首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine the relationships among muscle fiber‐type composition, fiber diameter, and myogenic regulatory factor (MRF) gene expression in different skeletal muscles during development in naturally grazing Wuzhumuqin sheep. Three major muscles (i.e. the Longissimus dorsi (LD), Biceps femoris (BF) and Triceps brachii (TB)) were obtained from 20 Wuzhumuqin sheep and 20 castrated rams at each of the following ages: 1, 3, 6, 9, 12 and 18 months. Muscle fiber‐type composition and fiber diameter were measured using histochemistry and morphological analysis, and MRF gene expression levels were determined using real‐time PCR. In the LD muscle, changes in the proportion of each of different types of fiber (I, IIA and IIB) were relatively small. In the BF muscle, a higher proportion of type I and a 6.19‐fold lower proportion of type IIA fibers were observed (< 0.05). In addition, the compositions of type I and IIA fibers continuously changed in the TB muscle (P < 0.05). Moreover, muscle diameter gradually increased throughout development (P < 0.05). Almost no significant difference was found in MRF gene expression patterns, which appeared to be relatively stable. These results suggest that changes in fiber‐type composition and increases in fiber size may be mutually interacting processes during muscle development.  相似文献   

2.
The MyoD and Myf6 genes, which are muscle regulatory factors (MRFs), play major roles in muscle growth and development and initiate muscle fibre formation via the regulation of muscle‐specific gene translation. Therefore, MyoD and Myf6 are potential candidate genes for meat production traits in animals and poultry. The objective of this study was to evaluate MyoD and Myf6 gene expression patterns in the skeletal muscle during early developmental stage of ducks. Gene expression levels were detected using the quantitative RT‐PCR method in the breast muscle (BM) and leg muscle (LM) at embryonic days 13, 17, 21, 25, 27, as well as at 1 week posthatching in Gaoyou and Jinding ducks (Anas platyrhynchos domestica). The MyoD and Myf6 gene profiles in the two duck breeds were consistent during early development, and MyoD gene expression showed a ‘wave’ trend in BM and an approximate ‘anti‐√’ trend in LM. Myf6 gene expression in BM showed the highest level at embryonic day 21, which subsequently decreased, although remained relatively high, while levels at embryonic days 13, 17 and 21 were higher in LM. The results of correlation analysis showed that MyoD and Myf6 gene expression levels were more strongly correlated in LM than in BM in both duck breeds. These results indicated that different expression patterns of the MyoD and Myf6 genes in BM and LM may be related to muscle development and differentiation, suggesting that MyoD and Myf6 are integral to skeletal muscle development.  相似文献   

3.
4.
Plane of nutrition effects on body, tissue and cellular growth in the neonatal calf are poorly understood. The hypothesis that a low plane of nutrition (LPN) would limit skeletal muscle size by reducing fibre growth and muscle progenitor cell activity was tested. At birth, calves were randomly assigned to either a LPN (20% CP, 20% fat; GE=1.9 Mcal/days) or a high plane of nutrition (HPN; 27% CP, 10% fat, GE = 3.8 Mcal/days) in a 2 × 3 factorial design to test the impact of diet on neonatal calf growth, organ weight and skeletal muscle morphometry with time. Groups of calves (n = 4 or 5) were euthanised at 2, 4 and 8 week of age and organ and empty carcass weights were recorded. Body composition was measured by DXA. Longissimus muscle (LM) fibre cross‐sectional area (CSA), fibre/mm2 and Pax7 were measured by immunohistology. Satellite cells were isolated at each time point and proliferation rates were measured by EdU incorporation. Calves fed a HPN had greater (p < 0.05) BW, ADG and hip height than those fed a LPN for 2, 4 or 8 weeks. HPN calves contained a greater (p < 0.05) percentage of fat tissue than LPN calves. Liver, spleen and thymus weights were less (p < 0.05) in LPN calves than HPN animals. Calves fed HPN had larger (p < 0.05) LM CSA at 8 weeks than LPN fed animals with no differences between the groups in numbers of satellite cells per fibre. Proliferation rates of satellite cells isolated from HPN fed calves were greater (p < 0.05) at 2 weeks than LPN fed animals, which exhibited greater (p < 0.05) proliferation rates at 4 weeks than HPN fed calves. We conclude a LPN diet reduces body growth and organ size and metabolically reprograms satellite cell activity.  相似文献   

