首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of feeding either traditional concentrates containing starch or high quality fibrous concentrates on the performance of grazing dairy cows was examined in a trial in which cows were given concentrates with either 350 g starch and sugars (kg dry matter (DM))-1 (high-starch) or 100 g starch and sugars (kg DM)-1 (high-fibre). The swards used consisted predominantly of perennial ryegrass and were usually aftermaths following cutting. Each area was grazed for 3 or 4 d at each grazing and a two-machine sward-cutting technique was used for estimating herbage intake.
The effect of concentrate composition on the herbage intake of grazing cows at a high daily herbage allowance of 28 kg OM above 4 cm cutting height was investigated in 1983 and 1984. With 54 kg OM d-1 of high-starch concentrates the mean herbage intake was 11·5 kg OM d-1 per cow while cows fed 5.3 kg d-1 of high-fibre concentrates consumed on average 12–6 kg OM d-1. The mean substitution rate of herbage by concentrates was reduced from 0·45 kg herbage OM (kg concentrate OM)-1 with the high-starch concentrate to 0·21 with the high-fibre concentrates.
The effect of the treatments on milk production was studied in 1984. The cows consumed 5·5 kg OM d-1 as concentrates and grazed at a lower herbage allowance of 19 kg OM above 4 cm cutting height. With high-fibre concentrates milk production and 4% fat-corrected milk production were 13 and 1·8 kg d-1, respectively, higher than with the high-starch treatment. The daily live weight gain with the high-starch concentrates was 0·17 kg per cow more than with the high-fibre concentrates.  相似文献   

2.
Friesian heifers grazing Cenchrus ciliaris cv. Biloela were supplemented with 0, 3 or 6 kg concentrates daily during weeks 10–34 (±1·7) of lactation during either the rainy or the dry season. The overall responses to concentrate were identical between seasons at 0·27 kg extra milk and solids corrected milk per kg. Supplementation increased total feed intake and modified the grazing behaviour of cows. For each kg concentrate organic matter eaten, herbage organic matter intake was reduced by 0·64 and 0·42 kg in the rainy and dry seasons respectively and the time spent grazing by 11 min. Higher intakes in the dry season were the result of an increased rate of biting and were reflected in liveweight change but not milk yield.  相似文献   

3.
Concentrate supplementation of grazing dairy cows   总被引:1,自引:0,他引:1  
Two experiments are described in which twenty-four spring-calving Dutch Friesian cows were allocated between six grazing treatments (two levels of daily herbage allowance × three levels of daily concentrate intake) in a 2 × 3 factorial design. The swards consisted predominantly of perennial ryegrass. A two-machine sward-cutting technique (with correction for herbage accumulation during grazing) was used for estimating herbage intake by cows which grazed swards for 3 or 4d. Experiment 1 was carried out for 16 weeks of the grazing season of 1981 and experiment 2 for 18 weeks in 1982.
Daily herbage OM allowances in both experiments were 16 and 24 kg per cow above 4 cm cutting height. Daily concentrate OM intake ranged from 0.8 to 5.6 kg per cow. The effect of concentrates on herbage intake differed significantly between allowances. At the low allowance level and at daily concentrate OM intakes of 0.8, 3.2 and 5.6 kg per cow daily herbage OM intake was 10.9, 10.6 and 10.4 kg per cow respectively and the mean substitution rate of herbage by concentrates was only 0.1. At the high allowance level and at daily concentrate OM intakes of 0.8, 3.2 and 5.6 kg per cow daily herbage OM intake was 14.8, 13.6 and 12.4 kg per cow respectively and mean substitution rate was 0.5 kg herbage OM (kg concentrate OM)−1.  相似文献   

4.
Two experiments, each of 6 weeks dehydration, were conducted in 1972. In Expt 1, 24 cattle were grazed in individnal paddocks during July and August and received one of 4 treatments over a 6-weeks period: no supplements; straw ad lib; 3.3 kgj. day sugar-beet pulp; 4.0 kg/day molasses. Mean daily live weight gains were significantly increased by the sugar-beet pulp and molasses supplements; which also increased OM and DOM intake significantly. The increase in total OM intake per kg OM in the supplement was 0.48 for sugar-beet pulp and 0.67 for molasses. In Expt 2, 18 cattle grazed in groups of 3 during November and December. Two groups each received 0.5, 3.5 or 6.5 kg/day sugar-beet pulp over a 6–weeks period. There was no significant difference in live weight gain between treatments, and no significant difference in total intake. Intake from pasture declined with increasing level of supplement, so that the average increase in OM intake per kg OM in the supplement was 0.28. Hie results are discussed in relation to availability of pasture and the effects of the supplements on intake.  相似文献   

