首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文旨在向PE中添加有机化处理的蒙脱土制成纳米复合材料,以提高PE的阻隔性能。采用插层剂,含有两个长烷基链的亲有机物质(20A)对蒙脱土进行有机化处理,然后和ZHE-MMT(浙江厂家改性好的蒙脱土)分别通过熔融插层法成功制备低密度聚乙烯/有机蒙脱土(LDPE/OMMT)纳米复合材料。并对LDPE/OMMT进行透气实验。实验结果发现:添加有机化的蒙脱土后,聚乙烯的阻隔性能有明显改善,主要是因为蒙脱土独特的片层结构,能够降低聚合物材料对气体的渗透性。  相似文献   

2.
蒙脱土/木材复合材料的结晶性能   总被引:1,自引:2,他引:1  
为了考察蒙脱土/木材复合材料的结晶性能,利用X射线衍射仪检测了以处理木材试样和蒙脱土为原材料、借助酚醛树脂制备的蒙脱土/木材复合材料,并将未处理试材、处理试材及复合材料进行比较后发现,试材经氢氧化钠、微波、氢氧化钠-微波、氢氧化钠-超声波处理后,相对结晶度降低;超声波处理后,相对结晶度增大。除氢氧化钠处理试材外,其他处理试材与蒙脱土形成的复合材料的结晶度均进一步降低。未处理材、处理材及复合材料结晶区晶层间距变化不明显。研究还发现,蒙脱土在复合材料中主要以插层型结构存在。   相似文献   

3.
杉木木材/蒙脱土纳米复合材料的结构和表征   总被引:12,自引:1,他引:12  
该文预先合成水溶性酚醛树脂作为中间介质,通过加压浸渍处理制备了杉木木材/蒙脱土纳米复合材料(WMNC),采用XRD、SEM、FTIR、TG-DTA等分析手段对WMNC的结构特性进行了表征.结果表明:①由于部分蒙脱土剥离片层进入了杉木木材细胞壁,WMNC中杉木木材的结晶度降低.②由于蒙脱土改性、树脂分子对蒙脱土的插层以及木材浸渍处理过程等的差异,蒙脱土在WMNC中的大小、形态和分布具多样性.蒙脱土填充的不均匀性,与杉木木材本身的渗透变异性相关.WMNC中的蒙脱土,部分填充于木材细胞腔等大孔隙,部分附着在木材细胞腔内壁,部分进入了细胞壁.③WMNC的缔合羟基增多,醚键大量增多,蒙脱土与杉木木材可能存在氢键或化学键结合.④WMNC的热分解历程改变,热性能提高,起始分解温度降低,高温区的热解失重显著减少,在一定程度上体现了无机复合组分蒙脱土纳米片层的纳米复合效应.   相似文献   

4.
以酚醛树脂为中间介质,将蒙脱土引入木材,制备蒙脱土/木材复合材料.通过研究该复合材料的应力松弛性能并与木材比较发现,蒙脱土/木材复合材料的抗应力松弛性能比木材明显增强.当蒙脱土含量为酚醛树脂固含量的5%时,所制备的复合材料的抗应力松弛性能最好.复合材料的抗应力松弛能力对温度较敏感.  相似文献   

5.
蒙脱土对重金属离子吸附的研究进展   总被引:1,自引:0,他引:1  
简要介绍了目前国内采用蒙脱土吸附处理废水中重金属离子的研究状况,探讨了pH值、温度、吸附时间、溶液初始浓度、有机物质和改性等因素对蒙脱土吸附重金属离子的影响,最后展望了蒙脱土吸附重金属离子的发展趋势和应用前景。  相似文献   

6.
以普通CuO、ZnO粉体为原料,在分散剂柠檬酸铵作用下,用纳米研磨机,通过湿法研磨技术制备CuO-ZnO纳米复合防腐剂,用激光粒度仪检测不同浓度纳米粒子粒径及其分布,参照LY/T 1283—2011研究CuO-ZnO纳米复合防腐剂的抑菌性能,借助扫描电子显微镜观察木材腐朽12周后菌丝生长情况,分析复合防腐剂中药物浓度与木材抑菌性的关系以及防腐剂在木材中的留存率。结果表明:测定纳米复合防腐剂的最小平均粒径为417nm;CuO-ZnO纳米复合防腐剂对白腐菌和褐腐菌均有一定的抑菌性,其处理后木材的防腐性和抗流失性能均较好;药剂浓度达到125%时即可达到强耐腐Ⅰ级标准,此时平均载药量为481kg/m3,质量损失率82%,符合性能优良的木材防腐剂指标要求。  相似文献   

