首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tea is one of the most popular beverages in the world and the tea plant, Camellia sinensis (L.) O. Kuntze, is an important crop in many countries. To increase the amount of genomic information available for C. sinensis, we constructed seven cDNA libraries from various organs and used these to generate expressed sequence tags (ESTs). A total of 17,458 ESTs were generated and assembled into 5,262 unigenes. About 50% of the unigenes were assigned annotations by Gene Ontology. Some were homologous to genes involved in important biological processes, such as nitrogen assimilation, aluminum response, and biosynthesis of caffeine and catechins. Digital northern analysis showed that 67 unigenes were expressed differentially among the seven organs. Simple sequence repeat (SSR) motif searches among the unigenes identified 1,835 unigenes (34.9%) harboring SSR motifs of more than six repeat units. A subset of 100 EST-SSR primer sets was tested for amplification and polymorphism in 16 tea accessions. Seventy-one primer sets successfully amplified EST-SSRs and 70 EST-SSR loci were polymorphic. Furthermore, these 70 EST-SSR markers were transferable to 14 other Camellia species. The ESTs and EST-SSR markers will enhance the study of important traits and the molecular genetics of tea plants and other Camellia species.  相似文献   

2.
A chicory genetic map of 1208 cM has been created using 247 F2 plants and 237 markers (170 AFLP, 28 SSR, 27 EST‐SNP and 12 EST‐SSR). This map covers 84% of the chicory genome. The chicory‐genic‐markers‐associated sequences were used to find potential orthologs in mapped lettuce ESTs from the Compositae Genome Project Database. Twenty‐seven putative orthologous pairs were retained, pinpointing seven putative blocks of synteny that covered 11% of the chicory genome and 13% of the lettuce genome, opening new perspectives for the analysis of these two species.  相似文献   

3.
The Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), is an important pest of small‐grain cereals, particularly wheat, worldwide. The most efficient strategy against the RWA is to identify sources of resistance and to introduce them into susceptible wheat genotypes. This study was conducted to determine the mode of inheritance of the RWA resistance found in ICARDA accession IG 100695, to identify wheat microsatellite markers closely linked to the gene and to map the chromosomal location of the gene. Simple sequence repeat (SSR) marker scores were identified in a mapping population of 190 F2 individuals and compared, while phenotypic screening for resistance was performed in F2 : 3 families derived from a cross between ‘Basribey’ (susceptible) and IG 100695 (resistant). Phenotypic segregation of leaf chlorosis and rolling displayed the effect of a single dominant gene, temporarily denoted Dn100695, in IG 100695. Dn100695 was mapped on the short arm of chromosome 7D with four linked SSR markers, Xgwm44, Xcfd14, Xcfd46 and Xbarc126. Dn100695 and linked SSR markers may be useful for improving resistance for RWA in wheat breeding.  相似文献   

4.
Lagerstroemia (crape myrtle) are famous ornamental plants with large pyramidal racemes, long flower duration and diverse colours. Genetic maps provide an important genomic resource of basic and applied significance. A genetic linkage map was developed by genotyping 192 F1 progeny from a cross between L. caudata (female) and L. indica (‘Xiang Xue Yun’) (male) with a combination of amplification fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers in a double pseudo‐testcross mapping strategy. A total of 330 polymorphic loci consisting of 284 AFLPs and 46 SSRs showing Mendelian segregation were generated from 383 AFLP primer combinations and 150 SSR primers. The data were analysed using JoinMap 4.0 (evaluation version) to construct the linkage map. The map consisted of 20 linkage groups of 173 loci (160 AFLPs and 13 SSRs) covering 1162.1 cM with a mean distance of 10.69 cM between adjacent markers. The 20 linkage groups contained 2–49 loci and ranged in length from 7.38 to 163.57 cM. This map will serve as a framework for mapping QTLs and provide reference information for future molecular breeding work.  相似文献   