5.
The grass intake of three breeds of ewe was measured in the 5th–7th week (Period 1) and the 9th–11th week (Period 2) of lactation. The breeds of ewe were Finnish Landrace × Scottish Halfbred (FH), Finnish Landrace × Scottish Blackface (FB) and Thornber Colburn Colbred × Scottish Blackface (TC2). The immature FH ewes had a lower intake of digestible OM (26±1g/kg LW per day) than the mature FB (32±2g/kg LW per day) and TC2 ewes (33±5g/kg LW per day) in Period 1, but there were no difference between the breeds in Period 2. The intakes in Period 2 were significantly lower than those in Period 1.  相似文献   

6.
Five grazing experiments each lasting 2 or 3 years were made between 1955 and 1967, all starting in the first year of ryegrass/cocksfoot/clover or ryegrass/clover leys. A high and a low rate of N, 235 and 45 Ib/ac on average (263 and 51 kg/ha) were compared for beef production. High- and low-N treatments gave mean clover contents for the grazing season of 8 and 24 % on a dry-weight basis, respectively. High N consistently gave a smaller liveweight gain/animal than low N, on average 1±92 and 2±08 Ib/day (0±87 and 0±94 kg/day), respectively. Liveweight gain/ac was 20% greater for high N than for low N, and in terms of net energy the production from high- and low-N, respectively, was 18,500 and 15,000 MJ/ac (45,700 and 37,100 MJ/ha). Data from these experiments, together with published results, were used to calculate a regression of liveweight gain response on N rate and an equation was derived from this to express the output in terms of profit. At 1971 prices profit was maximal at λ0±9/ac (λ2/ha) with 112 Ib N/ac (125 kg N/ha); it was considerably greater at 1973 prices when higher rates of N were justified.  相似文献   

7.
The average daily intake of drinking water of two groups of 10 spring-calved Ayrshire cows, one gronp on a paddock and the other on a Wye College system of grazing, was measured on 4 days/week for 20 weeks. Trends in water intake were similar on both systems, the average daily intake being 23.0 ±8.5 kg (5.1 ± 1.9 gal)/cow. The average DM content of the herbage was 17.8% and the mean air temperature 134°C (56 1°F). The weight of water drunk was positively related to the daily milk yield and the DM percentage of the herbage, and negatively related to daily rainfall and relative humidity. All of these relationships were significant. Possible changes in the provision of water for dairy cows at grass are discussed.  相似文献   

8.
The effect of sward surface height (SSH) on grazing behaviour and intake by lactating Holstein Friesian cows on continuously stocked grass pastures maintained at mean heights of 5, 7 and 9 cm was studied during the growing season. Intake rate was estimated over periods of 1 h by weighing animals before and after grazing, with a correction made for insensible weight loss. Grazing behaviour during that hour and over 24 h was recorded automatically using sensors to measure jaw movements. Although maintained at the overall mean SSH, swards had a patchy appearance with short, frequently grazed areas interspersed with taller, infrequently grazed areas, which is typical of pastures continuously stocked with cattle. Daily organic matter (OM) intake, calculated as the product of daily grazing time and intake rate, was greater at a SSH of 7 cm than at 5 or 9 cm (14·1 vs. 10·5 and 12·1 kg respectively). On the 5-cm sward, OM intake per grazing jaw movement (GJM) was reduced compared with that on the 7-cm sward (0·182 vs. 0·264 g respectively), and because cows were unable either to increase significantly GJM rate (95·8 vs. 90·1 GJM min?1) or the proportion of GJM that were bites (0·80 vs. 0·81) OM intake rate was reduced (16·9 vs. 23·5 g min?1). Cows were unable to increase their grazing time significantly (628 vs. 604 min d?1) to compensate for the reduction in intake rate, and as a result daily intakes were lower. Cows grazing the 9-cm sward also incurred a reduction in OM intake GJM?1 compared with those on the 7-cm sward (0·237 vs. 0·264 g respectively) and therefore there was a reduction in OM intake rate (21·6 vs. 23·5 g min?1). These animals did not compensate by increasing the time spent grazing (581 min d?1), probably owing to an increased ruminating requirement per kg of herbage ingested compared with those on 7 cm SSH (2264 vs. 1780 ruminating jaw movements respectively). The results show that SSH can significantly influence intake rate, but, while the cow's only effective strategy to compensate for any reduction in intake rate is to increase grazing time, this may be limited by the requirement for ruminating and non-grazing, non-ruminating activities, which is influenced by qualitative and quantitative aspects of the herbage ingested, whereas the cows' only effective strategy to compensate for any reduction in intake rate is to increase grazing time.  相似文献   