7.
采用插层复合方法制备了沙柳/蒙脱土纳米复合材料,用FT-IR,XRD,氧指数的方法对纳米复合材料的结构进行了表征、阻燃性能进行了分析。通过研究该复合材料的阻燃性能,并与沙柳材比较发现沙柳/蒙脱土纳米复合材料的阻燃性能性能比沙柳材明显增强。当蒙脱土分散浓度为10%时,所制备的复合材料的阻燃性能明显优于低添加量时。  相似文献   

8.
有机蒙脱土热分解动力学   总被引:1,自引:0,他引:1  
用十八烷基三甲基溴化铵(STAB)和蒙脱土(MMT)制备有机蒙脱土(OMMT),采用热重-差热(TG-DTA)法研究OMMT热分解动力学。结果表明:OMMT的热分解发生在170~510℃之间,其数据通过Agrawal积分方程线性拟合,以线性相关系数(r)为判据,得到OMMT热分解反应的机理函数为G(a)=[-ln(1-a)]4、活化能E=36.16 kJ.mol-1、频率因子A=88 014.17min-1、动力学补偿效应方程为lnA=0.431 4E-4.463 2;根据热分解动力学求得的DTA曲线形状因子Ф表明OMMT的DTA曲线对称性好,这与其TG-DTG-DTA中DTA曲线吻合。  相似文献   

9.
蒙脱土-稻壳炭复合材料对Pb(Ⅱ)吸附特性研究   总被引:5,自引:1,他引:4  
采用静态吸附实验,研究蒙脱土-稻壳炭复合材料对Pb~(2+)的吸附动力学和热力学特性,并考察吸附剂用量、共存离子及pH等因素对该复合材料吸附Pb~(2+)的影响。结果表明,复合材料对Pb~(2+)的吸附特性符合准二级动力学模型,等温吸附过程能较好地以Freundlich模型进行拟合,且是以物理吸附为主的自发的吸热反应。复合材料对Pb~(2+)的吸附量随吸附时间的延长先快速增加,后缓慢增加最终达到吸附平衡,且随着复合材料投加量的增加,Pb~(2+)的去除率增大。复合材料对水溶液中Pb~(2+)的吸附性能在pH为5时较好,吸附量达52.79 mg·g~(-1);不同浓度Ca~(2+)、Mg~(2+)均会对Pb~(2+)的吸附反应产生抑制作用,且Mg~(2+)的抑制作用更强。  相似文献   

10.
蒙脱土对木粉/聚丙烯复合材料光降解及老化抑制作用   总被引:1,自引:1,他引:0  
目的为了探究蒙脱土对木塑复合材料耐光老化性能的影响,及其在老化过程中的作用机理。方法以毛白杨木粉和聚丙烯为原料,选用两种不同类型的蒙脱土钠基蒙脱土(Na-MMT)和有机蒙脱土(OMMT)为添加剂,在不同添加量的条件下(0、0.5%、1.0%和1.5%)制备了5组木粉/聚丙烯复合材料,并进行长达960 h的人工加速紫外老化。在老化过程中,测试试材的表面颜色和弯曲性能,并利用扫描电子显微镜(SEM)和傅里叶变换衰减全反射红外光谱(ATR-FTIR)对复合材料表面的形貌和化学组成变化进行表征。结果老化造成复合材料表面的褪色和开裂现象,老化960 h后,对照组复合材料的静曲强度和弹性模量保持率分别仅为76.4%和61.7%;两种类型的蒙脱土均有效抑制了复合材料光降解,添加蒙脱土的复合材料其弯曲性能保持率均高于对照组;蒙脱土同时具有紫外屏蔽作用和光催化作用,前者在老化初期(老化480 h内)的作用较为明显;相比于Na-MMT,OMMT层间有机改性剂的光降解促进了复合材料体系的光老化进程。结论Na-MMT更有利于延缓复合材料的光老化,且在添加量较低时(0.5%)耐老化效果较好。   相似文献   

