首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
The LD50 and cytotoxic and enzymatic activities of both cells and extracellular products (ECPs) of eight Edwardsiella tarda strains were determined and their bacterial superoxide dismutase gene (sodB) and catalase gene (katB) were sequenced. Strains were also examined for their ability to resist the immune responses of olive flounder, Paralichthys olivaceus. LD50 values of strains (FSW910410, KE1, 2, 3, 4, 5 and 6) in olive flounder ranged between 10(2.5) and 10(5.3) cfu (colony forming units) per fish. Unlike the avirulent strain SU100 (LD50>or=10(7)), all pathogenic strains were able to survive in flounder serum and head kidney leucocytes (except for KE2). The virulent strains possessed type I sodB and katB, whereas SU100 had type II sodB but not katB. However, there was no difference between avirulent and virulent strains in haemolytic and cytotoxic activities. The results of this study demonstrated that the ability of E. tarda to resist complement activity and phagocytosis is conferred by its superoxide dismutase and catalase, which thus play an essential role in the pathogenicity of this bacterium. In addition genotyping of sodB and kat B proved to be a very useful tool to distinguish virulent from avirulent strains.  相似文献   

2.
3.
This experiment was conducted to determine the optimum dietary protein level for juvenile olive flounder Paralichthys olivaceus (Temminck et Schlegel) fed a white fish meal and casein‐based diets for 8 weeks. Olive flounder with an initial body weight of 4.1 ± 0.02 g (mean ± SD) were fed one of the six isocaloric diets containing 35%, 45%, 50%, 55% and 65% crude protein (CP) at a feeding rate of 4–5% of wet body weight on a dry‐matter basis to triplicate groups of 20 fish per aquarium. After 8 weeks of feeding, per cent weight gain (WG) and feed efficiency ratios of fish fed the 55% CP diet were not significantly higher than those from fish fed the 50% and 65% CP diets, but significantly higher than those from fish fed the 35% and 45% CP diets. Fish fed the 50%, 55% and 65% CP diets had significant higher specific growth rates than did fish fed the 35% and 45% CP diets; however, there was no significant difference among fish fed the 50%, 55% and 65% CP diets. The protein efficiency ratio was inversely related to the dietary protein level; that is, maximum efficiency occurred at the lowest dietary protein level. Broken‐line model analysis indicated that the optimum dietary protein level was 51.2 ± 1.8% for maximum weight gain in juvenile olive flounder. The second‐order polynomial regression analysis showed that the maximum WG occurred at 57.7% and it revealed that the minimum range of protein requirement was between 44.2% and 46.4%. These findings suggest that the optimum dietary protein level for maximum growth could be greater than 46.4%, but less than 51.2% CP in fish meal and casein‐based diets containing 17.0 kJ g?1 energy for juvenile olive flounder.  相似文献   

4.
A 9‐week feeding trial was conducted to investigate the effects of dietary supplementation with protein hydrolysates on growth, innate immunity and disease resistance of olive flounder. A fishmeal (FM)‐based diet was regarded as a control, and three diets were prepared by partial replacement of FM with krill hydrolysate, shrimp hydrolysate or tilapia hydrolysate (designated as Con, KH, SH and TH, respectively). Triplicate groups of fish (24.5 ± 0.3 g) were fed one of the diets to apparent satiation twice daily for 9 weeks and then challenged by Edwarsellia tarda. Fish‐fed KH diet showed significantly (< 0.05) higher growth performance and feed utilization compared with the Con diet. Dry matter digestibility of the diets was significantly increased by KH and TH supplementation. All the examined innate immune responses were significantly increased in fish fed KH diet. Significantly, higher respiratory burst and superoxide dismutase (SOD) activities were found in fish‐fed SH diet. Lysozyme and SOD activities were significantly increased in fish‐fed TH diet. However, no significant effect was found on fish disease resistance. This study indicates that dietary supplementation of the hydrolysates, particularly KH, can improve growth performance, feed utilization and innate immunity of olive flounder.  相似文献   