5.
The utility of combining simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) marker genotyping was determined for genetically mapping a novel aphid (Aphis craccivora) resistance locus in cowpea breeding line SARC 1‐57‐2 and for introgressing the resistance into elite cultivars by marker‐assisted backcrossing (MABC). The locus was tagged with codominant SSR marker CP 171F/172R with a recombination fraction of 5.91% in an F2 population from ‘Apagbaala’ x SARC 1‐57‐2. A SNP‐genotyped biparental recombinant inbred line population was genotyped for CP 171F/172R, which was mapped to position 11.5 cM on linkage group (LG) 10 (physical position 30.514 Mb on chromosome Vu10). Using CP 171F/172R for foreground selection and a KASP‐SNP‐based marker panel for background selection in MABC, the resistance from SARC 1‐57‐2 was introduced into elite susceptible cultivar ‘Zaayura’. Five BC4F3 lines of improved ‘Zaayura’ that were isogenic except for the resistance locus region had phenotypes similar to SARC 1‐57‐2. This study identified a novel aphid resistance locus and demonstrated the effectiveness of integrating SSR and SNP markers for trait mapping and marker‐assisted breeding.  相似文献   

6.
Most of the hybrid seed in chilli are produced manually, but the use of male sterility (MS) can reduce the cost of hybrid seed production. MS‐12, a nuclear male‐sterile (NMS) line developed at Punjab Agricultural University, Ludhiana (India), has been utilized to develop commercial F1 hybrids. A recessive gene, designated as ms10, governs MS in MS‐12. Due to recessive gene control, development of new NMS lines incorporating ms10 gene is tedious and time‐consuming. We identified SSR markers AVRDC‐PP12 and AVRDC_MD997* linked to the ms10 gene. A total of 558 primer pairs were screened following bulked segregant analysis (BSA). Linkage analysis in 210 F2 plants indicated that the two SSR markers were linked to the ms10 gene and the marker AVRDC‐PP12 was closest to the gene at 7.2 cM distance. The marker was mapped to chromosome 1 at genome position 175 694 513 to 175 694 644. Until more closely linked markers are developed, the marker AVRDC‐PP12 would facilitate transfer of ms10 gene through marker‐assisted selection (MAS). Fine mapping would lead to cloning of the ms10 gene.  相似文献   

7.
Two‐line hybrid rice as a novel hybrid breeding method has huge potential for yield increasing and utilization of intersubspecific heterosis, and it is of major significance for the food security of rice‐consuming populations. Zhu1S is a thermosensitive genic male‐sterile line of rice with low critical temperature and excellent combining ability, which has been widely exploited as a female parent in Chinese two‐line hybrid rice breeding. Here, genetic mapping in F2 populations was used to show that its male sterility is inherited as a single recessive gene and that responsible gene (termed tms9) lies on the short arm of chromosome 2. A high‐resolution linkage analysis which was based on the Zhu1S/R173 F2 population found that the thermosensitive genic male‐sterile gene tms9 of Zhu1S was fine mapped between insertion–deletion (Indel) markers Indel 37 and Indel 57, and the genetic distance from the tms9 to the two markers was 0.12 and 0.31 cM, respectively. The physical distance between the two markers was about 107.2 kb. Sequence annotation databases showed that the two Indel markers (Indel 37 and Indel 57) were located on two BAC clones (B1307A11 and P0027A02). There are sixteen open reading frames (ORF) present in this region. The results of this study are of great significance for further cloning tms9 and molecular marker–assisted selection.  相似文献   