5.
A previous study demonstrated that leucine upregulates the slow myosin heavy chain mRNA expression in C2C12 cells. However, the role of leucine in slow‐twitch muscle fibers expression and mitochondrial function of porcine skeletal muscle satellite cells as well as its mechanism remain unclear. In this study, porcine skeletal muscle satellite cells cultured in differentiation medium were treated with 2 mM leucine for 3 days. Sirt1 inhibitor EX527, AMPK inhibitor compound C, and AMPKα1 siRNA were used to examine its underlying mechanism. Here we showed that leucine increased slow‐twitch muscle fibers and mitochondrial function‐related gene expression, as well as increased succinic dehydrogenase (SDH) and malate dehydrogenase (MDH) activities. Moreover, leucine increased the protein levels of Sirt1 and phospho‐AMPK. We also found that AMPKα1 siRNA, AMPK inhibitor compound C, or Sirt1 inhibitor EX527 attenuated the positive effect of leucine on slow‐twitch muscle fibers and mitochondrial function‐related gene expression. Finally, we showed that Sirt1 was required for leucine‐induced AMPK activation. Our results provide, for the first time, evidence that leucine induces slow‐twitch muscle fibers expression and improves mitochondrial function through Sirt1/AMPK signaling pathway in porcine skeletal muscle satellite cells.  相似文献   

6.
7.
Myogenic regulatory factors (MRFs) are important in the control of skeletal muscle development. To understand myogenic regulation by MRFs in bovine adult muscle cells, their expressions, namely that of Myf5, MyoD, myogenin, and MRF4 in the biceps femoris muscle (BF) and in the satellite cell culture, were analyzed by RT-PCR. In the BF, all four MRFs were expressed and in particular, myogenin and MRF4 were strongly expressed, whereas Myf5 was faintly expressed. The satellite cells prepared from the BF expressed Myf5, but only a trace of MyoD, at day 9 of culture. During the growth of the cells to day 14, the MyoD and myogenin expressions gradually increased, and that of MyoD expression reached its maximum at the confluence of the culture. After induction of myogenic differentiation by a serum-free medium at day 14, Myf5 expression gradually decreased, and the up-regulated expression of MyoD was suppressed, whereas myogenin expression continued to increase sharply. Following the myogenin expression, MRF4 also drastically increased toward the myotube formation of the cells. When huge myotubes were formed at day 18, Myf5 was expressed at a low level, whereas the MyoD expression remained at a moderate level.  相似文献   

8.
The purpose of this study is to elucidate developmental changes in muscle fiber type in the pig during pre‐ and postnatal development. For this purpose, we performed a histochemical analysis for myosin adenosine triphosphatase activity to assess muscle fiber type and determined abundances of messenger RNA (mRNA) of myosin heavy chain (MHC) isoforms. Samples of Longissimus dorsi (LD) muscle were taken from fetuses on day 90 of the fetal stage. Further, samples of LD, Rhomboideus and Biceps femoris (B. femoris) muscles were taken from pigs when they were 1, 12, 26, 45 or 75 days old. Expression of MHC 2b mRNA in the LD and the B. femoris muscles rapidly and considerably increased from the late fetal stage to the early postnatal stage and this increase was associated with the development of type 2b fibers at least in the LD muscle. As shown by the rapid and considerable changes in expression of MHC 2b mRNA, it seems that a certain plasticity of muscle fiber type still remains in this developmental stage.  相似文献   

9.
In order to provide background for understanding biological roles of proteoglycans (PG) in developing skeletal muscle, we have isolated and characterized PG in bovine neonatal skeletal muscle. Two types of PG were isolated from skeletal muscle by density gradient ultracentrifugation and ion‐exchange chromatography. One was a small PG (PG‐S) with a molecular size of 100–130 kDa, another was a large PG (PG‐L) with a molecular size of 300–500 kDa. The glycosaminoglycan chains of PG‐S and PG‐L were dermatan sulfate and chondroitin sulfate, respectively, judged by cellulose acetate membrane electrophoresis. Immunoblot assays revealed that both PG bound to type I, II, III and IV collagen, laminin and fibronectin. Unlike PG‐S, PG‐L bound to type V collagen and hyaluronic acid. Small proteoglycans had a core protein of 45 kDa, which reacted with the antibody against the decorin core protein. The N‐terminal amino acid sequence of the PG‐S core protein was consistent with that of decorin from bovine bone and tendon. Thus, PG‐S from neonatal skeletal muscle was identified as decorin in bovines. Immunohistochemical analysis with antibodies against PG‐L and PG‐S demonstrated that PG‐L was located both in the perimysium and endomysium, but PG‐S was localized exclusively in the perimysium. These findings suggest that the characterized PG may have distinct roles in the ECM construction of developing skeletal muscle.  相似文献   

