首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics, PK/PD ratios, and Monte Carlo modeling of enrofloxacin HCl‐2H2O (Enro‐C) and its reference preparation (Enro‐R) were determined in cows. Fifty‐four Jersey cows were randomly assigned to six groups receiving a single IM dose of 10, 15, or 20 mg/kg of Enro‐C (Enro‐C10, Enro‐C15, Enro‐C20) or Enro‐R. Serial serum samples were collected and enrofloxacin concentrations quantified. A composite set of minimum inhibitory concentrations (MIC) of Leptospira spp. was utilized to calculate PK/PD ratios: maximum serum concentration/MIC (Cmax/MIC90) and area under the serum vs. time concentration of enrofloxacin/MIC (AUC0‐24/MIC90). Monte Carlo simulations targeted Cmax/MIC = 10 and AUC0‐24/MIC = 125. Mean Cmax obtained were 6.17 and 2.46 μg/ml; 8.75 and 3.54 μg/ml; and 13.89 and 4.25 μg/ml, respectively for Enro‐C and Enro‐R. Cmax/MIC90 ratios were 6.17 and 2.46, 8.75 and 3.54, and 13.89 and 4.25 for Enro‐C and Enro‐R, respectively. Monte Carlo simulations based on Cmax/MIC90 = 10 indicate that only Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cows, predicting a success rate ≥95% when MIC50 = 0.5 μg/ml, and ≥80% when MIC90 = 1.0 μg/ml. Although Enro‐C15 and Enro‐C20 may be useful to treat leptospirosis in cattle, clinical trials are necessary to confirm this proposal.  相似文献   

2.
In this study, 908 bacterial pathogens from defined infections of dogs and cats were tested for their susceptibility to the novel fluoroquinolone pradofloxacin, which was approved in 2011 for use in cats and dogs. Most of the bacteria tested (Staphylococcus aureus, Staphylococcus pseudintermedius, Escherichia coli, β-haemolytic streptococci, Pasteurella multocida and Bordetella bronchiseptica) exhibited low pradofloxacin MIC90 values of ≤0.25 μg/ml. Solely Proteus spp. and Pseudomonas aeruginosa had higher MIC90 values of ≥4 μg/ml. Only six (3.4%) of 177 S. pseudintermedius and 12 (5.3%) of 227 E. coli isolates showed pradofloxacin MICs of ≥2 μg/ml. Analysis of the quinolone resistance determining regions of the target genes identified double mutations in GyrA that resulted in amino acid exchanges S83L + D87N or S83L + D87Y and single or double mutations in ParC that resulted in amino acid exchanges S80I or S80I + E84G in all 12 E. coli isolates. The six S. pseudintermedius isolates exhibited amino acid exchanges S84L or E88K in GyrA and S80I in GrlA. Comparative analysis of the MICs of pradofloxacin and the MICs determined for enrofloxacin and its main metabolite ciprofloxacin, but also marbofloxacin, orbifloxacin, difloxacin and ibafloxacin was conducted for the target pathogens S. pseudintermedius, E. coli and P. multocida. This comparison confirmed that pradofloxacin MICs were significantly lower than those of the other tested fluoroquinolones.  相似文献   

3.
Pharmacokinetic–pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (Cav0–48 h)/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time–kill curves established broth and serum breakpoint values for area under curve (AUC0–24 h)/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady‐state. For 90% TAR, predicted daily doses at steady‐state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae).  相似文献   

4.
The aim of this study was to evaluate the potential of chloramphenicol and florfenicol as second‐line antimicrobial agents for treatment of infections caused by methicillin‐resistant Staphyococcus pseudintermedius (MRSP) and extended‐spectrum β‐lactamase (ESBL)‐producing Escherichia coli in dogs, through a systematic in vitro assessment of the pharmacodynamic properties of the two drugs. Minimum inhibitory concentrations (MIC) and phenicol resistance genes were determined for 169 S. pseudintermedius and 167 E. coli isolates. Minimum bactericidal concentrations (MBC), time‐killing kinetics, and postantibiotic effect (PAE) of both agents against wild‐type isolates of each species were assessed. For S. pseudintermedius, the chloramphenicol MIC90 was 32 μg/mL. No florfenicol resistance was detected in this species (MIC90 = 4 μg/mL). The MIC90 of both agents against E. coli was 8 μg/mL. Resistance genes found were catpC221 in S. pseudintermedius and catA1 and/or floR in E. coli. The phenicols displayed a time‐dependent, mainly, bacteriostatic effect on both species. Prolonged PAEs were observed for S. pseudintermedius, and no PAEs were detected for E. coli. More research into determination of PK/PD targets of efficacy is needed to further assess the clinical use of chloramphenicol and florfenicol as second‐line agents in dogs, optimize dosage regimens, and set up species‐specific clinical break points.  相似文献   

