首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In general, soils and their pore size systems are assumed to be rigid during the loss of water on drying. In reality, it is not the case for most soils, especially for soils with high quantities of clay or organic matter. As a result of shrinking, there are changes in the bulk density, the porosity, the pore size distribution, and the hydraulic properties of these soils. Currently, only a few methods enable the shrinkage behavior of soil samples to be determined while simultaneously quantifying the corresponding soil hydraulic properties. Either the methods need proprietary software for data processing, the equipment used is expensive or the calculation of the hydraulic properties is executed by inverse modelling. The aim of this study was to develop an alternative, simplified method for the simultaneous and automatic determination of the soil hydraulic properties, taking shrinkage into account. The HYPROP® evaporative device was combined with a circumference meter. A preliminary investigation found that the diameter of the cylindrical samples used for the HYPROP decreased linearly during evaporation from the bottom to the top. To sum up, recording the perimeter change in the middle position of the sample during drying‐out, together with the corresponding tension and water content, was sufficient to determine the hydraulic functions taking shrinkage into account. Measurements are presented for 6 samples which are different in texture and geological origin. The maximum shrinkage (19.5% by vol. between saturation and 5,000 hPa) was measured in the peat samples. The minimum shrinkage was quantified at 0.68% by vol. for the silty loam samples from Chile. The advantages of the method presented are: (1) the water retention curve and the hydraulic conductivity function can be determined simultaneously in the range between saturation and close to the wilting point, at a high resolution and taking into consideration shrinkage; (2) the method and device are simple and robust to use; (3) little time is required for measurement, between 3 and at most 10 d; (4) the functions are described over the whole tension range, using more than 100 user‐defined data points; (5) the evaluation of the volumetric soil water content measurement in shrinking soils is improved; and (6) common data models can be fitted to the hydraulic data as well as to the shrinkage data.  相似文献   

2.
黄土区采煤塌陷对土壤水力特性的影响*   总被引:1,自引:0,他引:1  
通过对山西省平朔矿区塌陷区、原地貌和复垦区进行调查采样和实验室分析,研究采煤塌陷对土壤容重、含水量、田间持水量、饱和导水率和土壤崩解速率等指标的影响。结果表明:塌陷区土壤容重、含水量和田间持水量处于弱变异到中等变异区间,饱和导水率和崩解速率均为强变异;塌陷虽使土壤容重增加,但影响幅度不大;土壤含水量受塌陷影响规律不明显;田间持水量受塌陷影响明显(p0.05),较未受损地区降低6.2%~15.5%;在采煤塌陷的影响下,土壤饱和导水率和崩解速率显著增加(p0.05);复垦区土壤水力特性与原地貌没有显著差异(p0.05),且各层次之间差异性也不显著(p0.1)。  相似文献   

3.
为了揭示降雨条件下铁尾矿复垦坡面的产流产沙特征与水力特性,该文采用室内人工模拟降雨方法研究了不同降雨强度(60、90、120 mm/h)和不同复垦模式(T,铁尾矿;TSH,铁尾矿与高比例生土;TM,铁尾矿与菌糠;TSM,铁尾矿、菌糠与生土;TSL,铁尾矿与低比例生土;植被类型均为胡枝子)25°坡度条件下的侵蚀过程。结果表明:1)产流速率在降雨初期迅速增长,中后期趋于稳定。添加菌糠的复垦模式产流速率高于未添加菌糠的复垦模式;2)产沙速率随降雨历时变化呈现两种模式,添加菌糠的复垦模式为减少型,未添加菌糠的复垦模式为增加型,TSL的减沙效果最为显著,T对降雨强度的响应最为敏感且高雨强下产沙量最大;3)所有复垦坡面平均径流深度范围在0.23~0.93 mm,水流流态均为层流,大部分情况下水流流型为缓流,但TSH在中高雨强下以及T在高雨强下为急流。添加菌糠模式的曼宁糙率系数和水流阻力系数高于未添加菌糠的复垦模式,流速低于未添加菌糠的复垦模式,添加菌糠的基质表面粗糙度较大;4)各复垦坡面的侵蚀形式以溅蚀和片蚀为主,高雨强下T出现细沟侵蚀,其余复垦模式未观察到明显细沟侵蚀;5)产流速率与水流功率、雷诺数(R2>0.998)呈极显著的线性关系,产沙速率与水流功率(R2 >0.733)、雷诺数(R2>0.744)呈极显著的幂函数、指数函数关系。该研究可为铁尾矿坡面的复垦模式选择提供理论依据。  相似文献   

