首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meloxicam, a non-steroidal anti-inflammatory drug, is approved for use in horses in several countries, but an equine formulation is not available in North America. However, meloxicam is being used in an extra-label manner in horses in Canada. The purpose of this study, therefore, was to assess the bioequivalence of an approved oral meloxicam suspension (Metacam 15 mg/mL for horses; Boehringer Ingelheim Vetmedica GmBH, Ingelheim, Germany) from the European Union with human meloxicam tablets (Meloxicam 15 mg tablets; TEVA Canada, Toronto, Ontario) compounded with molasses to improve palatability and administration. The geometric mean ratios (GMR test/reference) and the 90% confidence intervals of the pivotal pharmacokinetic parameters (area under the curve and maximum concentration) were within the defined limits of 80% to 125% generally accepted for products to be considered bioequivalent. Therefore, use of human meloxicam tablets compounded with molasses would be expected to produce a similar clinical response in horses as the approved oral product from the European Union.  相似文献   

2.
3.
4.
The primary study objective was to compare the pharmacokinetics of p.o. terbinafine alone to p.o. terbinafine administered with p.o. cimetidine in healthy adult horses. The second objective was to assess the pharmacokinetics of terbinafine when administered per rectum in two different suspensions at 30 mg/kg to adult horses. Six healthy adult horses were included in this crossover study. Plasma terbinafine concentrations were quantified with liquid chromatography and mass spectrometry. The half‐life (geometric mean) was 8.38 and 10.76 h, for p.o. alone and p.o. with cimetidine, respectively. The mean maximum plasma concentrations were 0.291 μg/mL at 1.54 h and 0.418 μg/mL at 1.28 h for p.o. alone and p.o. with cimetidine, respectively. Terbinafine with cimetidine had an average CMAX 44% higher and the relative F was 153% compared p.o. terbinafine alone, but was not statistically different (P > 0.05). Terbinafine was infrequently detected when administered per rectum in two different suspensions (water or olive oil). Minor adverse effects included oral irritation, fever, and colic. All resolved spontaneously. More pharmacokinetic studies are indicated assessing drug–drug interactions and using multiple dosing intervals to improve our knowledge of effective oral dosing, the potential for drug accumulation, and systemic adverse effect of terbinafine in horses.  相似文献   

5.
OBJECTIVE: To determine pharmacokinetic parameters for meloxicam, a nonsteroidal anti-inflammatory drug, in horses. ANIMALS: 8 healthy horses. PROCEDURE: In the first phase of the study, horses were administered meloxicam once in accordance with a 2 x 2 crossover design (IV or PO drug administration; horses fed or not fed). The second phase used a multiple-dose regimen (daily oral administration of meloxicam for 14 days), with meloxicam administered at the recommended dosage (0.6 mg/kg). Plasma and urine concentrations of meloxicam were measured by use of validated methods with a limit of quantification of 10 ng/mL for plasma and 20 ng/mL for urine. RESULTS: Plasma clearance was low (mean +/- SD; 34 +/- 0.5 mL/kg/h), steady-state volume of distribution was limited (0.12 +/- 0.018 L/kg), and terminal half-life was 8.54 +/- 3.02 hours. After oral administration, bioavailability was nearly total regardless of feeding status (98 +/- 12% in fed horses and 85 +/- 19% in nonfed horses). During once-daily administration for 14 days, we did not detect drug accumulation in the plasma. Meloxicam was eliminated via the urine with a urine-to-plasma concentration that ranged from 13 to 18. Concentrations were detected for a relatively short period (3 days) after administration of the final daily dose. CONCLUSIONS AND CLINICAL RELEVANCE: Results of this study support once-daily administration of meloxicam regardless of the feeding status of a horse and suggest a period of at least 3 days before urine concentrations of meloxicam reach concentrations that could be used in drug control programs.  相似文献   

6.
In two studies, six healthy adult horses were given imipenem-cilastatin by slow intravenous (i.v.) infusion at an imipenem dosage of 10 mg/kg (study 1) and 20 mg/kg (study 2). The same horses were used in each dosage schedule, with a 2-week washout period between studies. In each dosage group, serial blood and synovial fluid samples were collected for 6 h after completion of the infusion. HPLC was used to determine the imipenem concentration in all samples. Imipenem was well tolerated by all horses at both dosages; no adverse effects were noted during the study period or during the 24-hour postinfusion observation period. The pharmacokinetic profiles of imipenem in the plasma and synovial fluid indicate that an imipenem dosage of 10-20 mg/kg by slow i.v. infusion q6h (every 6 h) is appropriate for most susceptible pathogens.  相似文献   