11.
采用氨溶烷基铜铵(ACQ)防腐剂与脲醛树脂(UF)调制成的相溶复合改性剂,对速生意大利杨木进行一次性真空浸渍处理,使处理材力学性能提高并达到强防腐等级.优化工艺参数为:浸渍压力0.6 MPa、加压2 h、ACQ与UF的体积比为4∶1.处理后主要力学性能指标均提高22.46%以上.对浸渍材进行表面密实化优化工艺处理(压缩率为20%),各项力学性能指标均比素材提高52%以上.对浸渍材与ACQ处理材抗水、酸、碱抽提的抗流失性进行对比试验,前者比后者固着率提高0.84%以上.应用X射-线荧光光谱仪的Cu2+跟踪法,定量分析了浸渍材复合改性剂的含量分布和改性效果.  相似文献   

12.
ACQ防腐剂浓度对速生杨木载药量和渗透深度的影响   总被引:1,自引:0,他引:1  
使用0.1%、0.5%和1.0%浓度的ACQ防腐药液对杨木进行常压浸渍和加压处理,研究其载药量和浸渍深度。结果表明,随着ACQ浓度的增加,载药量随之增加,且影响显著。常压下用1% 浓度的ACQ 浸渍杨木72 h,载药量可达到国家标准规定的C1级使用要求。渗透深度与浓度呈负相关,浓度越高,渗透深度越小。在相同浓度下,径向、弦向的渗透性差异不显著。与常压处理材相比,速生杨木加压处理后,轴向、径向和弦向的渗透性均得到了不同程度的改善,且两者之间差异显著。  相似文献   

13.
对经过超临界CO2流体携带戊唑醇防腐剂处理后的杉木、马尾松、中密度纤维板和刨花板的防腐性及戊唑醇防腐剂的抗流失性进行测定。结果表明,杉木、马尾松、中密度纤维板和刨花板经戊唑醇处理后,防腐能力都得到了较大提高,在绵腐卧孔菌或彩绒革盖菌的腐蚀下,杉木、马尾松的质量损失率降到10%以下;中密度纤维板、刨花板的质量损失率降到5%以下;戊唑醇防腐剂的抗流失性较好。  相似文献   

14.
利用低分子酚醛树脂(PF)、脲醛树脂预聚液(UF)和氨溶季胺铜防腐液对速生杨木木材进行化学浸渍改性,对处理前后试件的力学性能和防腐性能进行了测试与评价。试验结果表明:在试验范围内,氨溶季胺铜浸渍防腐改性处理对材料力学性能影响不大;PF浸渍改性材的抗弯弹性模量、抗弯强度、顺纹抗压强度和顺纹抗拉强度分别提高了97.1、83.4、125.5和37.0%;UF浸渍改性材对应力学性能指标分别提高了49.4、10.7、42.0和17.8%;试验所用速生杨木木材耐腐性能较差,属于II级,经过PF、UF和氨溶季胺铜防腐液浸渍改性,材料耐腐级别达到了强耐腐级,其中PF浸渍改性处理效果最好,处理材质量损失率从素材的18.7%降低到了2.9%,有效地提高了材料的防腐性能。从综合效果来看,低分子酚醛树脂预聚液浸渍改性处理是提高和改善速生杨木木材的力学性能和防腐性能的有效措施。  相似文献   

15.
为考察用金属盐与硼化物复合处理杉木后,处理材中硼的抗水流失性,采用3种硼化物(硼酸、硼砂、四水合八硼酸二钠)和3种金属盐(硫酸锌、乙酸锌和无水氯化钙),用两步法来复合处理杉木。针对每种金属盐设计了正交试验,考察硼化物种类、金属盐种类和浓度、后处理条件对硼保持率的影响,并进行了流失试验。结果表明:①将硼化物和金属盐分两步来处理木材,从而提高硼的抗水流失性是可行的;②处理材中硼的保持率随着金属盐浓度的增大而增大,同时也随着后处理温度的升高而提高;③无水氯化钙对硼的固着效果相对最好,其次是乙酸锌,而硫酸锌对硼的固着效果相对较差;④硼酸与无水氯化钙、硼砂或四水合八硼酸二钠与乙酸锌的组合比该种硼化物与其他2种金属盐复合处理材的硼的保持率高。   相似文献   