4.
浑水土壤入渗具有复杂的上边界变化过程,其上边界导水能力的变化规律是研究浑水土壤入渗特性的重要基础。为研究浑水入渗形成致密层过程中导水率的变化情况,该研究进行了17组(9组正交试验处理,8组用于模型验证)浑水饱和土柱入渗试验,通过对试验结果进行多元回归构建多因素(浑水含沙率、黏粒含量及入渗时间)影响下砂土导水率动态模型;并结合浑水饱和土柱入渗特性进行合理假设,分别建立浑水砂壤土和粉壤土饱和土柱导水率动态模型并进行验证。结果表明:浑水含沙率、黏粒含量及入渗时间对砂土导水率影响极显著(P<0.01),入渗时间为砂土影响导水率变化的主要因素,其次为含沙率和黏粒含量;建立的砂土导水率动态模型决定系数为0.853,均方根误差为0.004 cm/min,表明该模型可客观反映各因素与导水率之间的关系;模型验证试验结果中均方根误差小于0.01 cm/min,相对误差绝对值均值小于7%,说明该导水率动态模型可靠性较高;砂壤土和粉壤土导水率动态模型决定系数分别为0.912和0.930,均方根误差分别为2×10-3和5×10-5 cm/min;模型验证中均方根误差小于0.01 cm/min,相对误差绝对值小于17%,表明模型计算值与实测值的一致性较好。研究结果有助于揭示浑水土壤入渗规律,为进一步探明浑水入渗过程及致密层阻渗机理提供理论依据。  相似文献   

5.
Vegetation restoration efforts (planting trees and grass) have been effective in controlling soil erosion on the Loess Plateau (NW China). Shifts in land cover result in modifications of soil properties. Yet, whether the hydraulic properties have also been improved by vegetation restoration is still not clear. The objective of this paper was to understand how vegetation restoration alters soil structure and related soil hydraulic properties such as permeability and soil water storage capacity. Three adjacent sites with similar soil texture, soil type, and topography, but different land cover (black locust forest, grassland, and cropland) were selected in a typical small catchment in the middle reaches of the Yellow River (Loess Plateau). Seasonal variation of soil hydraulic properties in topsoil and subsoil were examined. Our study revealed that land‐use type had a significant impact on field‐saturated, near‐saturated hydraulic conductivity, and soil water characteristics. Specifically, conversion from cropland to grass or forests promotes infiltration capacity as a result of increased saturated hydraulic conductivity, air capacity, and macroporosity. Moreover, conversion from cropland to forest tends to promote the creation of mesopores, which increase soil water‐storage capacity. Tillage of cropland created temporarily well‐structured topsoil but compacted subsoil as indicated by low subsoil saturated hydraulic conductivity, air capacity, and plant‐available water capacity. No impact of land cover conversion on unsaturated hydraulic conductivities at suction > 300 cm was found indicating that changes in land cover do not affect functional meso‐ and microporosity. Our work demonstrates that changes in soil hydraulic properties resulting from soil conservation efforts need to be considered when soil conservation measures shall be implemented in water‐limited regions. For ensuring the sustainability of such measures, the impact of soil conversion on water resources and hydrological processes needs to be further investigated.  相似文献   

6.
 A neutral and an acidic soil were treated with different doses (0–3,000 mg Cu kg–1 soil as CuSO4) of copper. The percentages of inhibition of nitrification in both soils varied from 5 to 97%, but for the N mineralization these percentages varied from 8 to 65%. The toxic effect of Cu for basal nitrification and N mineralization was assessed as critical. Nitrification was more sensitive than ammonification to copper toxicity. It appears that an ecological dose of inhibition for nitrification and N mineralization higher than 10% is suitable as an indicator for Cu contamination. Soil resiliency assessed by N mineralization in the lime treatments varied from 11 to 154% in the sandy soil and from 70 to 168% in the sandy loam soil. A combined application of lime and compost significantly increased soil resiliency. The percentage increase varied from 904 to 1,390% in the sandy soil and from 767 to 2,230% in the sandy loam soil. It appears that compost was a powerful agent for recovering the soil fertility of Cu-contaminated soils as assessed by N transformation. The acidic sandy soil showed a lower capacity for recovery after Cu toxicity stress. Received: 27 February 1999  相似文献   