10.
Myostatin, a member of the transforming growth factor‐β superfamily, is a well known negative regulator of skeletal muscle growth. In the present study, the 6660 bp nucleotide sequence of the myostatin gene in Japanese Black cattle (JBC), including the entire coding region of 1128 bp, was determined. The amino acid sequence deduced from the nucleotide sequence of JBC was well conserved with its sequence of other cattle, although it was found that an Α→G transition at nucleotide position 641 results in the substitution of asparagine by serine at amino acid position 214. In order to examine the expression pattern of the myostatin gene in the skeletal muscles of JBC, its expression in three skeletal muscles, Semitendinosus (ST) muscle, Biceps femoris muscle and Longissimus lumborum muscle, of fetal and calf stages was analyzed by real time polymerase chain reaction. The highest level of the myostatin expression was observed in the fetal stage. In calf stages the highest expression was observed in ST muscle compared with the other two muscles. These results suggest that a higher expression of myostatin gene, especially in the fetal stage and in ST muscle during calf stages, is involved in the arrest in skeletal muscle growth and that its functional domains and genomic structure in JBC are well conserved with those in other mammals.  相似文献   

11.
近年来,胚胎干细胞的应用越来越广泛,在体外将小鼠胚胎干细胞诱导分化为肌肉细胞,并且利用这些分化得来的肌肉细胞治疗肌肉退行性疾病,一直是胚胎干细胞研究领域的热点,而胚胎干细胞的分化机制更是其中的难点。目前,用于诱导小鼠胚胎干细胞分化为骨骼肌细胞的方法很多,但分化的效率并不是很高,所以研究胚胎干细胞向骨骼肌细胞方向分化的机制显得尤为重要。文章仅就最近几年对小鼠胚胎干细胞向骨骼肌细胞方向分化的一些方法及其机制作一综述。  相似文献   

12.
Maternal obesity and diabetes are known to be involved in fetal myogenesis, but the later stages of myogenesis are not well understood. In this study, we investigated the influence of a hyperglycemic environment on L6 skeletal myoblast differentiation and the function of omega-7 palmitoleic acids. Exposure to a high concentration of glucose (25 mM) in high-glucose culture medium (HG) increased the expression of myogenic genes (MyoD, Myogenin, MRF4, Myhc2x, and Myhc2a) and the synthesis of myosin. HG also activated the PI3K/AKT pathway revealed muscle cell differentiation. Furthermore, the levels of reactive oxygen species (ROS) and an inflammatory cytokine (Tnfaip3; tumor necrosis factor alpha-induced protein 3), which are crucial for the growth and differentiation of skeletal muscle, were increased by HG. Palmitoleic acids suppressed the expression levels of myogenic regulatory genes and increased the expression level of a cell proliferation-related gene (Pax3). Trans-palmitoleic acid and eicosapentaenoic acid (TPA and EPA) increased the phosphorylation level of MAPK/ERK1/2 and downregulated ROS generation and Tnfaip3 expression. In contrast, cis-palmitoleic acid inactivated MAPK/ERK1/2, leading to increased ROS generation. In conclusion, a hyperglycemic environment mediated by HG induced excessive muscle differentiation. Palmitoleic acids inhibited myoblast differentiation by downregulating muscle-specific genes. Moreover, trans-palmitoleic acids may have beneficial antioxidant and/or anti-inflammatory effects in cells.  相似文献   

13.
14.
Cell‐cell fusion has been a great technology to generate valuable hybrid cells and organisms such as hybridomas. In this study, skeletal muscle myoblasts were utilized to establish a novel method for autonomous xenogenic cell fusion. Myoblasts are mononuclear myogenic precursor cells and fuse mutually to form multinuclear myotubes. We generated murine myoblasts (mMBs) expressing green fluorescent protein (GFP) termed mMB‐GFP, and the chick myoblasts (chMBs) expressing Discosoma red fluorescent protein (DsRed) termed chMB‐DsRed. mMB‐GFP and chMB‐DsRed were cocultured and induced to differentiate. After 24 h, the multinuclear myotubes expressing both GFP and DsRed were observed, indicating that mMBs and chMBs interspecifically fuse. These GFP+/DsRed+ hybrid myotubes were able to survive and grew to hyper‐multinucleated mature form. We also found that undifferentiated mMB‐GFP efficiently fuse to the chMB‐DsRed‐derived myotubes. This is the first evidence for the autonomous xenogenic fusion of mammalian and avian cells. Myoblast‐based fusogenic technique will open up an alternative direction to create novel hybrid products.  相似文献   