16.
超临界CO_2流体辅助防腐处理对板材力学性能的影响   总被引:1,自引:2,他引:1  
对经过超临界CO2流体携带戊唑醇和IPBC 2种防腐剂处理后的杉木、马尾松、中密度纤维板和刨花板的抗弯强度、抗弯弹性模量、尺寸稳定性以及中密度纤维板和刨花板内结合强度进行测定,结果表明,杉木、马尾松、中密度纤维板和刨花板的抗弯强度和抗弯弹性模量略有降低,杉木、马尾松吸湿性以及中密度纤维板和刨花板的吸水厚度膨胀率不变.  相似文献   

17.
采用180、200和220℃分别热处理0、1、2和3 h后的马尾松木粉与高密度聚乙烯(HDPE)复合制备木塑复合材料(WPC),并研究热处理木粉对复合材料的耐白腐、褐腐能力及其弯曲性能的影响,通过环境扫描电镜(ESEM)观察分析WPC试样腐朽前后的表面微观形貌。结果表明,处理温度和时间对质量损失率的影响均显著,菌种的影响不显著;木粉热处理后WPC的质量损失率均有不同程度的降低,且随处理温度的升高、时间的延长,降低幅度明显增大,200℃、3 h处理后的木粉使WPC的质量损失率降低最多,经白腐菌和褐腐菌侵蚀后,分别较对照降低了53.52%和57.83%。腐朽前后WPC试样表面菌丝侵蚀情况的ESEM观察结果也进一步说明木粉热处理具有提高WPC耐腐性能的作用。而木粉热处理使WPC的弯曲强度均有所降低,与对照相比最多降低了4.57%,但弯曲模量总体呈先增后减的趋势,温度和时间对WPC弯曲强度和弯曲模量的影响均不显著。  相似文献   

18.
以生长在安庆洲滩的具有不同倾斜角度的6棵I-69杨为研究对象,对应拉木生长应力和纤维形态进行了研究.结果表明:6株倾斜树干的I-69杨应拉木区生长应力指示值(growth stress indicator,GSI)均值为280×10-3 μm,对应木区的GSI均值为30×10-3 μm,两侧木区的GSI均值为100×10-3 μm;应拉木比非应拉木的纤维长度长,长宽比大,但纤维宽度、腔径、双壁厚、壁腔比的值应拉木均比非应拉木的小,单因素方差分析结果表明,不同单株、不同方向(应拉木区、对应木区和两侧木区)对纤维形态特征值均有显著性的影响;纤维形态特征的径向变异规律总体上是由髓心向外增大,并在达到一定的年龄后保持稳定波动或略有增大;树干最外围纤维长度与GSI值径向变化趋势一致且相关性显著,纤维长度与GSI值得到多项式方程为y=0.0023x2-0.0309x+1 315.9(R2=0.9843).  相似文献   

19.
聚乙二醇/蒙脱石插层复合物的制备及结构表征   总被引:4,自引:0,他引:4  
通过X射线衍射、傅里叶变换红外光谱和差热分析表征聚乙二醇(PEG)/蒙脱石复合物的结构结果表明,PEG以单层或双层平卧于蒙脱石层间;PEG通过转换部分层间水进入蒙脱石层间通道内;大分子量的PEG与蒙脱石层间表面有更强的相互作用.  相似文献   

20.
以一年生闽楠[Phoebe bournei(Hemsl.)Yang]实生苗为材料,喷施植物生长调节剂矮壮素和缩节胺后放置在5、0、-5℃恒温培养箱中处理12 h,然后分别取样测量叶片相关生理指标。结果表明,喷施不同浓度矮壮素和缩节胺后,闽楠叶片组织的叶绿素含量、游离脯氨酸含量、超氧化物歧化酶活性、过氧化物酶活性均发生明显变化;其中以300 mg/L缩节胺和300 mg/L矮壮素溶液处理的闽楠幼苗组织中的叶绿素含量、脯氨酸含量、超氧化物歧化酶活性、过氧化物酶活性表现较优,利于闽楠幼苗增强抗寒能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号