5.
Pharmacokinetic (PK)–pharmacodynamic (PD) integration of crystalline ceftiofur‐free acid (CCFA) was established in six healthy female goats administered subcutaneously (s.c.) on the left side of the neck at a dosage of 6.6 mg/kg body weight. Serum concentrations of ceftiofur and desfuroylceftiofur (DFC) were determined using high‐performance liquid chromatography. Mutant prevention concentration (MPC), minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ceftiofur were determined for Pasteurella (P.) multocida. Mean terminal half‐life and mean residence time of ceftiofur + DFC were 48.6 h and 104 h, respectively. In vitro plasma protein binding of ceftiofur was 46.6% in goats. The MIC and MBC values of ceftiofur were similar in serum and MHB and a very small difference between these values confirmed bactericidal activity of drug against P. multocida. In vitro and ex vivo time–kill curves for P. multocida demonstrated a time‐dependent killing action of drug. Considering target serum concentration of 0.20 μg/mL, PK‐PD values for AUC24 h/MIC90 and T > MIC90, respectively, were 302 h and 192 h against P. multocida. A MPC/MIC ratio of 10–14 indicated that selective pressure for proliferation of resistant mutants of P. multocida is minimal after CCFA single‐dose administration. Based on MPC = 1.40 μg/mL for P. multocida, the PK‐PD indices, viz. T > MPC and AUC24/MPC, were 48 h and 43 h, respectively. The data suggested the use of single dose (6.6 mg/kg, s.c.) of CCFA in goats to obtain clinical and bacteriological cure of pneumonia due to P. multocida.  相似文献   

6.
Pradofloxacin is a new veterinary 8-cyano-fluoroquinolone developed for use against bacterial infections in dogs and cats involving both aerobic and anaerobic bacteria. The minimal bactericidal concentrations have been determined against clinical isolates of Staphylococcus pseudintermedius, Staphylococcus aureus, Escherichia coli, Pasteurella multocida, Streptococcus canis, Proteus spp., Fusobacterium spp., Porphyromonas gingivalis and Prevotella species. A subset of these species was selected, and the in vitro rate of kill by pradofloxacin was determined. For 27 of the 30 tested aerobic strains the pradofloxacin MBC was within two doubling dilutions of the MIC. For the remaining strains, the MIC and MBC were within three to four doubling dilutions. Pradofloxacin also demonstrated bactericidal activity against all anaerobic strains, and the MBC was equal to the MIC for four of the strains, within 1 doubling dilution for three strains, within 2 dilutions for a further 3 strains and within 3 dilutions for the remaining five strains. As pradofloxacin concentration was increased, a faster rate of killing was observed; bactericidal effects were seen in all cases at concentrations ≤ 0.25 μg/mL. The bactericidal activity against the anaerobic strains was marked, of particular relevance was the complete absence of regrowth even at 48 h at concentrations as low as 0.125 μg/mL. In conclusion, pradofloxacin exhibits clear bactericidal activity in terms of MBC and kill kinetics against aerobic and anaerobic clinical isolates from dogs and cats at concentrations that are greatly exceeded within the systemic circulation after administration of the recommended therapeutic doses to the target animals. It is expected that such a rapid rate of kill will play a significant role in clinical efficacy. These data demonstrate the complete and rapid killing of anaerobic bacteria by a veterinary 8-cyano-fluoroquinolone.  相似文献   