5.
This experiment was conducted to study the effects of different dietary levels of vitamin C, L‐ascorbyl‐2‐polyphosphate (ASPP), on growth and tissue vitamin C concentrations in juvenile olive flounder, Paralichthys olivaceus (Temminck et Schlegel). Fish were fed one of six semi‐purified diets containing an equivalent of 0, 25, 50, 75, 150, or 1500 mg ascorbic acid (AA) kg?1 diet (C0, C25, C50, C75, C150 or C1500) in the form of ASPP for 12 weeks. Weight gain (WG) and protein efficiency ratio (PER) of fish fed the C0 diet were significantly lower than those of fish fed the other diets (P < 0.05), and WG and PER of fish fed the C25, C50 and C75 diets were significantly lower than those of fish fed the C1500 diet (P < 0.05). Fish fed the C0 diet exhibited vitamin C deficiency symptoms such as anorexia, scoliosis, cataract, exophthalmia and fin hemorrhage at the end of the 12‐week test. After 12 weeks of the feeding trial, AA concentrations from gill, kidney, and liver of fish fed the C0, C25, C50 and C75 diets were significantly lower than those of fish fed the C150 and C1500 diets (P < 0.05). Based on broken line analyses for WG and PER, the optimum dietary levels of vitamin C were 91 and 93 mg AA kg?1 diet respectively. These findings suggest that the dietary vitamin C requirement could be 93 mg AA kg?1 diet to support reasonable growth, and greater than 150 mg AA kg?1 diet may be required for AA saturation of major tissues for juvenile olive flounder under experimental conditions.  相似文献   

6.
Enteromyxum leei has been reported to cause emaciation disease in various fish species. To determine the effect of parasite intensity on cultured olive flounder Paralichthys olivaceus, we investigated the relationship between the relative condition factor (rCF = CF/standard CF × 100) and parasite load with quantitative polymerase chain reaction (qPCR) and the challenge test. A total of 57 cultured olive flounders were obtained from 11 fish farms and divided into five groups based on their rCF. We investigated the parasite intensity in the posterior intestine of the fish. The parasite load was closely matched to severe loss of body weight. In addition, olive flounders were inoculated either orally or anally with intestinal scrapings of infected fish or phosphate‐buffered saline. The fish were reared at natural water temperature and transferred to different tanks, and the water temperature was adjusted to 20°C after 6 weeks of inoculation. When the water temperature was increased to 20°C, the rCF decreased in the experimentally infected group. The results demonstrated that qPCR can be utilized to determine the relative abundance of E. leei in olive flounders and water temperature is an important factor to track the progress of the emaciation disease.  相似文献   

7.
An 8‐week feeding trial was conducted to evaluate the synergistic effects of dietary vitamin E and selenomethionine (SeMet) on induced methylmercury (MeHg) toxicity in juvenile olive flounder Paralichthys olivaceus. Nine semi‐purified diets were formulated to contain three different vitamin E levels as DL‐α‐tocopheryl acetate (0, 100 and 200 mg TAkg?1 diet) and three different selenium (Se) levels (0, 2 and 4 SeMet mg kg?1 diet) on the constant mercury toxicity level (20 mg MeHgkg?1 diet). Nine experimental diets, in a 32 factorial design (E0Se0, E0Se2, E0Se4, E100Se0, E100Se2, E100Se4, E200Se0, E200Se2 and E200Se4), were fed to triplicate groups of fish averaging 2.3 ± 0.04 g (mean ± SD) in the semi‐recirculation system. After 8 weeks of feeding trial, vitamin E and Se showed significant effects on weight gain (WG) of fish (P < 0.05). We found that there was a clear trend of increasing WG with elevating vitamin E and Se levels in the diets. Feed efficiency (FE), specific growth rate (SGR), protein efficiency ratio (PER) and survivability exhibited a similar trend with WG. Both antioxidants had significant interaction effects on FE and PER (P < 0.05). Methylmercury concentrations in fish muscle, liver and kidney decreases in a dose‐dependent manner as dietary vitamin E and Se levels increase. Interestingly, the most significant interactive effects of vitamin E and Se were found in liver tissue for depleting Hg concentrations (P < 0.05). These findings suggest that dietary vitamin E more than 100 mg TA kg?1 diet with 2 or 4 mg SeMet kg?1‐supplemented diets could have synergistic effects on growth and liver mercury bioaccumulation on MeHg‐induced toxicity in juvenile olive flounder.  相似文献   