7.
8.
The main objective of the study was to test the benefits of compost and zeolite co‐addition on the fertility of organic‐rich Mediterranean soils. Previous pot study in greenhouse found that zeolites mixed with compost significantly improved potassium availability as well as exchangeable potassium capacity in the soils. To further test this finding, a field experiment was conducted using potato – Solanum tuberosum L., desiree cultivar in peat soils of the Hula Valley, Israel. Adhering to the protocol of the greenhouse experiments, the treatments included 5% compost addition with no zeolites, 2% zeolite addition without compost, co‐addition of 5% compost mixed with 2% zeolites and control. We found that compost addition increased significantly the potatoes yield and the number of large tubers; however, the zeolite addition had no impact on yield. Co‐addition of compost and zeolites did not improve total crop yield or number of large tubers compared with compost addition only. The results are consistent with nutrients availability (N, P, K) across the treatments. In a commercialized field using the experiment conditions, the 2% zeolite addition would amount to 18 ton of zeolites per hectare. Hence, we conclude that soil amendment with the tested zeolite might be beneficial to improve soil retention for cationic nutrients (e.g. K+) under high leaching systems such as plant culture in pots, but in the field with high loads of compost, its effect is minor.  相似文献   

9.
The revegetation of soils affected by the historic pollution of an industrial complex in central Chile was studied. Spontaneous and assisted revegetation and changes in the physicochemical properties of the soils were evaluated in field plots that were amended with lime or lime + compost. Lime had no effect on plant productivity in comparison with the control, whereas the incorporation of lime + compost into the soil increased the plant cover and aboveground biomass. The application of lime + compost increased the plant productivity of Chrysanthemum coronarium (a species sensitive to the atmospheric emissions from the industrial complex), thus showing effective in situ stabilization of soil contaminants. Regression analyses suggested that the plant response was due to the increase in the soil organic matter content rather than to the increase in the soil pH. The aboveground biomass and plant cover did not differ under the spontaneous and assisted revegetation regimes. The native soil seed bank was sufficient for attainment of the proper plant cover and biomass production after the application of the soil amendments. Although the pCu2+ in the amended soils was 4 orders of magnitude higher than in the unamended control, the shoot Cu concentration was similar among most of the combinations of plant species and amendments.  相似文献   

10.
11.
Tree plantation is a proven strategy to improve the salt‐affected soils. However, the efficiency of trees to reclaim the soil varies from species to species. This study was therefore, carried out with the objective of assessing the efficiency of 3‐yr old plantations of Prosopis juliflora (Swartz) D.C. (Mesquite), Eucalyptus tereticornis Sm. (Forest Red Gum) and Dalbergia sissoo Roxb. Ex. D.C. (Indian Rosewood) to improve the sodic soil characteristics in Sultanpur districts of Uttar Pradesh, India (26°10′–26°23′N, 81°50′–82°5′E). Soil samples collected from six depths; 0.0–0.1, 0.1–0.3, 0.3–0.6, 0.6–0.9, 0.9–1.2 and 1.2–1.5 m below the surface, were analysed for chemical and physical properties by following standard methods. The infiltration rate (IR) was determined by double concentric infiltrometer and the permeability by constant head permeameter. The trees were measured for their girth at breast height (at 1.33 m from ground) and crown area within a 100 × 100 m sector at each of the sites selected. There were decreases in soil pH (from 10.06 to 9.64) and exchangeable sodium percentage (from 70.6 to 26.9) at the P. juliflora plantation relative to the E. tereticornis and D. sissoo plantations. The organic carbon and nitrogen content increased from 2.0 and 0.18 g/kg to 3.9 and 0.45 g/kg under P. juliflora at the surface (0.0–0.1 m) layer. There was also more exchangeable Ca2+, Mg2+and K+ at exchange sites and a reduction in exchangeable Na+ 3 yr after establishing the plantations. There was a significant decrease in surface soil (0.1 m) bulk density from 1.66 to 1.37 (t/m3) but an increase in porosity from 41.2 to 46.3% and water holding capacity from 4.3 to 4.8 g/kg. The IR and soil permeability also increased after 3 yr of tree growth. Prosopis juliflora proved more effective than E. tereticornis and D. sissoo in its ability to enrich a sodic soil with organic matter and establishing better soil–water characteristics.  相似文献   