7.
The pharmacokinetics of theophylline at rest and the effects on cardio-respiratory and blood lactate responses to exercise were investigated after repeated oral administrations in six healthy Standardbred horses. A dose of 5 mg/kg body weight was administered every 12 h. The binding of theophylline to plasma protein was also determined. There was good agreement between predicted and observed plasma concentrations of theophylline at steady state. The mean half-life of elimination was shown to be 17.0 +/- 2.5 h, the mean half life of absorption was 1.6 +/- 1.8 h, the apparent volume of distribution was 852 +/- 99.0 ml/kg and total plasma clearance 0.61 +/- 0.08 ml/kg/min. Theophylline showed very low plasma protein binding (12%). The heart rate and blood lactate levels, during and after exercise, were significantly increased during theophylline-treatment. There was an increase of the arterial oxygen tension after exercise and the arterial carbon dioxide values before and after exercise were significantly lower than the premedication values. No severe adverse effects of the drug were noted. The recommended oral dose is therefore 5 mg/kg every 12 h but due to inter-individual variation, an adjustment of the dose may be necessary. The changes in the studied exercise parameters indicate that the performance capacity may be impaired by theophylline in the healthy horse.  相似文献   

8.
9.
10.
The pharmacokinetics of oral meloxicam has been studied in ruminant, but not preruminant calves. Oral meloxicam was administered at 0.5 mg/kg to six ruminant calves via gavage (RG); to six preruminant calves via gavage (PRG); and to six preruminant calves via suckling in milk replacer (PRF). Plasma drug concentrations, determined over 120-h postadministration, were analyzed by compartmental and noncompartmental methods. The rate of drug absorption was faster (P<0.01) in PRF (0.237±0.0478/h) than RG calves (0.0815±0.0188/h), while absorption in PRG calves (0.153±0.128/h) was not different from other groups. C(max) was lower (P=0.03) in PRF (1.27±0.430 μg/mL) than in PRG calves (2.20±0.467 μg/mL), while C(max) of RG calves (1.95±0.955 μg/mL) was not different from other groups. V/F was higher in PRF calves (365±57 mL/kg) than either PRG (177±63 mL/kg, P<0.01) or RG (232±83 mL/kg, P=0.01) calves. These observations were likely due to differences in bioavailability, physiological maturity, and timing of the drug delivery into different compartments of the ruminant gastrointestinal tract. Results suggest that an adjustment in meloxicam dose may be necessary when administered with milk replacer.  相似文献   

11.
12.
OBJECTIVE: To determine serum pharmacokinetics of pentoxifylline and its 5-hydroxyhexyl metabolite in horses after administration of a single IV dose and after single and multiple oral doses. ANIMALS: 8 healthy adult horses. PROCEDURES: A crossover study design was used with a washout period of 6 days between treatments. Treatments were IV administration of a single dose of pentoxifylline (8.5 mg/kg) and oral administration of generic sustained-release pentoxifylline (10 mg/kg, q 12 h, for 8 days). Blood samples were collected 0, 1, 3, 6, 12, 20, 30, and 45 minutes and 1, 2, 4, 6, 8, and 12 hours after IV administration. For oral administration, blood samples were collected 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, and 12 hours after the first dose and 0, 0.25, 0.5, 0.75, 1, 2, 4, 8, 12, and 24 hours after the last dose. RESULTS: Elimination of pentoxifylline was rapid after IV administration. After oral administration, pentoxifylline was rapidly absorbed and variably eliminated. Higher serum concentrations of pentoxifylline and apparent bioavailability were observed after oral administration of the first dose, compared with values after administration of the last dose on day 8 of treatment. CONCLUSIONS AND CLINICAL RELEVANCE: In horses, oral administration of 10 mg of pentoxifylline/kg results in serum concentrations equivalent to those observed for therapeutic doses of pentoxifylline in humans. Twice daily administration appears to be appropriate. However, serum concentrations of pentoxifylline appear to decrease with repeated dosing; thus, practitioners may consider increasing the dosage if clinical response diminishes with repeated administration.  相似文献   