7.
Enrofloxacin, a key antimicrobial agent in commercial avian medicine, has limited bioavailability (60%). This prompted its chemical manipulation to yield a new solvate‐recrystallized enrofloxacin hydrochloride dihydrate entity (enroC). Its chemical structure was characterized by means of mass spectroscopy, Fourier transformed infrared spectroscopy, X‐ray powder diffraction, and thermal analysis. Comparative oral pharmacokinetics (PK) of reference enrofloxacin (enroR) and enroC in broiler chickens after oral administration revealed noticeable improvements in key parameters and PK/PD ratios. Maximum serum concentration values were 2.61 ± 0.21 and 5.9 ± 0.42 μg/mL for enroR and enroC, respectively; mean residence time was increased from 5.50 ± 0.26 h to 6.20 ± 0.71 h and the relative bioavailability of enroC was 336%. Considering Cmax/MIC and AUC/MIC ratios and the MIC values for a wild‐type Escherichia coli O78/H12 (0.25 μg/mL), optimal ratios will only be achieved by enroC (Cmax/MIC = 23.6 and AUC/MIC = 197.7 for enroC; vs. Cmax/MIC = 10.4 and AUC/MIC = 78.1 for enroR). Furthermore, enroC may provide in most cases mutant prevention concentrations (Cmax/MIC ≥ 16). Ready solubility of powder enroC in drinking water at concentrations regularly used (0.01%) to provide an additional advantage of enroC in the field. Further development of enroC is warranted before it can be recommended for clinical use in veterinary medicine.  相似文献   

8.
BACKGROUND: Pradofloxacin is a 3rd generation veterinary fluoroquinolone designed to restrict the emergence of antimicrobial resistance during therapy. HYPOTHESIS: Pradofloxacin 2.5% oral suspension is a safe, efficacious, and palatable treatment for bacterial urinary tract infections (UTI) in cats. ANIMALS: Seventy-eight cats presented with lower urinary tract signs and were positive on bacterial culture of urine. METHODS: Cats were allocated into 3 treatment groups depending on bacterial susceptibility results: pradofloxacin (n = 27), doxycycline (n = 23), or amoxicillin-clavulanic acid (n = 28). All antimicrobials were presented in palatable liquid form. Posttreatment urine specimens were collected after completion of the course of treatment and submitted for bacterial culture and sensitivity. Owners were questioned before and after treatment about their experiences with administering oral medication to their cats. RESULTS: Posttreatment urine culture was negative in all cats in the pradofloxacin group, but there were 3 treatment failures in each of the other groups. Owners' perceptions of the difficulty of administering oral medication to their cats was more positive posttreatment than pretreatment (P = .001; P < .001). There was no difference in palatability among the treatment groups (P > .05). CONCLUSIONS AND CLINICAL IMPORTANCE: We conclude that pradofloxacin 2.5% oral suspension is a highly effective and safe antimicrobial treatment for bacterial lower urinary tract infection in cats, and that the palatable formulation optimizes owner compliance. These findings make pradofloxacin a useful addition to the veterinary formulary.  相似文献   

9.
The aims of this study were to establish optimal doses of doxycycline (dox) against Haemophilus parasuis on the basis of pharmacokinetic–pharmacodynamic (PK‐PD) integration modeling. The infected model was established by intranasal inoculation of organism in pigs and confirmed by clinical signs, blood biochemistry, and microscopic examinations. The recommended dose (20 mg/kg b.w.) was administered in pigs through intramuscular routes for PK studies. The area under the concentration 0‐ to 24‐hr curve (AUC0–24), elimination half‐life (T½ke), and mean residence time (MRT) of dox in healthy and H. parasuis‐infected pigs were 55.51 ± 5.72 versus 57.10 ± 4.89 μg·hr/ml, 8.28 ± 0.91 versus 9.80 ± 2.38 hr, and 8.43 ± 0.27 versus 8.79 ± 0.18 hr, respectively. The minimal inhibitory concentration (MIC) of dox against 40 H. parasuis isolates was conducted through broth microdilution method, the corresponding MIC50 and MIC90 were 0.25 and 1 μg/ml, respectively. The Ex vivo growth inhibition data suggested that dox exhibited a concentration‐dependent killing mechanism. Based on the observed AUC24 hr/MIC values by modeling PK‐PD data in H. parasuis‐infected pigs, the doses predicted to obtain bacteriostatic, bactericidal, and elimination effects for H. parasuis over 24 hr were 5.25, 8.55, and 10.37 mg/kg for the 50% target attainment rate (TAR), and 7.26, 13.82, and 18.17 mg/kg for 90% TAR, respectively. This study provided a more optimized alternative for clinical use and demonstrated that the dosage 20 mg/kg of dox by intramuscular administration could have an effective bactericidal activity against H. parasuis.  相似文献   