15.
Accumulation of intramuscular adipose tissue (IMAT) and development of fibrous tissues due to accumulation of collagen both affect meat quality such as tenderness, texture, and flavor. Thus, it is important for the production of high‐quality meat to regulate the amount of adipose and fibrous tissues in skeletal muscle. IMAT is comprised of adipocytes, while collagens included in fibrous tissues are mainly produced by activated fibroblasts. Both adipocytes and fibroblasts are differentiated from their common ancestors, called mesenchymal progenitor cells (MPC). We previously established rat MPC clone, 2G11 cells. As several reports implicated the plasticity of fibroblast differentiation, in the present study, using 2G11 cells, we asked whether myofibroblasts differentiated from MPC are capable of re‐gaining adipogenic potential in vitro. By treating with bFGF, their αSMA expression was reduced and adipogenic potential was restored partially. Furthermore, by lowering cell density together with bFGF treatment, 2G11 cell‐derived myofibroblasts lost αSMA expression and showed the highest adipogenic potential, and this was along with their morphological change from flattened‐ to spindle‐like shape, which is typically observed with MPC. These results indicated that MPC‐derived myofibroblasts could re‐acquire adipogenic potential, possibly mediated through returning to an undifferentiated MPC‐like state.  相似文献   

16.
The aim of this study is to examine 1) muscle fiber type composition, 2) myofiber diameter, and 3) aquaporin (AQP) 7 and AQP 9 mRNA expressions by quantitative PCR in muscles of obese db/db mice. The myofiber type composition of skeletal muscle was not statistically significantly different between db/db mice and control mice; while the average myofiber diameter ratio showed a decrease in db/db mice. The expression of AQP7 but not AQP9 mRNA in the skeletal and cardiac muscles was significantly upregulated in db/db mice. Thus this study revealed quantitatively that type 2 myofiber atrophy was shown in the skeletal muscles of db/db mice. AQP7 mRNA expression was upregulated in the skeletal and cardiac muscles of db/db mice.  相似文献   

17.
The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co‐cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3‐L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle.  相似文献   

18.
The damage caused by the earthquake on 11 March, 2011 resulted in a serious nuclear accident in Japan. Due to the damage to the Fukushima Daiichi Nuclear Power Plant (FNPP), large amounts of radioactive substances were released into the environment. In particular, one of the largest safety concerns is radioactive cesium (134Cs and 137Cs). Due to the FNPP nuclear accident, a 20 km area was restricted from human activity, and various types of domestic animals were left in the zone. We collected the organs and tissues from sacrificed animals to obtain scientific data to evaluate the internal deposition of radioactive compounds. At first, we found there is a strong correlation between blood 137Cs and organ 137Cs with data from 44 cattle, indicating that skeletal muscle is the target organ of deposition of radioactive cesium. Second, we analyzed the relationship between blood 137Cs and muscle 137Cs within relatively lower radioactive concentration, suggesting that estimation of concentration of 137Cs is possible from blood concentration of 137Cs. Finally, we developed computer software to estimate the muscle 137Cs concentration from blood samples. Our study contributes to the food safety of livestock products.  相似文献   

19.
Expression of atrogin‐1/MAFbx, a muscle‐specific E3 ubiquitin ligase, is high under catabolic conditions, that result in muscle atrophy. Messenger RNA (mRNA) expression of atrogin‐1/MAFbx is increased by the glucocorticoid dexamethasone in mammalian skeletal muscle. This study investigated the effects of dexamethasone on expression of atrogin‐1/MAFbx in skeletal muscle of neonatal chicks and in chick myotubes. Chicks were given a single intraperitoneal injection of dexamethasone at a concentration of 10 mg/kg body weight. Twenty‐four hours after dexamethasone administration, the Pectoralis muscle weight of chicks was decreased. mRNA expression of atrogin‐1/MAFbx in skeletal muscle of chicks was significantly increased by dexamethasone administration. Expression of other proteolytic‐related genes (20S proteasome C2 subunit, m‐calpain large subunit, and cathepsin B) in skeletal muscle of chicks was not increased by dexamethasone administration. Chick myotubes were incubated with dexamethasone (1, 10 or 100 µmol/L) for 6 h. Expression of atrogin‐1/MAFbx mRNA in chick myotubes was increased in the presence of all concentrations of dexamethasone. However, expression of other proteolytic‐related genes (20S proteasome C2 subunit, m‐calpain large subunit and cathepsin B) in chick myotubes was not affected by dexamethasone treatment. These results indicate that dexamethasone enhances atrogin‐1/MAFbx expression in chick skeletal muscle, resulting in increased muscle atrophy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号