8.
Wheat (Triticum aestivum L.) is strictly a self‐pollinated crop, where hybrid breeding requires well‐characterized cytoplasmic male sterile (CMS) lines. The CMS has mostly been developed by substituting nuclear genome of wheat into the cytoplasm from wild relatives. Molecular characterization of 90 genotypes including 82 CMS lines originating from five different species, namely Aegilops speltoides, Ae. kotschyi, Ae. variabilis, Triticum araraticum and T. timopheevii, and eight popular varieties was carried out. Consequently, a set of 25 microsatellite markers specific to chloroplast (cpSSRs) were designed and successfully validated for specificity of amplification. A total of 15 cpSSRs (60%) were found polymorphic, of which three cpSSRs (TaCM7, TaCM8 and TaCM11) in genic region and twelve cpSSRs were located in intergenic region. Phylogenetic analysis of genotypes using cpSSRs revealed two major groups well in accordance with respective origin. A set of cpSSRs and phylogeny of CMS belonging to different origins developed, which will be helpful for the improvement in CMS system in wheat. The genic cpSSRs can be used for the allele mining and evolutionary studies.  相似文献   

9.
Development of effective molecular markers linked to Pm21 deriving from Haynaldia villosa is critical for wheat breeding of powdery mildew resistance. In this study, we designed 12 pairs of conserved‐intron scanning primers (CISPs), using intron‐containing conserved genes located on the short arm of Brachypodium distachyon chromosome 3 (3BdS) aligned with cDNA or expressed sequence tags (ESTs) of Triticeae crops. Of 12 CISP primer pairs, 11 amplified DNA both in H. villosa and in wheat, and four displayed H. villosa chromosome 6VS‐specific polymorphisms. Six non‐polymorphic DNAs were further sequenced for designing internal primers, and five additional 6VS‐specific markers were obtained. Of the total nine 6VS‐specific co‐dominant markers, six could effectively trace Pm21 in F2 population derived from the hybrid between the T6AL.6VS line and ‘Yangmai 158’. This study demonstrated that Brachypodium genomic information could be powerfully utilized to develop molecular markers in H. villosa or other Triticeae species.  相似文献   

10.
We constructed a high‐resolution physical map for the qSPP7 QTL for spikelets per panicle (SPP) on rice chromosome 7 across a 28.6‐kb region containing four predicted genes. Using a series of BC7F4 near‐isogenic lines (NILs) derived from a cross between the Korean japonica cultivar ‘Hwaseongbyeo’ and Oryza minuta (IRGC Acc. No. 101144), three QTLs for the number of SPP, grains per panicle and primary branches were identified in the cluster (P ≤ 0.01). All three QTLs were additive, and alleles from the O. minuta parent were beneficial in the ‘Hwaseongbyeo’ background. qSPP7 was mapped to a 28.6‐kb region between the two simple sequence repeat (SSR) markers RM4952 and RM21605. The additive effect of the O. minuta allele at qSPP7 was 23 SPP, and 43.6% of the phenotypic variance was explained by the segregation of the SSR marker RM4952. Colocalization of the three QTLs suggested that this locus was associated with panicle structure and had pleiotropic effects. The NIL populations and molecular markers are useful for cloning qspp7.  相似文献   

11.
We developed a new disomic addition line M11028‐1‐1‐5 (2n = 44 = 21” + 1”) from a cross between wheat cv. ‘7182’ and octoploid Tritileymus M47 (2= 8x = 56, AABBDDN sNs ). Cytological observations demonstrated that M11028‐1‐1‐5 contained 44 chromosomes and formed 22 bivalents during meiotic metaphase I. The genomic in situ hybridization (GISH) investigations showed this line contained 42 wheat chromosomes and a pair of L. mollis chromosomes. SSR, EST and PCR‐based landmark unique gene (PLUG) markers were screened to determine the homoeologous relationships of the introduced L. mollis chromosomes in wheat background. Nine markers, i.e. Xwmc256, Xgpw312, Swes123, CD452568, BF483643, BQ169205, TNAC1748, TNAC1751 and TNAC1752, all of which were located on the homoeologous group 6 chromosomes of common wheat, amplified bands unique to L. mollis in M11028‐1‐1‐5. Gliadin analysis also confirmed that the added chromosomes in M11028‐1‐1‐5 were correlated with the sixth group chromosome. This indicated that M11028‐1‐1‐5 contained a pair of introduced L. mollis chromosome belonging to homoeologous group 6, which we designated it as Lm#6 Ns disomic addition line. This is the first report of a common wheat–L. mollis disomic addition line.  相似文献   