10.
BACKGROUND: Upper respiratory tract disease (URTD) of cats is caused by a number of pathogens, including Chlamydophila felis and Mycoplasma spp. For effective treatment of both infections, doxycycline and enrofloxacin are recommended, but adverse effects limit their use in cats. HYPOTHESIS: That the fluoroquinolone pradofloxacin is effective against C. felis and Mycoplasma infection in cats with URTD or conjunctivitis. ANIMALS: Thirty-nine cats with signs of URTD or conjunctivitis. METHODS: Placebo-controlled, double-blind clinical trial. Cats were randomly entered into 1 of 2 treatment groups: treated PO with either 5 mg/kg pradofloxacin q24h or 5 mg/kg doxycycline q12h for 42 consecutive days. Changes in health status and clinical scores were evaluated. The presence of C. felis and Mycoplasma spp. was determined by quantitative polymerase chain reaction (PCR) and nested PCR of conjunctival swabs, respectively. RESULTS: At the beginning of the study, C. felis and Mycoplasma spp. were detected in 23 and 20 cats, respectively. Cats of both groups responded rapidly with a marked improvement in clinical signs within the 1st week. During treatment with either drug, C. felis DNA copy number declined quickly. Complete elimination of Mycoplasma spp. was achieved in both groups; however, whereas all cats receiving doxycycline eliminated C. felis, 4 cats treated with pradofloxacin remained PCR-positive. CONCLUSION AND CLINICAL IMPORTANCE: This study demonstrates that both pradofloxacin and doxycycline have good efficacy against C. felis and Mycoplasma spp., resulting in a marked improvement of clinical signs. However, C. felis DNA remained in some cats after treatment with pradofloxacin, suggesting that infection might not have been eliminated.  相似文献   

11.
The aim of this study was to establish an integrated pharmacokinetic/pharmacodynamic (PK/PD) modeling approach of acetylkitasamycin for designing dosage regimens and decreasing the emergence of drug‐resistant bacteria. After oral administration of acetylkitasamycin to healthy and infected pigs at the dose of 50 mg/kg body weights (bw), a rapid and sensitive LC–MS/MS method was developed and validated for determining the concentration change of the major components of acetylkitasamycin and its possible metabolite kitasamycin in the intestinal samples taken from the T‐shape ileal cannula. The PK parameters, including the integrated peak concentration (Cmax), the time when the maximum concentration reached (Tmax) and the area under the concentration–time curve (AUC), were calculated by WinNonlin software. The minimum inhibitory concentration (MIC) of 60 C. perfringens strains was determined following CLSI guideline. The in vitro and ex vivo activities of acetylkitasamycin in intestinal tract against a pathogenic strain of C. perfringens type A (CPFK122995) were established by the killing curve. Our PK data showed that the integrated Cmax, Tmax, and AUC were 14.57–15.81 μg/ml, 0.78–2.52 hR, and 123.84–152.32 μg hr/ml, respectively. The PD data show that MIC50 and MIC90 of the 60 C. perfringens isolates were 3.85 and 26.45 μg/ml, respectively. The ex vivo growth inhibition data were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC to produce bacteriostasis (4.84 hr), bactericidal activity (15.46 hr), and bacterial eradication (24.99 hr). A dosage regimen of 18.63 mg/kg bw every 12 hr could be sufficient in the prevention of C. perfringens infection. The therapeutic dosage regimen for C. perfringens infection was at the dose of 51.36 mg/kg bw every 12 hr for 3 days. In summary, the dosage regimen for the treatment of C. perfringens in pigs administered with acetylkitasamycin was designed using PK/PD integrate model. The designed dose regimen could to some extent decrease the risk for emergence of macrolide resistance.  相似文献   