13.
The purpose of the study reported here was to describe the bioavailability and pharmacokinetics of acyclovir after intravenous and oral administration to horses. Six healthy adult horses were used in a randomized cross-over study with a 3 x 3 Latin square design. Three treatments were administered to each horse: 10 mg of injectable acyclovir/kg of body weight in 1 L of normal saline delivered as an infusion over 15 minutes; 10 mg of acyclovir/kg in tablets by nasogastric intubation; and 20 mg of acyclovir/kg in tablets by nasogastric intubation. A 2-week washout period was provided between each treatment. Serum samples were obtained for acyclovir assay using reversed-phase, high-performance liquid chromatography with fluorescence detection. Deproteinated serum was injected onto a C18 column, and elution occurred under isocratic conditions. The limit of quantification was 0.04 microg/mL. The assay exhibited suitable accuracy, precision, and recovery. The IV data were analyzed by a 3-compartment model, and oral data were analyzed noncompartmentally. Intragastric acyclovir administration at either dose was associated with high variability in serum acyclovir-time profiles, low Cmax, and poor bioavailability. The dosage of 20 mg/kg was associated with mean (+/- SD) Cmax of 0.19 +/- 0.10 microg/mL, and bioavailability was 2.8%. Inhibition of equine herpesvirus has been reported to require significantly higher acyclovir concentrations than those obtained here. The results of this study do not support a therapeutic benefit for the oral administration of acyclovir up to doses of 20 mg/kg.  相似文献   

14.
Pharmacokinetics of acyclovir in adult horses   总被引:2,自引:0,他引:2  
Objective: To determine the pharmacokinetics of acyclovir administered intravenously (IV) and orally to healthy adult horses. Design: Random cross‐over with an approximate 1‐week washout period between trials. Setting: University veterinary medical teaching hospital. Animals: Six healthy adult research herd horses. Interventions and main results: Acyclovir was administered IV (10 mg/kg in 1 L isotonic crystalloid solution over 60 minutes) and orally (20 mg/kg) to healthy adult horses. Plasma samples were obtained and acyclovir concentrations were determined by high‐pressure liquid chromatography. Peak concentration (mean±SD) for IV acyclovir was 13.74±5.88 μg/mL at the completion of the 1‐hour infusion. The half‐life of the distribution phase (α) was 0.16 hours while the half‐life of the elimination phase (β) was 9.6 hours. The steady‐state volume of distribution was 3.93±1.21 L/kg. We were unable to measure pharmacokinetics after PO acyclovir as plasma concentrations were below the lower limits of detection in all 6 horses. Conclusions: IV administration of acyclovir to healthy adult horses achieves concentrations within the sensitivity range described for equine herpes virus‐type 1. The oral bioavailability of acyclovir in horses is low and additional studies are required.  相似文献   

15.
16.
The pharmacokinetlc properties of a single intravenous dose of ketoprofen (2.2 mg/kg) in plasma and synovial fluid were compared in four healthy animals and four horses with experimentally induced acute synovitis. Synovitis was induced by the injection of a 1% solution of sterile carrageenan into the left intercarpal joint Ketoprofen was administered at the same time as carrageenan infection. The plasma disposition followed a biexponential equation or a two-compartment model in most horses. The plasma harmonic mean half-life in healthy horses (0.88 h) was longer than in horses with synovitis (0.5 5 h). Synovial fluid concentrations of ketoprofen in healthy horses approximated those in plasma by 3 h post-dose. In horses with synovitis, synovial fluid concentrations approximated plasma concentrations by 1 h. Synovial fluid concentrations of ketoprofen in horses with synovitis were 6.5 times higher than those in healthy horses at 1 h. The area under the synovial fluid concentration curve for horses with synovitis was greater than in healthy horses. These data suggest that the inflamed joint serves as a site of sequestration for ketoprofen. Furthermore, these results indicate that plasma pharmacokinetics may be altered by inflammation in a peripheral compartment such as the joint  相似文献   

17.
OBJECTIVE: To determine pharmacokinetics of terbutaline in healthy horses and to relate serum terbutaline concentrations with the drug's pharmacodynamic effects. ANIMALS: 6 healthy horses. PROCEDURE: Horses were given terbutaline i.v. (10 microg/kg of body weight) and, 1 week later, p.o. (100 microg/kg). Responses to drug administration (eg, heart rate and serum lactate concentration) were measured. Serum terbutaline concentration was measured by means of gas chromatography with mass spectrometry. Protein binding was determined in vitro. RESULTS: Following i.v. administration, median maximum serum terbutaline concentration and mean residence time were 9.3 ng/ml and 30 minutes, respectively. Bioavailability following oral administration was < 1%. All horses developed sweating, trembling, excitement, and tachycardia during i.v. infusion. The 2 horses with the highest serum terbutaline concentrations developed severe tachycardia and CNS stimulation; 30 minutes after the i.v. infusion was completed, they were hyperventilating and lethargic. Heart rate and serum lactate concentration increased as serum terbutaline concentration increased. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that terbutaline is rapidly cleared from the bloodstream following i.v. administration to horses, suggesting that continuous i.v. infusion would be needed to maintain therapeutic serum concentrations. Oral administration of terbutaline to horses is not practical because of the low bioavailability.  相似文献   