12.
Knowledge of hydraulic functions is required for various hydrological and plant‐physiological studies. The evaporation method is frequently used for the simultaneous determination of hydraulic functions of unsaturated soil samples, i.e., the water‐retention curve and hydraulic‐conductivity function. All methodic variants of the evaporation method suffer from the limitation that the hydraulic functions can only be determined to a mean tension of ≈ 60 kPa. This is caused by the limited measurement range of the tensiometers of typically 80 kPa on the dry end. We present a new, cost‐ and time‐saving approach which overcomes this restriction. Using the air‐entry pressure of the tensiometer's porous ceramic cup as additional defined tension value allows the quantification of hydraulic functions up to close to the wilting point. The procedure is described, uncertainties are discussed, and measured as well as simulated test results are presented for soil samples of various origins, different textures (sand, loam, silt, clay, and peat) and variable dry bulk density. The experimental setup followed the system HYPROP which is a commercial device with vertically aligned tensiometers that is optimized to perform evaporation measurements. During the experiment leaked water from the tensiometer interior wets the surrounding soil of the tensiometer cup and can lead to a tension retardation as shown by simulation results. This effect is negligible when the tensiometers are embedded vertically. For coarsely textured soils and horizontal tensiometer alignment, however, the retardation must be considered for data evaluation.  相似文献   

13.
控释尿素在水及不同类型土壤中的养分释放特征   总被引:9,自引:0,他引:9  
试验采用静水培养和土壤培养研究控释尿素的养分释放特征,比较其在不同类型土壤和静水中的养分释放差异, 探讨土壤类型对其养分释放的影响。结果表明,试验选用的控释尿素在250.5℃静水条件下, 初期养分溶出率为1.7%, 28 d养分累积释放率为59.2%, 释放期为50 d, 控释尿素在土壤培养的前50 d, 水稻土中的氮素表观释放率显著低于潮土和黄棕壤中, 50~140 d在水稻土中的氮素表观释放率最高,140 d之后在三种类型土壤中的氮素表观释放率无显著差异。控释尿素在不同类型土壤中的养分表观释放率均与在静水中的显著相关。  相似文献   

14.
Variability in soil properties is a complication for fertilization, irrigation, and amendment application. However, only limited progress has been made in managing soil variability for uniform productivity and increased water‐use efficiency. This study was designed to ameliorate the poor‐productivity areas of the variable sandy soils in Florida citrus groves by using frequent small irrigations and applying organic and inorganic soil amendments. Two greenhouse experiments were set up with sorghum and radish as bioassay crops in a randomized complete block design (RCBD). The factors studied were two soil‐productivity classes (very poor and very good), two water contents (50% and 100% of field capacity), two amendments (phosphatic clay and Fe humate), and two amendment rates (10 and 25 g kg–1 for sorghum and 50 and 100 g kg–1 for radish). Amendments applied at 50 and 100 g kg–1 increased the water‐holding capacity (WHC) of poor soil by 2‐ to 6‐fold, respectively. The lower rates (10 and 25 g kg–1) of amendments were not effective in enhancing sorghum growth. The higher rates (50 and 100 g kg–1) doubled the radish growth as compared to the control. The results indicate that rates greater than 50 g kg–1 of both amendments were effective in improving water retention and increasing productivity. Irrigation treatment of 100% of field capacity (FC) increased the sorghum and radish growth by about 2‐fold as compared with the 50%–water content treatment. The results suggest that the root‐zone water content should be maintained near FC by frequent small irrigations to enhance water availability in excessively drained sandy soils. In addition, application of soil amendments in the root zone can enhance the water retention of these soils. Furthermore, managing variable sandy soils with WHC‐based irrigation can increase water uptake and crop production in the poor areas of the grove.  相似文献   