12.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

13.
Problem – The need for immediate, effective antimicrobial therapy in the critical care patient must be tempered by approaches which simultaneously minimize emergence of antimicrobial resistance. Ideally, therapy will successfully resolve clinical signs of infection, while eradicating infecting pathogens such that the risk of resistance is avoided. Increasing limitations associated with empirical antimicrobial choices direct the need for culture and susceptibility data as a basis of therapy. Even so, such in vitro data should be utilized within its limitations. Objectives – To demonstrate the attributes and limitations of patient and population culture and susceptibility (pharmacodynamic) data in the selection of antimicrobial drugs and to demonstrate the design of individualized dosing regimens based on integration of pharmacodynamic (PD) and pharmacokinetic (PK) data. Diagnosis – Limitations in culture and susceptibility testing begin with sample collection and continue through drug selection and dose design. Among the challenges in interpretation is discrimination between pathogens and commensals. Properly collected samples are critical for generation of data relevant to the patient's infection. Data are presented as minimum inhibitory concentrations (MICs). The MIC facilitate selection of the most appropriate drug, particularly when considered in the context of antimicrobial concentrations achieved in the patient at a chosen dose. Integration of MIC data with key PK data yields the Cmax:MIC important to efficacy of concentration‐dependent drugs and T>MIC, which guides use of time‐dependent drugs. These indices are then used to design dosing regimens that are more likely to kill all infecting pathogens. In the absence of patient MIC data, population data (eg, MIC90) may serve as a reasonable surrogate. Conclusions – Properly collected, performed, and interpreted culture and susceptibility data are increasingly important in the selection of and design of dosing regimens for antimicrobial drugs. Integration of PK and PD data as modified by host and microbial factors supports a hit hard, exit fast approach to therapy that will facilitate efficacy while minimizing resistance.  相似文献   

14.
The main objectives of this study were (i) to evaluate the serum pharmacokinetic behaviour and milk penetration of marbofloxacin (MFX; 5 mg/kg), after intravenous (IV) and intramuscular (IM) administration in lactating goats and simulate a multidose regimen on steady‐state conditions, (ii) to determine the minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of coagulase negative staphylococci (CNS) isolated from caprine mastitis in Córdoba, Argentina and (iii) to make a PK/PD analysis by Monte Carlo simulation from steady‐state pharmacokinetic parameters of MFX by IV and IM routes to evaluate the efficacy and risk of the emergence of resistance. The study was carried out with six healthy, female, adult Anglo Nubian lactating goats. Marbofloxacin was administered at 5 mg/kg bw by IV and IM route. Serum and milk concentrations of MFX were determined with HPLC/uv. From 106 regional strains of CNS isolated from caprine mastitis in herds from Córdoba, Argentina, MICs and MPCs were determined. MIC90 and MPC90 were 0.4 and 6.4 μg/ml, respectively. MIC and MPC‐based PK/PD analysis by Monte Carlo simulation indicates that IV and IM administration of MFX in lactating goats may not be adequate to recommend it as an empirical therapy against CNS, because the most exigent endpoints were not reached. Moreover, this dose regimen could increase the probability of selecting mutants and resulting in emergence of resistance. Based on the results of Monte Carlo simulation, the optimal dose of MFX to achieve an adequate antimicrobial efficacy should be 10 mg/kg, but it is important take into account that fluoroquinolones are substrates of efflux pumps, and this fact may determine that assumption of linear pharmacokinetics at high doses of MFX may be incorrect.  相似文献   

15.
The present study characterizes the pharmacokinetic (PK) and pharmacodynamic (PD) relationships of the α2‐adrenergic receptor agonists detomidine (DET), medetomidine (MED) and dexmedetomidine (DEX) in parallel groups of horses from in vivo data after single bolus doses. Head height (HH), heart rate (HR), and blood glucose concentrations were measured over 6 h. Compartmental PK and minimal physiologically based PK (mPBPK) models were applied and incorporated into basic and extended indirect response models (IRM). Population PK/PD analysis was conducted using the Monolix software implementing the stochastic approximation expectation maximization algorithm. Marked reductions in HH and HR were found. The drug concentrations required to obtain inhibition at half‐maximal effect (IC50) were approximately four times larger for DET than MED and DEX for both HH and HR. These effects were not gender dependent. Medetomidine had a greater influence on the increase in glucose concentration than DEX. The developed models demonstrate the use of mechanistic and mPBPK/PD models for the analysis of clinically obtainable in vivo data.  相似文献   

