首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
  总被引:1,自引:0,他引:1  
Abstract. Soil removed on sugarbeet ( Beta vulgaris L .) at harvest may be an important factor in soil degradation causing significant decline in soil productivity. This study evaluated soil losses on sugarbeet and estimated the cost of plant nutrients lost by this process. The losses were calculated using data from the agricultural reports published by the General Directorate of the Turkish Sugar Industry. Organic matter and plant available nutrient contents of soils removed from sugarbeet fields were determined. It was estimated that approximately 30 000 t of soil is lost annually in Erzurum, and 1.2 million t in the whole of Turkey. The cost of N, P and K losses is approximately 60 000 US$ annually for the study area.  相似文献   

2.
    
Harvesting of potato (Solanum tuberosum L.) may cause soil losses, but the magnitude of such losses has not been widely documented. We quantified the amount of soil lost with the mechanical harvesting of potatoes in 39 fields in western Turkey in 2013. The amount of soil lost was 1.81 Mg/ha/harvest and increased with increased gravimetric water content and plant density. The cost to replace nutrients lost with soil was about US$3 per hectare. Overall, soil loss due to potato harvesting is an important component of total erosion in the study region.  相似文献   

3.
The efficiency and acceptance for erosion and compaction control management is not high and therefore not a guarantee for sustainable land use and soil functionality. The best method for increasing acceptance is a regional soil indicator system combined with an environmental indicator system (McRae et al. 2000). Like the concept of “critical load inputs”; for chemical pollutants, this system would make it possible to quantify the soil state and soil condition for decisions concerning the soil carrying or load capacity. The next step is the assessment of the land use pressure on soil in terms of the soil load capacity and the driving forces for land use. These results may determine the response level required: In a balanced situation, Best Management Practices may help ensure sustainability is maintained, slightly disproportional results suggest additional special agricultural management techniques may be needed, while significant differences may indicate the need for additional land use adjustments or changes in technical management. The indicator system is ideal for application in north‐eastern Germany for all moraine areas and the areas at risk to water and wind erosion and soil compaction.  相似文献   

4.
    
Soil erosion contributes negatively to agricultural production, quality of source water for drinking, ecosystem health in land and aquatic environments, and aesthetic value of landscapes. Approaches to understand the spatial variability of erosion severity are important for improving landuse management. This study uses the Kelani river basin in Sri Lanka as the study area to assess erosion severity using the Revised Universal Soil Loss Equation (RUSLE) model supported by a GIS system. Erosion severity across the river basin was estimated using RUSLE, a Digital Elevation Model (15 × 15 m), twenty years rainfall data at 14 rain gauge stations across the basin, landuse and land cover, and soil maps and cropping factors. The estimated average annual soil loss in Kelani river basin varied from zero to 103.7 t ha-1 yr−1, with a mean annual soil loss estimated at 10.9 t ha−1 yr−1. About 70% of the river basin area was identified with low to moderate erosion severity (<12 t ha−1 yr−1) indicating that erosion control measures are urgently needed to ensure a sustainable ecosystem in the Kelani river basin, which in turn, is connected with the quality of life of over 5 million people. Use of this severity information developed with RUSLE along with its individual parameters can help to design landuse management practices. This effort can be further refined by analyzing RUSLE results along with Kelani river sub-basins level real time erosion estimations as a monitoring measure for conservation practices.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The compaction of soil alters its structure, increases its bulk density and decreases its porosity. These changes can be detected by careful and systematic visual and tactile examination directly in the field. These changes also reduce the permeability of soil to water and air and may alter the pattern of root growth. Further signs of compaction may be induced such as the creation of waterlogged zones or of dry zones caused by shallow rooting denying access to deeper reserves of water. Furthermore, there may be a reduction in nutrient uptake from dry soil. Under wet conditions anoxic pockets may form with associated biochemical changes, some of which are visible. Changes in mineral nitrogen may take place through denitrification and a reduction in nitrification. The criteria used to identify compaction in the field include patterns of crop growth, pale leaf colours, waterlogging on the surface or in subsurface layers above compaction, an increase in soil strength, changes to soil structure, soil colour and the distribution of roots and of soil moisture. Manifestation of soil compaction in crops is also dependent on the weather and is influenced by crop type and variety, and stage of growth. Many soil‐borne diseases are made worse by stress to the crop which might be induced by compaction caused by drier or wetter conditions in the root zone. Where, when and how to identify compaction in the field are discussed and the techniques used are described. Specific examples of the identification of compaction are given, covering a wide range of situations.  相似文献   

6.
为深入理解黄土高原干旱半干旱地区复杂地貌条件下流域水沙运移规律。基于垂向混合产流机理和运动波方程,构建分布式流域水文模型,耦合流域土壤侵蚀和泥沙输移过程模拟模块,并考虑梯田对水沙过程的影响,建立适用于黄土高原的分布式流域水沙过程模型。选取黄土高原延河支流西川河流域多年实测场次洪水过程的径流泥沙资料,对模型进行率定和验证。径流模拟的纳什效率系数在0.56以上,平均值超过0.70,模拟次洪过程的峰形、峰值、峰现时间与实测过程具有较好的一致性;侵蚀产输沙模拟精度较低,其纳什效率系数均值率定期为0.79,但验证期仅为0.45,模拟结果整体趋势与实测值较一致,但输沙量模拟峰值比实测值偏低。模型可以较精确地模拟黄土高原流域洪水产汇流过程,但输沙量模拟值偏低,一方面由于产汇流模块的误差传递;另一方面,对重力侵蚀考虑不足。因此,未来模型将考虑滑坡、崩塌等重力侵蚀过程,提升模拟精度和效率,为流域水沙过程模拟与流域综合治理提供有效工具。  相似文献   

