model. Mean ± SD Cls and Vdss of yohimbine were 13.6 ± 2.0 mL/min/kg and 3.2 ± 1.1 L/kg, respectively. Mean ± SD terminal elimination half‐life was 4.4 ± 0.9 h following noncompartmental analysis. Immediately following administration, two horses showed signs of sedation, while the other six appeared behaviorally unaffected. Gastrointestinal sounds were moderately increased compared to baseline while fecal consistency appeared normal.  相似文献   

13.
Ondansetron is a 5‐HT3 receptor antagonist that is an effective anti‐emetic in cats. The purpose of this study was to evaluate the pharmacokinetics of ondansetron in healthy cats. Six cats with normal complete blood count, serum biochemistry, and urinalysis received 2 mg oral (mean 0.43 mg/kg), subcutaneous (mean 0.4 mg/kg), and intravenous (mean 0.4 mg/kg) ondansetron in a cross‐over manner with a 5‐day wash out. Serum was collected prior to, and at 0.25, 0.5, 1, 2, 4, 8, 12, 18, and 24 h after administration of ondansetron. Ondansetron concentrations were measured using liquid chromatography coupled to tandem mass spectrometry. Noncompartmental pharmacokinetic modeling and dose interval modeling were performed. Repeated measures anova was used to compare parameters between administration routes. Bioavailability of ondansetron was 32% (oral) and 75% (subcutaneous). Calculated elimination half‐life of ondansetron was 1.84 ± 0.58 h (intravenous), 1.18 ± 0.27 h (oral) and 3.17 ± 0.53 h (subcutaneous). The calculated elimination half‐life of subcutaneous ondansetron was significantly longer (P < 0.05) than oral or intravenous administration. Subcutaneous administration of ondansetron to healthy cats is more bioavailable and results in a more prolonged exposure than oral administration. This information will aid management of emesis in feline patients.  相似文献   

14.
This study reports the pharmacokinetics of buprenorphine, following i.v. and buccal administration, and the relationship between buprenorphine concentration and its effect on thermal threshold. Buprenorphine (20 μg/kg) was administered intravenously or buccally to six cats. Thermal threshold was determined, and arterial blood sampled prior to, and at various times up to 24 h following drug administration. Plasma buprenorphine concentration was determined using liquid chromatography/mass spectrometry. Compartment models were fitted to the time–concentration data. Pharmacokinetic/pharmacodynamic models were fitted to the concentration‐thermal threshold data. Thermal threshold was significantly higher than baseline 44 min after buccal administration, and 7, 24, and 104 min after i.v. administration. A two‐ and three‐compartment model best fitted the data following buccal and i.v. administration, respectively. Following i.v. administration, mean ± SD volume of distribution at steady‐state (L/kg), clearance (mL·min/kg), and terminal half‐life (h) were 11.6 ± 8.5, 23.8 ± 3.5, and 9.8 ± 3.5. Following buccal administration, absorption half‐life was 23.7 ± 9.1 min, and terminal half‐life was 8.9 ± 4.9 h. An effect‐compartment model with a simple effect maximum model best predicted the time‐course of the effect of buprenorphine on thermal threshold. Median (range) ke0 and EC50 were 0.003 (0.002–0.018)/min and 0.599 (0.073–1.628) ng/mL (i.v.), and 0.017 (0.002–0.023)/min and 0.429 (0.144–0.556) ng/mL (buccal).  相似文献   

15.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

16.
The objective of this study was to compare the pharmacokinetics of minocycline in foals vs. adult horses. Minocycline was administered to six healthy 6‐ to 9‐week‐old foals and six adult horses at a dose of 4 mg/kg intragastrically (IG) and 2 mg/kg intravenously (i.v.) in a cross‐over design. Five additional oral doses were administered at 12‐h intervals in foals. A microbiologic assay was used to measure minocycline concentration in plasma, urine, synovial fluid, and cerebrospinal fluid (CSF). Liquid chromatography–tandem mass spectrometry was used to measure minocycline concentrations in pulmonary epithelial lining fluid (PELF) and bronchoalveolar (BAL) cells. After i.v. administration to foals, minocycline had a mean (±SD) elimination half‐life of 8.5 ± 2.1 h, a systemic clearance of 113.3 ± 26.1 mL/h/kg, and an apparent volume of distribution of 1.24 ± 0.19 L/kg. Pharmacokinetic variables determined after i.v. administration to adult horses were not significantly different from those determined in foals. Bioavailability was significantly higher in foals (57.8 ± 19.3%) than in adult horses (32.0 ± 18.0%). Minocycline concentrations in PELF were higher than in other body fluids. Oral minocycline dosed at 4 mg/kg every 12 h might be adequate for the treatment of susceptible bacterial infections in foals.  相似文献   