16.
Körber‐Irrgang, B., Wetzstein, H.‐G., Bagel‐Trah, S., Hafner, D., Kresken, M. Comparative activity of pradofloxacin and marbofloxacin against coagulase‐positive staphylococci in a pharmacokinetic–pharmacodynamic model based on canine pharmacokinetics. J. vet. Pharmacol. Therap.  35 , 571–579. Pradofloxacin (PRA), a novel veterinary 8‐cyano‐fluoroquinolone (FQ), is active against Staphylococcus pseudintermedius, the primary cause of canine pyoderma. An in vitro pharmacokinetic–pharmacodynamic model was used to compare the activities of PRA and marbofloxacin (MAR) against three clinical isolates of S. pseudintermedius and reference strain Staphylococcus aureus ATCC 6538. Experiments were performed involving populations of 1010 CFU corresponding to an inoculum density of approximately 5 × 107 CFU/mL. The time course of free drug concentrations in canine serum was modelled, resulting from once daily standard oral dosing of 3 mg of PRA/kg and 2 mg of MAR/kg. In addition, experimentally high doses of 6 mg of PRA/kg and 16 mg of MAR/kg were tested against the least susceptible strain. Viable counts were monitored over 24 h. At concentrations associated with standard doses, PRA caused a faster and more sustained killing than MAR of all strains. The ratios of free drug under the concentration–time curve for 24 h over MIC and the maximum concentration of free drug over MIC were at least 90 and 26, and 8.5 and 2.1 for PRA and MAR, respectively. At experimentally high doses, PRA was superior to MAR in terms of immediate killing. Subpopulations with reduced susceptibility to either FQ did not emerge. We conclude that PRA is likely to be an efficacious therapy of canine staphylococcal infections.  相似文献   

17.
The in vitro susceptibility to penicillin G, erythromycin and clindamycin was determined by the disc diffusion test and by E‐test for a total of 47 streptococcal strains (three Streptococcus uberis, 36 Streptococcus agalactiae, eight Streptococcus dysgalactiae spp. dysgalactiae) isolated from bovine intramammary infections in Argentina. Moreover, resistance phenotypes of erythromycin‐resistant streptococcal isolates was characterized. MIC90 of penicillin G, erythromycin and clindamycin for S. agalactiae were 0.75, 8.0 and 12.0 μg/ml respectively. Resistance to erythromycin and clindamycin was detected in 13 (27.6%) and 12 (25.5%) isolates respectively. No isolate was resistant to penicillin G. Resistance against macrolides, lincosamides and streptogramin B (MLSB) represented by the constitutive MLSB phenotype was present in 11 (23.4%) erythromycin‐resistant isolates and two isolates (4.3%) expressed the M phenotype. The inducible MLSB phenotype was not identified. Results suggest that beta‐lactams are the first‐line antibiotics when treating streptococcal udder infections; however, the continuous monitoring of the antibiotic resistance is essential, as the emergence of resistant strains has become a growing concern on the therapy of bovine mastitis.  相似文献   

18.
The pharmacokinetic–pharmacodynamic (PK/PD) modeling of enrofloxacin data using mutant prevention concentration (MPC) of enrofloxacin was conducted in febrile buffalo calves to optimize dosage regimen and to prevent the emergence of antimicrobial resistance. The serum peak concentration (Cmax), terminal half‐life (t1/2K10), apparent volume of distribution (Vd(area)/F), and mean residence time (MRT) of enrofloxacin were 1.40 ± 0.27 μg/mL, 7.96 ± 0.86 h, 7.74 ± 1.26 L/kg, and 11.57 ± 1.01 h, respectively, following drug administration at dosage 12 mg/kg by intramuscular route. The minimum inhibitory concentration (MIC), minimum bactericidal concentration, and MPC of enrofloxacin against Pasteurella multocida were 0.055, 0.060, and 1.45 μg/mL, respectively. Modeling of ex vivo growth inhibition data to the sigmoid Emax equation provided AUC24 h/MIC values to produce effects of bacteriostatic (33 h), bactericidal (39 h), and bacterial eradication (41 h). The estimated daily dosage of enrofloxacin in febrile buffalo calves was 3.5 and 8.4 mg/kg against P. multocida/pathogens having MIC90 ≤0.125 and 0.30 μg/mL, respectively, based on the determined AUC24 h / MIC values by modeling PK/PD data. The lipopolysaccharide‐induced fever had no direct effect on the antibacterial activity of the enrofloxacin and alterations in PK of the drug, and its metabolite will be beneficial for its use to treat infectious diseases caused by sensitive pathogens in buffalo species. In addition, in vitro MPC data in conjunction with in vivo PK data indicated that clinically it would be easier to eradicate less susceptible strains of P. multocida in diseased calves.  相似文献   