9.
The production and use of cocksfoot foggage for winter grazing at the Hannah Dairy Research Institute in the period 1956–61 is described. Two acres of cocksfoot (S37) were sown broadcast in 1956 and two acres were drilled in rows 28 in apart in 1957. The average annual application of fertilizer nutrients was 118 lb. N, 51 1b. P2O5 and 142 lb. K2O per acre.
The mean yield of the broadcast section was 7450 lb. dry matter/acre/annum compared with 6090 lb. from the rowcrop section. Normally two crops of grass were harvested from the field in the summer, and one grazing was made in the winter. The yield of winter herbage dry matter was 28% and 26% of the total annual yield of the broadcast and the rowcrop sections, respectively.
The field was grazed for four successive winters by 5–10 bulling heifers each weighing 650–850 lb. They received no other feed during the grazing period. Grazing started in December and finished in February, March or April in different years. The mean intake of herbage dry matter was only 6 lb./day, and on average the heifers lost 80 lb. liveweight each winter. This loss was regained after 4–6 weeks when the winter grazing finished. Twenty-nine of the 30 heifers held to the first or second service while grazing the winter herbage.
On average the broadcast section gave 340 heifer-grazing-days per acre during the winter and the rowcrop section 260 days. The cost of a heifer-grazing-day was 3id. and 4id. on the broadcast and rowcrop sections, respectively.
The dry matter of the herbage cut on 19 December 1960 had a digestible crude protein content of 59% and a starch equivalent of 34.
It is concluded that on well-drained land the technique of foggage production and of winter grazing can usefully extend the normal grazing season and hence reduce the costs of winter feeding.  相似文献   

10.
Three groups of Hereford × Friesian steer calves, bom in early January 1969, were strip-grazed on eqoal areas of a sward of S321 perennial ryegrass from May to September inclusive, and received kibbled barley at the rate of nil, 3/4% or 1 1/2% of liveweight per day. Adjustments were made to the number of animals per group in order to maintain the same high grazing intensity (defined as 8 cm stubble height in grazed areas) on all treatments. The animals receiving supplementary barley gained weight at a rate 17–19% higher than the controls, but there was no significant difference in growth rate between the high and low levels of supplementation. The effficiency of conversion of barley was only 5–12 kg per animal liveweight gain/100 kg barley OM. The high level of supplementation resulted in an increase in stocking rate of 36 % over that of the control group, and an increase in liveweight gain per unit area of land grazed of 63%. The additional liveweight gain due to supplements, expressed per unit area of land grazed, was relatively constant at 21–24 kg liveweight gain/ 100 kg barley OM consumed.  相似文献   