8.
This study was conducted to investigate the influence of dietary distillers dried grain (DDG) level on growth and body composition of juvenile olive flounder (Paralichthys olivaceus). Five diets (designated as DDG0, DDG7, DDG14, DDG21 and DDG28) were prepared to contain 0, 70, 140, 210 and 280 g kg?1 DDG. Three replicate groups of fish averaging 11.6 ± 0.1 g were fed one of the diets for 8 weeks. Weight gain of fish fed diets containing 70–280 g kg?1 DDG was not different to that of fish fed DDG0 diet (P > 0.05). Feed efficiency of fish fed DDG21 and DDG28 diets was lower than that of fish fed DDG0 diet (< 0.05). The antioxidant enzyme and digestive enzyme activities were not affected by dietary DDG levels. The results of this experiment suggested that DDG is a valuable ingredient as a candidate to replace wheat flour in the diet and could be used up to 280 g kg?1 for the growth of olive flounder. On the other hand, if lower feed efficiency of fish fed 210–280 g kg?1 DDG is considered, up to 140 g kg?1 DDG in diet is recommended for optimum feed utilization of fish.  相似文献   

9.
A feeding experiment was conducted to investigate the effects of high dietary intake of vitamin E (supplied as dl ‐α‐tocopheryl acetate) and n‐3 highly unsaturated fatty acid (n‐3 HUFA) on the non‐specific immune response and disease resistance in Japanese flounder Paralichthys olivaceus. Nine practical diets were formulated to contain one of three levels of vitamin E namely, 0, 80 or 200 mg kg?1 (the total α‐tocopherol contents in the diets were 21, 97 and 213 mg kg?1 based on analysis), and at each vitamin E level with one of three n‐3 HUFA levels i.e. 0.5%, 1.5% or 2.0%. Each diet was randomly assigned to triplicate groups of Japanese flounder (initial body weight: 40.5±1.0 g, mean±SD) in a re‐circulation rearing system. Fish were fed twice daily to apparent satiation at 07:00 and 18:00 hours for 12 weeks. During the experimental period, water temperature was maintained at 18±1°C, salinity 31–35 g L?1, and pH 7.8–8.2. Dissolved oxygen was not less than 6 mg L?1, and there were negligible levels of free ammonia and nitrite. The results showed that the increase in dietary n‐3 HUFA from 0.5% to 1.0% significantly decreased muscle α‐tocopherol contents in fish‐fed diets with 21 and 97 mg α‐tocopherol kg?1 diet (P<0.05). In 1.0% HUFA groups, alternative complement pathway activity (ACH50) of fish fed the diet containing the 213 mg α‐tocopherol kg?1 diet was significantly higher than noted for fish fed the diet containing 97 mg α‐tocopherol kg?1 diet (P<0.05). Fish fed the diet with 213 mg α‐tocopherol kg?1 and 2.0% n‐3 HUFA had the highest lysozyme activity (131.7 U mL?1) among all the dietary treatments. Fish fed the diets containing 97 and 213 mg α‐tocopherol kg?1 with 1.0% n‐3 HUFA had significantly higher respiratory burst activity than those fed the diets containing 21 mg α‐tocopherol kg?1 with 0.5 and 1.0% n‐3 HUFA (P<0.05). In the disease resistance experiment, high intake of dietary vitamin E with 213 mg α‐tocopherol kg?1 significantly decreased cumulative mortality and delayed the days to first mortality after a 7‐day Edwardsiella tarda challenge (P<0.05). In addition, under the experimental conditions, dietary vitamin E and n‐3 HUFA had a synergistic effect on the non‐specific immune responses and disease resistance in Japanese flounder (P<0.05).  相似文献   

10.
Replacing dietary fish oil with DHA‐rich microalgae Schizochytrium sp. and EPA‐rich microalgae Nannochloropsis sp. for olive flounder (Paralichthys olivaceus) was examined. Three experimental isonitrogenous and isolipidic diets with lipid source provided by 50% fish oil (F50S50), 50% (M50F25S25) and 100% microalgae raw material (M100) respectively were compared with a soybean oil (S100) diet as control. Triplicate groups of olive flounder juveniles (16.5 ± 0.91 g) were fed the experimental diets, and a group was fed the control diets for 8 weeks in a recirculation system. Results showed feed efficiency and growth performance were not significantly changed when fish oil (FO) was totally substituted by soybean oil (SO) or microalgae raw material (MRM). The whole‐body composition, lipid content of liver and muscle, and lipid composition of plasma were not significantly influenced by the total substitution of FO by MRM. The polyunsaturated fatty acids (PUFA) content of muscle and liver declined in fish fed S100 diet, whereas it was not significantly reduced in fish fed M50F25S25 and M100 diets. The total substitution of FO by MRM not only maintained the levels of arachidonic acid, EPA or DHA but also increased n‐3/n‐6 ratio. In conclusion, MRM as the sole lipid source is sufficient to obtain good feed efficiency, growth performance and human health value in olive flounder juveniles.  相似文献   