17.
Procaterol (PCR) is a beta‐2‐adrenergic bronchodilator widely used in Japanese racehorses for treating lower respiratory disease. The pharmacokinetics of PCR following single intravenous (0.5 μg/kg) and oral (2.0 μg/kg) administrations were investigated in six thoroughbred horses. Plasma and urine concentrations of PCR were measured using liquid chromatography–mass spectrometry. Plasma PCR concentration following intravenous administration showed a biphasic elimination pattern. The systemic clearance was 0.47 ± 0.16 L/h/kg, the steady‐state volume of the distribution was 1.21 ± 0.23 L/kg, and the elimination half‐life was 2.85 ± 1.35 h. Heart rate rapidly increased after intravenous administration and gradually decreased thereafter. A strong correlation between heart rate and plasma concentration of PCR was observed. Plasma concentrations of PCR after oral administration were not quantifiable in all horses. Urine concentrations of PCR following intravenous and oral administrations were quantified in all horses until 32 h after administration. Urine PCR concentrations were not significantly different on and after 24 h between intravenous and oral administrations. These results suggest that the bioavailability of orally administrated PCR in horses is very poor, and the drug was eliminated from the body slowly based on urinary concentrations. This report is the first study to demonstrate the pharmacokinetic character of PCR in thoroughbred horses.  相似文献   

18.
In equine and racing practice, detomidine and butorphanol are commonly used in combination for their sedative properties. The aim of the study was to produce detection times to better inform European veterinary surgeons, so that both drugs can be used appropriately under regulatory rules. Three independent groups of 7, 8 and 6 horses, respectively, were given either a single intravenous administration of butorphanol (100 µg/kg), a single intravenous administration of detomidine (10 µg/kg) or a combination of both at 25 (butorphanol) and 10 (detomidine) µg/kg. Plasma and urine concentrations of butorphanol, detomidine and 3-hydroxydetomidine at predetermined time points were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS). The intravenous pharmacokinetics of butorphanol dosed individually compared with co-administration with detomidine had approximately a twofold larger clearance (646 ± 137 vs. 380 ± 86 ml hr−1 kg−1) but similar terminal half-life (5.21 ± 1.56 vs. 5.43 ± 0.44 hr). Pseudo-steady-state urine to plasma butorphanol concentration ratios were 730 and 560, respectively. The intravenous pharmacokinetics of detomidine dosed as a single administration compared with co-administration with butorphanol had similar clearance (3,278 ± 1,412 vs. 2,519 ± 630 ml hr−1 kg−1) but a slightly shorter terminal half-life (0.57 ± 0.06 vs. 0.70 ± 0.11 hr). Pseudo-steady-state urine to plasma detomidine concentration ratios are 4 and 8, respectively. The 3-hydroxy metabolite of detomidine was detected for at least 35 hr in urine from both the single and co-administrations. Detection times of 72 and 48 hr are recommended for the control of butorphanol and detomidine, respectively, in horseracing and equestrian competitions.  相似文献   

19.
The objectives of this study were to compare the pharmacokinetics and COX selectivity of three commercially available formulations of firocoxib in the horse. Six healthy adult horses were administered a single dose of 57 mg intravenous, oral paste or oral tablet firocoxib in a three‐way, randomized, crossover design. Blood was collected at predetermined times for PGE2 and TXB2 concentrations, as well as plasma drug concentrations. Similar to other reports, firocoxib exhibited a long elimination half‐life (31.07 ± 10.64 h), a large volume of distribution (1.81 ± 0.59L/kg), and a slow clearance (42.61 ± 11.28 mL/h/kg). Comparison of the oral formulations revealed a higher Cmax, shorter Tmax, and greater AUC for the paste compared to the tablet. Bioavailability was 112% and 88% for the paste and tablet, respectively. Maximum inhibition of PGE2 was 83.76% for the I.V. formulation, 52.95% for the oral paste formulation, and 46.22% for the oral tablet formulation. Pharmacodynamic modeling suggests an IC50 of approximately 27 ng/mL and an IC80 of 108 ng/ mL for COX2 inhibition. Inhibition of TXB2 production was not detected. This study indicates a lack of bioequivalence between the oral formulations of firocoxib when administered as a single dose to healthy horses.  相似文献   

20.
Meloxicam is a nonsteroidal anti‐inflammatory drug commonly used in avian species. In this study, the pharmacokinetic parameters for meloxicam were determined following single intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations of the drug (1 mg/kg·b.w.) in adult African grey parrots (Psittacus erithacus; n = 6). Serial plasma samples were collected and meloxicam concentrations were determined using a validated high‐performance liquid chromatography assay. A noncompartmental pharmacokinetic analysis was performed. No undesirable side effects were observed during the study. After i.v. administration, the volume of distribution, clearance and elimination half‐life were 90.6 ± 4.1 mL/kg, 2.18 ± 0.25 mL/h/kg and 31.4 ± 4.6 h, respectively. The peak mean ± SD plasma concentration was 8.32 ± 0.95 μg/mL at 30 min after i.m. administration. Oral administration resulted in a slower absorption (tmax = 13.2 ± 3.5 h; Cmax = 4.69 ± 0.75 μg/mL) and a lower bioavailability (38.1 ± 3.6%) than for i.m. (78.4 ± 5.5%) route. At 24 h, concentrations were 5.90 ± 0.28 μg/mL for i.v., 4.59 ± 0.36 μg/mL for i.m. and 3.21 ± 0.34 μg/mL for p.o. administrations and were higher than those published for Hispaniolan Amazon parrots at 12 h with predicted analgesic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号