11.
Separate groups of non-lactating cows and wether sheep grazed at similar herbage allowances for two successive 5-d periods on swards that had previously been grazed frequently or infrequently with the intention of creating differences in canopy structure. Measurements were made of sward structure and composition, ingestive behaviour and diet composition. The preliminary treatments had little effect upon either sward conditions or animal behaviour.
Herbage mass was reduced from 4020 kg dry matter (DM) ha−1 to 3290 kg DM ha−1 on average over a 5-d grazing period as a consequence of the relatively low grazing pressure imposed. This resulted in a mean decline in intake per bite of 28%, and the changes for cattle and sheep did not differ significantly. However, there was a marked difference in the other behavioural responses of the two species; in the sheep biting rate fell and grazing time increased with declining herbage mass, particularly in the sward previously grazed infrequently, whereas the changes in the cattle were small.
Differences in the botanical composition of the herbage eaten by cattle and sheep were minor, but there was a small but consistent advantage to the sheep in the digestibility of the herbage eaten.
In the first of the two periods the variation in surface height after grazing was substantially greater for sheep-grazed than for cattle-grazed swards, indicating more patchy grazing by the sheep.
Estimates of daily herbage organic matter (OM) intake calculated from ingestive behaviour variables were high (means 38 and 32 g (kg LW) −1 for cattle and sheep respectively) and usually declined substantially over a grazing period.  相似文献   

12.
The effects of a limited grazing period on the performance, behaviour and milk composition of high-yielding dairy cows were examined. A total of 56 Holstein cows yielding 44.7 ± 0.42 kg/day were allocated to one of four treatments in one of two, 4-week periods. Treatments were as follows: control (C)—cows housed and offered TMR ad libitum; early grazing (EG)—cows grazed for 6 hr after morning milking then housed; delayed grazing (DG)—cows returned to housing for 1 hr after morning milking followed by grazing for 6 hr, then housed; restricted TMR (RT)—cows grazed for 6 hr after morning milking, then housed and fed TMR at 75% of ad libitum. Intake of TMR was highest in cows receiving C, intermediate in EG and DG, and lowest in RT at 26.9, 23.6, 24.7 and 20.3 kg DM/day respectively. Pasture intake was similar in cows receiving EG or DG, but was higher in RT at 2.4, 2.0 and 3.5 kg DM/day respectively. Milk yield was similar between cows receiving C, EG or DG, but lowest in RT at 45.7, 44.2, 44.9 and 41.7 kg/cow, respectively, while milk fat content of C18:3 n-3 was increased by grazing. Cows in C spent more than 55 min/day longer lying and had three additional lying bouts/day, while lying bouts were shorter than for cows receiving EG, RT or DG. It is concluded that high-yielding cows can be grazed for 6 hr/day with little impact on performance, provided TMR is available ad libitum when housed.  相似文献   

13.
The objectives of this experiment were to study the effects of different grazing managements in spring on herbage intake and performance of summer-calving dairy cows and to examine the effects of regrowth in early June on herbage intake and cow performance. Four spring-grazing treatments were applied to predominantly perennial ryegrass swards: Control (C), sward grazed by cows to 6–8 cm sward surface height (SSH); CG16, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to a target SSH of 16cm in early June; CG8, sward grazed by cows to 3–4 cm SSH in May and allowed to regrow to 8cm in early June; and SG8, sward grazed by sheep to 2–3 cm SSH in May and allowed to regrow to 8 cm in early June, All swards were continuously stocked by summer-calving (May and July) primiparous and multiparous cows from 16 June to 7 September, to a target SSH of 8–10cm. Spring treatments bad marked effects on herbage intakes and milk production. Estimated in July by n alkane analysis, the mean herbage intake ± s.e.d. of cows on each treatment were 1·8, 1·4, 1·4 and 3·0 ± 0·31 kg dry matter (DM) 100 kg live weight (LW)?1 d?1 (P < 0·01) for treatments C, CG16, CG8 and SG8 respectively. Measured in August, intakes were 1·8, 20, 2·1 and 2·4 ± O·33kg DM 100kg LW?1 d?1 respectively. Severe spring grazing led to increased milk yield and reduced milk fat content from summer-calving cows fed 5·2 kg d?1 of a proprietary concentrate. Average milk yields for the eleven experimental cows on each treatment were 24·3, 23·4, 26·2 and 29·0 ± 1·20 kgd?1 (P < 0·01) for C, CG16, CG8 and SG8, and average milk fat contents were 45·4. 42·4, 43·9 and 40·9 ± 1·02gkg?1 (P<0·05) respectively. The results suggest that severe grazing of swards in early season could improve herbage intake and milk yield of summer-calving cows in mid- and late season. The most favourable spring treatment in this respect was severe grazing by sheep. However, this advantage could be negated in midseason by lax grazing at that time.  相似文献   