18.
Clemastine is an H1 antagonist used in certain allergic disorders in humans and tentatively also in horses, although the pharmacology of the drug in this species has not yet been investigated. In the present study we determined basic pharmacokinetic parameters and compared the effect of the drug measured as inhibition of histamine-induced cutaneous wheal formation in six horses. The most prominent feature of drug disposition after intravenous dose of 50 microg/kg bw was a very rapid initial decline in plasma concentration, followed by a terminal phase with a half-life of 5.4 h. The volume of distribution was large, Vss = 3.8 L/kg, and the total body clearance 0.79 L/h kg. Notably, oral bioavailability was only 3.4%. There was a strong relationship between plasma concentrations and effect. The effect maximum (measured as reduction in histamine-induced cutaneous wheal formation) was 65% (compared with controls where saline was injected) and the effect duration after i.v. dose was approximately 5 h. The effect after oral dose of 200 microg/kg was minor. The results indicate that clemastine is not appropriate for oral administration to horses because of low bioavailability. When using repeated i.v. administration, the drug has to be administered at least three to four times daily to maintain therapeutic plasma concentrations because of the short half-life. However, if sufficient plasma concentrations are maintained the drug is efficacious in reducing histamine-induced wheal formations.  相似文献   

19.
REASONS FOR PERFORMING STUDY: Recombinant (r)-hirudin is a specific inhibitor of thrombin that is independent of the activity of antithrombin. OBJECTIVES: To evaluate pharmacokinetic properties and coagulatory changes of r-hirudin in healthy horses. METHODS: Two clinically healthy horses received a single i.v. bolus of 0.4 mg/kg bwt r-hirudin and 6 clinically healthy horses received the same dose subcutaneously (subcut.) q. 12 h for 3 days. Coagulation times and r-hirudin plasma concentration were determined over 720 mins and 3 days after i.v. and subcut. administration, respectively. RESULTS: In all horses, treatment with r-hirudin was not associated with systemic or local side effects. After i.v. injection, the 2 horses showed an elimination half-life of 58 and 80 mins, respectively. After subcut. administration, maximum plasma concentration of r-hirudin occurred at 128 +/- 55 mins and declined with a terminal half-life of 561 +/- 364 mins. Maximum response of activated partial thromboplastin time (aPTT) occurred 1.5 h after administration of r-hirudin. A prolongation of 1.9 +/- 0.2 times the pretreatment value was noted. CONCLUSIONS: Pharmacokinetics of r-hirudin in healthy horses were similar to those in man and other animal species. POTENTIAL RELEVANCE: The results of this study indicate that r-hirudin can be used in horses, but further studies should be performed in order to prove its effectiveness in diseased horses.  相似文献   

20.
The neurokinin-1 (NK-1) receptor antagonist, maropitant citrate, mitigates nausea and vomiting in dogs and cats. Nausea is poorly understood in horses, and clinical use of NK-1 receptor antagonists has not been reported. This study aimed to determine the pharmacokinetics and safety of maropitant after administration of multiple doses. We hypothesized that maropitant concentrations would be similar at steady state to those reported in dogs, with minimal adverse effects. Maropitant was administered at 4 mg/kg orally, once daily for 5 days in seven adult horses. Serial plasma maropitant concentrations were measured by liquid chromatography-mass spectrometry. Noncompartmental pharmacokinetic parameters were determined. The maximum, minimum, and average concentrations of maropitant achieved at steady state were 375.5 ± 200, 16.8 ± 7.7, and 73.5 ± 45.1 ng/ml, respectively. The terminal elimination half-life was 11.6 ± 1.4 hr, and the accumulation index was 1.3 ± 0.07. Heart rate decreased between Day 1 and Day 5 (p = .005), with three horses having heart rates of 20 beats per minute and atrioventricular block on Day 5. Pharmacokinetics of repeated maropitant administration suggests the drug could be considered for use in healthy horses. Further investigation on the clinical relevancy of its cardiac effects is warranted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号