12.
Wild Lens taxa are invaluable sources of useful traits for broadening genetic base of cultivated lentil. Nine inter‐sub‐specific and interspecific crosses were made successfully between cultivated (Lens culinaris ssp. culinaris) and wild lentils (L. culinaris ssp. orientalis, odemensis, lamottei and ervoides). The effect of species groups, day length and temperature on crossability in lentils was evident under normal winter sowing in New Delhi and in summer Himalayan nursery at Sangla in Himachal Pradesh, India, although pollen fertility assessed in all the cross‐combinations showed no significant variation. True hybridity of nine inter‐sub‐specific and interspecific crosses was confirmed through morphological and molecular (ISSR) markers, in which three of 120 primers could confirm the hybridity of all the crosses. All cross‐combinations were also studied for important quantitative traits related to yield. The range, mean and coefficient of variation were estimated in parental lines, F1 and F2 generations to determine the extent of variability generated in cultivated lentils through the introgression of genes from wild L. taxa. A high level of heterosis was observed in F1 crosses for important traits studied. Substantially higher variations for seed yield and its attributing traits were exhibited in F2 generations indicating transgressive segregation. The results of the present investigation revealed that wild L. taxa can be successfully exploited for lentil improvement programmes, and the variations generated could be easily utilized for broadening the genetic base of cultivated lentil gene pool for improving the yield as well as wider adaptation.  相似文献   

13.
Apple Glomerella leaf spot (GLS) is a severe fungal disease that damages apple leaves during the summer in China. Breeding new apple varieties that are resistant to the disease is considered the best way of controlling GLS. Fine mapping and tightly linked marker are critically essential for the preselection of resistant seedlings. In this study, a population of 207 F1 individuals derived from a cross between ‘Golden Delicious’ and ‘Fuji’ was used to construct a fine simple sequence repeat (SSR)‐based genetic linkage map. The position of Rgls, a locus responsible for resistance to GLS, was identified on apple linkage group (LG) 15 using SSR markers CH05g05 and CH01d08, which was adapted from a published set of 300 SSR markers that were developed using the bulked segregant analysis (BSA) method. These two SSR markers flanked the gene, and its recombination rate was 8.7% and 23.2%, respectively. A total of 276 newly developed SSR markers around the target region and designed from the genome apple assembly contig of LG15 were screened. Only nine of these were determined to be linked to the Rgls locus. Thus, a total of 11 SSR markers were in linkage with Rgls, and mapped at distances ranging from 0.5 to 33.8 cM. The closest marker to the Rgls locus was S0405127, which showed a genetic distance of approximately 0.5 cM. The first mapping of the gene Rgls was constructed, and the locations of the 11 effective primers in the ‘Golden Delicious’ apple genome sequence were anchored. This result facilitates better understanding of the molecular mechanisms underlying the trait of resistance to GLS and could be used in improving the breeding efficiency of GLS‐resistant apple varieties.  相似文献   

14.
Genomic selection in tea plant (Camellia sinensis) breeding has the potential to accelerate efficiency of choosing parents with desirable traits at the seedling stage. The study evaluated different genome-enabled prediction models for black tea quality and drought tolerance traits in discovery and validation populations. The discovery population comprised of two segregating tea populations (TRFK St. 504 and TRFK St. 524) with 255 F1 progeny and 56 individual tea cultivars in validation population genotyped using 1,421 DArTseq markers. Twofold cross-validation was used for training the prediction models in the discovery population on eight different phenotypic traits. The best prediction models in the discovery population were consequently fitted to the validation population. Of all the four model-based prediction approaches, putative QTLs (Quantitative Trait Loci) + annotated proteins + KEGG (Kyoto Encyclopaedia of Genes and Genomes) pathway-based prediction approach showed more robustness. The findings have for the first time opened up a new avenue for future application of genomic selection in tea breeding.  相似文献   