11.
12.
A feeding trial was conducted to investigate the effect of different levels of Bacillus subtilis LT3‐1 in diets on growth, immune parameters, intestinal morphology and disease resistance in genetically improved farmed tilapia, Oreochromis niloticus. Fish (46.91 ± 0.17 g) were fed with a basal diet supplemented with B. subtilis LT3‐1 at 0 (B0), 3.8 × 1010 (B1), 7.6 × 1010 (B2), 1.14 × 1011 (B3) and 1.52 × 1011 (B4) CFU kg?1 for 6 weeks. The results showed that the weight gain of fish in B1 group was significantly enhanced compared to that in B0 group (p < 0.05). The addition of B. subtilis significantly affected serum biochemical indices (total protein, albumin, aspartate aminotransferase, alkaline phosphatase). Besides, the haematocrit, total counts of red and white blood cells, as well as the serum catalase and lysozyme activities, were increased, whereas the serum malondialdehyde, the serum immunoglobulin M and complement three contents were reduced. Parameters for intestinal morphology suggested a healthier intestine for the fish fed B. subtilis‐supplemented diets than fish fed the control diet. The survival rate after Streptococcus agalactiae challenge increased in tilapia fed with B. subtilis. The present study demonstrated B. subtilis can effectively improve growth, immunological status and resistance against S. agalactiae infection in tilapia farming.  相似文献   

13.
An 8‐week feeding experiment was conducted to investigate the effects of dietary glycyrrhizic acid (GA) on growth, survival and immune response of juvenile large yellow croaker, in seawater floating net cages. GA was supplemented into the basal diet to formulate four isonitrogenous and isoenergetic practical diets containing 0.00% (the control diet), 0.01%, 0.02% and 0.04% GA of dry weight, respectively. Triplicate groups of 60 fish were fed to apparent satiation by hand twice daily. The results showed that the specific growth rate, survival rate and feed efficiency ratio revealed no significant differences among dietary treatments (> 0.05). The phagocytic index of head kidney macrophage was significantly increased by the supplementation of 0.04% dietary GA compared to the control group (< 0.05). Fish fed 0.04% dietary GA also showed significantly higher serum lysozyme activity than fish fed the control diet and diet with 0.01% GA (< 0.05). The cumulative mortality rate after natural infestation of parasites (protozoan, Cryptocaryon irritans Brown) showed no significant differences among dietary treatments. These results suggested that dietary glycyrrhizic acid improved certain non‐specific immunological parameters of juvenile large yellow croaker. However, GA was not able to protect juvenile large yellow croaker effectively from protozoan infection.  相似文献   

14.
Substitution effect of Undaria pinnatifida with citrus peel by‐product (CPB) on growth, body composition and air exposure stressor of abalone was determined. A total of 1,080 abalone were distributed into 18 net cages. Five formulated diets were prepared in triplicate. The CPB0 diet contained 200 g/kg Upinnatifida. The 250, 500, 750 and 1,000 g/kg U. pinnatifida were substituted with the equal amount of CPB, referred to as the CPB250, CPB500, CPB750 and CPB1000 diets, respectively. Finally, dry U. pinnatifida was prepared. Abalone were fed for 16 weeks and then subjected to air exposure stressor for 24 hr. The cumulative mortality of abalone was monitored for the following 4 days after 24‐hr air exposure. Survival, weight gain and specific growth rate (SGR) of abalone fed all formulated diets were greater than those of abalone fed the U. pinnatifida. The greatest weight gain and SGR were achieved in abalone fed the CPB500 diet. The chemical composition of the soft body of abalone was not affected by the experimental diets. Higher cumulative mortality was observed in abalone fed the CPB0 and dry Upinnatifida at 16 hr after 24‐hr air exposure compared to abalone fed all other diets. In conclusion, U. pinnatifida could be completely substituted with CPB in abalone feed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号