14.
Nine wilted silages made from tetraploid red clover were fed in four winter-feeding experiments to 32 Ayrshire cows. The DM content of the silages averaged 23±5% (range 15±8–27±1) and contained an average of 19±6% crude protein, 14±2% digestible crude protein and 52±0% digestible organic matter. The pH values varied from 4±0–6±2, depending on the DM content and mechanical treatment of the crop, and the rate of application of formic add. The silages were fed ad lib.with supplementary concentrates and the average daily intakes of silage DM ranged from 16±0–24±0 Ib/cow (7±3–10±9 kg). The highest daily intakes were obtained with double-chopped silage containing 24–26% DM with a pH of 4±0. Although the red-clover silage had a high content of N and apparently provided a balanced ration with the addition of barley, yields of milk were increased significantly by substituting 1 Ib (0±4 kg) groundnut cake for 1 Ib barley in the daily ration of the cow. The silage contained oestrogenic compounds but the breeding pattern and fertility of the cows were not affected adversely. The tetraploid red clover produced approximately 9000 Ib DM/ac (10 100 kg/ha) in the 1st-harvest year and it is concluded that a safe and highly palatable silage with high intake characteristics can be made if the clover is wilted to about 24% DM, double chopped, and formic acid is applied at the rate of 0±5 gal/ton.  相似文献   

15.
The effects of restricted access time to pasture (2, 4 or 6 h d?1; 2H, 4H or 6H) on ingestive behaviour and performance were assessed on four occasions per target grazing day (D1, initial day; D4, intermediate day; and D7, final day) in dairy ewes rotationally grazing berseem clover with a 7‐day grazing period and a 21‐day recovery period. A randomized block design with two replicates per treatment was used. All ewes were supplemented daily with 700 g per head of concentrates and 700 g per head of ryegrass‐based hay. Pasture subplot and animal group data were analysed by a factorial model including access time (AT), grazing day (D) and their interaction as fixed factors. Sward height decreased from D1 (< 0·001) and green leaf mass from D4 (< 0·001) onwards during the grazing period. Grazing time as a proportion of AT was higher in 2H than in 4H and 6H ewes on D1 and D4 but not on D7 (< 0·05 for AT × D). Herbage intake rate was higher in 2H than in 4H and 6H ewes (< 0·001). Herbage and total intakes were higher in 4H and 6H than in 2H ewes (< 0·001), with herbage intake varying non‐linearly during the grazing period (< 0·05). Milk yield was higher in 4H and 6H than in 2H ewes (< 0·01). To conclude, despite the evidence of compensatory behaviour, restricting access time to 2 h d?1 constrained intake and performance of dairy ewes rotationally grazing berseem clover.  相似文献   

16.
The effect of artificial drying under commercial conditions on the digestibility and voluntary intake of herbage by sheep was studied, using either van den Broek (900°C inlet temperature) or Swiss Combi (1100°C inlet temperature) triple-pass drum-type driers. Organic-matter digestibility of chopped dried herbage was 8·3, 5·8 and 5·3% lower than that of fresh herbage in Experiments 1, 2 and 3, respectively. Packaging chopped dried grass into ‘cobs’ caused a further reduction in OM digestibility of up to 2·8%. Pre-milling plus packaging (i.e. ‘pelleting’) depressed OM digesti bility of chopped dried grass by 5 to 6 percentage units. Digestibility of dried grass in its various physical forms was further reduced when offered ad lib.; the greatest fall (9·4%) occurred with pellets and the smallest fall (0·8?1·3%) with loose chopped material; cobs were intermediate at 4·3?7·0%.  相似文献   

17.
Experiments were conducted in 1967 and 1968 in which HerefordXFriesian (Experiment 1) and Friesian (Experiment 2) steer calves horn in April were turned out to graze at one week or 3 months of age, respectively, and maintained at three stocking densities in the ratio 1:2:3 animals per unit area. The calves grazed paddocks of S23 perennial ryegrass in rotation, and were moved when the height of grazed stubble at the medium stocking density was reduced to 8 cm. The rate of liveweight gain and herbage intake per head declined as stocking rate increased. When the results of the two experiments were compared, the weight gain of the calves was more closely related to the weight of herbage residues than to the height of the grazed sward. The rate of liveweight gain was depressed when the amount of herhage left after grazing fell helow 2000–2500 kg OM/ha (1800–2250 Ib/ac).  相似文献   