15.
16.
17.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

18.
Rice blast resistance gene ‘Pi-z’ present in rice genotypes, Zenith and Fukunishiki, represents a potential source of blast resistance for the north-western Himalayan region of India. We tested the reliability of microsatellite markers linked to Pi-z for assessing blast resistance phenotype in crosses of commercial importance. A new set of microsatellite markers linked to Pi-z was also developed by exploiting the publicly available marker and genomic resources of rice. Of the three previously reported markers for Pi-z, only MRG5836 was suitable for the marker assisted selection of Pi-z. Among the 17 microsatellites selected from the putative region of Pi-z locus, two, RM8225 and RM8226 cosegregated with MRG5836 and were located at distance of 1.2–4.5 cM from the gene. A new microsatellite marker ‘SSR236’ was developed from the (CT)16 repeat of PAC clone P0502B12, which exhibited closer linkage (0.6–1.2 cM) to Pi-z. Survey of the allelic diversity at the loci of the Pi-z linked microsatellite markers revealed that the Fukunishiki and Zenith type alleles were not present in majority of the local indica rice genotypes. As these markers are polymorphic between the Pi-z donors and a great majority of local indica rices tested, they can be used as a selection tool in rice breeding programs aimed at improving the blast resistance of local rices.  相似文献   

19.
A few linkage maps of tea have been constructed using pseudo-testcross theory based on dominant marker systems. However, dominant markers are not suitable as landmark markers across a wide range of materials. Therefore, we developed co-dominant SSR markers from genomic DNA and ESTs and constructed a reference map using these co-dominant markers as landmarks. A population of 54 F1 clones derived from reciprocal crosses between ‘Sayamakaori’ and ‘Kana-Ck17’ was used for the linkage analysis. Maps of both parents were constructed from the F1 population that was taken for BC1 population. The order of most of the dominant markers in the parental maps was consistent. We constructed a core map by merging the linkage data for markers that detected polymorphisms in both parents. The core map contains 15 linkage groups, which corresponds to the basic chromosome number of tea. The total length of the core map is 1218 cM. Here, we present the reference map as a central core map sandwiched between the parental maps for each linkage group; the combined maps contain 441 SSRs, 7 CAPS, 2 STS and 674 RAPDs. This newly constructed linkage map can be used as a basic reference linkage map of tea.  相似文献   

20.
Groundnut (Arachis hypogaea L.) an important oilseed crop in India is known to have narrow genetic base. Therefore, the assessment of genetic diversity and detection of marker-trait association are important objectives for the genetic improvement of groundnut. The present study involved the development of 192 SSR markers from Arachis genomic survey sequences. From these, seven polymorphic SSRs along with 15 other genomic SSRs, 19 genic SSRs, and three STS markers were used to detect genetic diversity among 44 groundnut genotypes. These polymorphic SSR markers amplified 155 bands (76 genomic and 79 genic), of these 128 bands (67 genomic and 61 genic) were polymorphic. The genomic SSR exhibited 88.1% and genic SSRs displayed 77.2% allelic polymorphism. The polymorphic information content (PIC) of the markers ranged from 0.04 to 0.95. The pair-wise genetic similarity ranged from 24.2 to 90.7% for genomic SSR and 32.9 to 97.9% for genic SSR markers. Cluster analysis based on the pooled data from both genomic and genic SSRs revealed a dendrogram which could distinguish all the genotypes. Further, the AMOVA analysis detected 16.7% genetic variation due to differences in seed size and 13.0% due to plant habit. Based on locus-by-locus AMOVA and Kruskal-Wallis ANOVA and further confirmation by discriminant analysis and general linear model, six markers were found to be associated with plant habit and four markers with seed size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号