19.
Rapidly growing mycobacteria (RGM) and Nocardiae can cause severe or refractory infections in cats and dogs. Prolonged antibacterial therapy is required to cure these infections. As fluoroquinolones have been used in combination therapy for treating RGM infections, isolates from the Mycobacterium smegmatis cluster (n=64), Mycobacterium fortuitum cluster (n=17), and M. mageritense cluster (n=2), collected from feline and canine patients, underwent susceptibility testing to pradofloxacin. The MIC(50), MIC(90) and tentative epidemiological cut-off (ECOFF) values as determined by microbroth dilution susceptibility testing that inhibited growth of the M. smegmatis and M. fortuitum clusters were 0.063, 0.125 and ≤ 0.25; and 0.125, 0.250 and ≤ 1.0 μg/mL, respectively. E-Test results showed similar trends but MICs were lower than those for microbroth dilution. In summary, pradofloxacin demonstrated effective in vitro activity against RGM isolates. Additionally, veterinary isolates of Nocardia nova (n=18), Nocardia farcinica (n=3) and Nocardia cyriacigeorgica (n=1) underwent microbroth dilution testing to ciprofloxacin, enrofloxacin and pradofloxacin. The MIC(50) and MIC(90) of pradofloxacin, ciprofloxacin and enrofloxacin that inhibited growth of Nocardia nova isolates were 2 (4), 8 (16), 16 (32) μg/mL, respectively. The tentative ECOFF values for pradofloxacin and ciprofloxacin were 32 μg/mL and for enrofloxacin 64 μg/mL. The MIC or MIC range for the three N. farcinica isolates of pradofloxacin, ciprofloxacin and enrofloxacin were 0.25-0.5, 2 and 2 μg/mL and for the single N. cyriacigeorgica isolate were 1, 4 and 4 μg/mL, respectively. On the basis on these results, fluoroquinolones appear to have limited therapeutic potential for most Nocardia infections.  相似文献   

20.
Background – The emergence and dissemination of meticillin‐resistant staphylococci has created significant treatment challenges in veterinary medicine and increased interest in topical therapy for superficial infections. Concern has been expressed regarding the use of some topical antimicrobials in animals because of the potential for emergence of resistance, and additional options are required. Miconazole has limited antibacterial properties that include antistaphylococcal activity. Hypothesis/Objectives – The objective of this study was to assess the in vitro susceptibility of Staphylococcus pseudintermedius and Staphylococcus aureus to miconazole. Methods – In vitro susceptibility of 112 meticillin‐resistant S. pseudintermedius (MRSP), 53 meticillin‐resistant S. aureus (MRSA) and 37 meticillin‐susceptible S. pseudintermedius (MSSP) to miconazole was assessed using agar dilution. Results – The minimal inhibitory concentration (MIC) range, MIC50 and MIC90 for MRSP were 1–8, 2 and 4 μg/mL, respectively. Corresponding results for MRSA were 1–8, 2 and 6 μg/mL, and for MSSP 1–4, 2 and 2 μg/mL. The MIC for MSSP was a significantly lower MIC than that for both MRSP (P = 0.006) and MRSA (P < 0.001), while the MIC for MRSP was significantly lower than that for MRSA (P = 0.001). Conclusions and clinical importance – These in vitro data suggest that miconazole could be a useful therapeutic option for superficial infections caused by meticillin‐susceptible and meticillin‐resistant staphylococci, but proper clinical investigation is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号