15.
The aim of the paper is to compare results of the instantaneous profile method (IPM) for measurement and calculation of unsaturated hydraulic conductivity k(ψ) of soils obtained with different measurement data resolution. The application of IPM allows to realize a great number of k(ψ) measurements for the purpose of mapping soil properties on large areas. Application of shorter samples i.e. less sensors makes the method even more quick and cheap. The calculation of unsaturated soil water conductivity by the IPM method bases on measurements of time and space variability of water content and water pressure within the soil sample in a cylinder. The spatial resolution of data depends on the number of probes applied in the core. The question arises how the number of compartments within one core influences the calculation of soil hydraulic conductivity. Application of three sensors instead of five reduced the accuracy of calculation but allowes to use 5 cm long standard cores during unsaturated flow experiment.<?show $6#>  相似文献   

16.
为解决淤地坝长期运行,泥沙不断沉积超出设计库容,漫延至溢洪道内并在宽顶堰前堆积从而影响泄流的问题,该研究通过物理模型试验的方法,对不同淤积高度下溢洪道内宽顶堰的水流流态、水面线、流速分布、流量系数等特性进行对比分析。结果表明,随着淤积高度的增加,堰流在保持宽顶堰原有的过流形态同时壅水程度逐渐降低;淤积高度的不同会影响堰前及堰上区域的水面高程和断面流速,堰前水位随着淤积高度的增加略微下降,过流断面逐渐减小,水流流速增大;随着淤积高度的增加,流量系数逐渐增大,即宽顶堰的泄流能力有所增强。因此引入参数相对淤积高度(淤积高度S与堰高P之比),根据试验数据拟合得到了淤积工况下宽顶堰流量系数经验公式,计算流量与实测流量的平均相对误差为2.7%,满足精度要求,可为淤地坝除险加固工程的相关工作提供参考。  相似文献   

17.
Knowledge of hydraulic properties is essential for understanding water movement in soil. However, very few data on these properties are available from the Loess Plateau of China. We determined the hydraulic properties of two silty loam soils on agricultural land at sites in Mizhi and Heyang in the region. Undisturbed soil cores were collected from seven layers to one meter depth to determine saturated hydraulic conductivity, soil water retention curves and unsaturated hydraulic conductivity (by the hot-air method). Additional field methods (internal drainage and Guelph permeameter) were applied at the Heyang site to compare differences between methods. Soil water retention curves were flatter at Mizhi than at Heyang. Water contents at saturation and wilting point (1500 kPa) were higher at Heyang than at Mizhi. However, unsaturated hydraulic conductivity was lower at Heyang than at Mizhi, with maximum differences of more than six orders of magnitude. Nevertheless, the two soils had similar saturated hydraulic conductivities of about 60 cm day− 1. Comparison between the methods showed that soil water retention curves obtained in the laboratory generally agreed well with the field data. Field-saturated conductivities had similar values to those obtained using the soil core method. Unsaturated hydraulic conductivities predicted by the Brooks–Corey model were closer to field data than corresponding values predicted by the van Genuchten model.  相似文献   

18.
Abstract. This study investigated the effect of the same volume of leaching water applied consecutively in either equal amounts or increasing amounts or decreasing amounts on the hydraulic conductivity of a saline sodic soil in 30 cm plastic columns in the laboratory. Gypsum was mixed with the surface 2–3 cm of soil. After leaching, the hydraulic conductivity was measured in each 10 cm depth of soil. Hydraulic conductivity decreased strongly ( P <0.05) with depth and the most effective method of applying the water was in gradually increasing amounts.  相似文献   

19.
20.
Drainage and intensive use of fens lead to alterations in the physical characteristics of peat soils. This was demonstrated using parameters of water balance (available water capacity) and the evaluated unsaturated hydraulic conductivity. Deriving the distribution of the pore size from the water retention curve was flawed because of shrinkage due to drainage, especially at high soil water potentials. These errors became greater as the peat was less influenced by soil‐genetic processes. The water retention curves (desorption) evaluated in the field and the laboratory satisfactorily corresponded. However, the wetting‐ and drainage‐curves obtained in the field differed up to 30 vol.‐% water content at same soil water potentials. These differences were largely due to a wetting inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号