18.
Groups of 8 steers weighing 300–400 kg (660–880 Ib) were rotationally grazed on a ryegrass-dominant pasture for 115 days. The systems compared were zero grazing (Z), field grazing conducted at the same stocking rate (FC), and field grazing conducted at a stocking rate varied with the intention of giving the same liveweight gain per uiimal as zero grazing (FV). Mean daily liveweight gains were: Z, 0.98; FC, 0.78; FV, 0.90 kg/animal (2.2, 1.7 and 20 Ib/animal), and liveweight gains/unit area were in the ratio 100:78:85. Organic-matter intake, measured on four occasions, was, on average, Z, 6.54; FC, 6.18; FV, 687 kg/head daily (14.4, 13.6 and 15.1Ib). From these results it appears that a comparison of zero grazing and field grazing made at the same stocking rate is likely to underestimate the potential of field grazing for beef production from grass.  相似文献   

19.
This experiment examined the effects of grazing severity and degree of silage restriction during early turnout of dairy cows to pasture in spring on animal performance. Forty late‐winter‐calving Holstein Friesian dairy cows were allocated to one of five treatments between 7 March and 17 April 1997. The treatments involved early turnout of cows to grass for 2 h per day at two residual sward heights and two silage allowances, plus a control treatment, in a randomized block design. Dairy cows on the control treatment remained indoors throughout the experiment and were offered grass silage ad libitum. Dairy cows on all treatments were also offered 6 kg d–1 of a concentrate on a flat‐rate basis, split equally between the morning and afternoon milkings. Offering cows access to pasture in early spring for 2 h per day resulted in increases in both milk (P < 0·001) and protein yield (P < 0·01). On average, over all grazing treatments, cows produced an additional 2·6 kg milk per day compared with the control treatment (28·5 vs. 25·9 kg d–1, s.e.m. 0·43). Furthermore, these increases in milk yield were obtained even when silage was restricted indoors (28·4 vs. 25·9 kg d–1) and cows grazed down to a residual sward height of 40 mm (28·1 vs. 25·9 kg d–1). Protein yield was higher (P < 0·01) with dairy cows grazing pasture compared with cows indoors (848 vs. 707 g d–1, s.e.m. 28·9). Silage intake was significantly (P < 0·001) reduced when cows were turned out to pasture. In conclusion, early turnout of dairy cows to pasture in spring for 2 h per day reduced silage intake and increased milk yield and protein yield relative to those fully housed and offered grass silage with a low level of concentrates.  相似文献   

20.
An experiment was conducted to examine the effect of time of day on the rate of intake of herbage by grazing dairy cows. Eight unsupplemented Holstein Friesian cows in their fourth month of lactation grazed grass swards maintained at a sward surface height of 6·5 cm. Commencing at 07.00, 11.30, 16.00 and 19.00 h, intake rates were estimated by measuring the liveweight change, corrected for insensible weight loss, over a period of 1 h while grazing. During the period of grazing, recordings of jaw movement activity were made to determine total eating time, number of grazing jaw movements (GJMs) and bites. Total eating time over 24 h was measured: once before and once after determination of intake rate.
Although time of day did not affect GJM rate, it had a quadratic effect on the proportion of GJMs represented by biting and non-biting jaw movements, resulting in a significant effect on bite rate. Bite rate showed a quadratic effect of time, decreasing between 07.00 and 11.30 h, and then increasing by 16.00 h to reach a maximum at 19.00 h (52·6, 47·5, 51·6 and 59·4 bites min−1 respectively). Bite mass (mg fresh matter bite−1) was greatest at 07.00 h because of the lower dry-matter (DM) content of the herbage and the presence of surface moisture at that time, but the effect of time of day was not significant. Mean bite mass measured as DM or organic matter (OM) differed significantly between the different times of day (332, 384, 481 and 402 mg DM and 302, 348, 438 and 367 mg OM bite−1 respectively). The net result of these differences in bite rate and bite mass was a linear increase in DM and OM intake rate over the day. The magnitude of such differences will have profound effects on mean daily intakes when calculated as the product of total eating time and intake rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号