7.
Crop yields in rainfed areas are primarily dependent on the rainfall pattern and stored soil moisture. High smectite clay causes the formation of cracks, which are a striking feature of black Vertisols which are also distinguished by the presence of pot‐holes. Soil water is recharged during the rainy season via these cracks, which also results in pot‐hole formation. This study was undertaken to evaluate the effect of different conservation measures on pot‐holes. Length, width and depth were measured during dry spells after the onset of the monsoon under various field treatments. The results indicate that uncultivated fields have a greater volume of pot‐holes (573 m3/ha) than cultivated ones due to unbroken gentle slopes, which would have caused silt‐laden runoff to travel longer distances to form pot‐holes. The results show that among the cultivated fields, a control plot had the maximum volume of pot‐holes (450 m3/ha), followed by a conservation bench terrace (CBT) (231 m3/ha), residue incorporated (RI) fields (142 m3/ha) and contour furrow areas (CF) (119 m3/ha). The CBT field treatment had a higher volume of pot‐holes despite a high percentage of micro‐aggregates and high total porosity.  相似文献   

8.
潘雅文    马文龙  潘庆宾  韩剑桥    张胜男 《水土保持研究》2022,29(3):88-97+105
侵蚀输沙空间变异及其尺度效应是流域水文过程研究的一个重要内容,对流域水土流失控制和水沙资源科学管理具有重要意义。通过对流域侵蚀输沙空间尺度效应研究成果的系统回顾,从坡面到流域,阐述了降雨、土壤和植被等环境要素对侵蚀输沙尺度效应的影响,梳理了尺度效应产生机制方面的认知,总结了不同条件下坡面产流和侵蚀输沙尺度转换的代表性方法。在此基础上,对流域侵蚀输沙空间尺度效应研究的发展趋势进行了讨论,未来应增加新技术和数据的应用,建立具有明确物理机制的侵蚀输沙空间尺度转换方法,同时,急需突破剧烈环境变化对空间尺度效应影响的研究。本文的梳理与总结可为流域侵蚀输沙过程的深入研究提供参考,为土壤侵蚀防治和河流水沙的综合管理提供一定的科学支持。  相似文献   

9.
草带布设位置对坡沟系统水文连通性的影响   总被引:5,自引:2,他引:5       下载免费PDF全文
为研究坡面不同草带布设位置对坡沟系统水文连通性的影响,在模拟降雨条件下,选取地形收敛指数和地形湿度指数作为结构连通性指标、简化水文曲线和相对地表连接函数作为功能连通性指标分析了不同草带布设位置(坡面中上、中、中下、下部)坡沟系统水文连通性。结果表明:不同草带布设位置对坡沟系统的连通过程影响不同。植被布设越靠近沟坡部分产流时间越长;植被布设在中下坡位、下坡位比中坡位和中上坡位的总径流量小,对径流汇集影响大。中上坡位布置植被比其他位置有较好的结构连通性,其降雨后的地形更利于水系连通。不同格局地形收敛指数分布类似正态分布,地形湿度指数分布符合正偏态分布。中上坡位布置植被降雨后地形比其他格局更利于汇流;中上坡位布置植被降雨后的地形湿度指数均值比降雨前减少10.59%,整体变化最大,也更利于产流。植被布设越靠近坡顶部分其功能连通性越好,但对于降水的储蓄能力较差。中上坡位布置植被相比其他格局需要较少的水量达到产流,功能连通性最好。降雨停止时,中下部和下部坡位布设植被约有70%的总降雨量用于储蓄,而中上部和上部仅为50%。  相似文献   

10.
元谋干热河谷优势乡土草群落水土保持效益研究   总被引:1,自引:0,他引:1  
通过在金沙江元谋干热河谷不同坡度径流小区内人工构建优势乡土草群落,研究了自然降雨对不同坡度径流小区产流量和泥沙量的影响。结果表明:不同径流小区产流量和土壤侵蚀模数与降雨量呈正相关,与植被盖度呈负相关;种植处理与对照CK差异显著,且小区坡度越大越显著;降雨利用率随坡度增加而减少,而且乡土草植被群落盖度越大小区降雨利用率越高。通过构建乡土草群落能有效地降低水土流失,增加降雨利用率,且随着坡度增大,水土流失治理效果越明显。  相似文献   

11.
Abstract. The structure of soils in areas of rain forest cleared for pasture is often compacted due to trampling by animals. When pasture is abandoned, regeneration of forest cover may be achieved from natural seed sources nearby.However, the regeneration of soil structure is also important for local hydrology and successful establishment of some plant species. In this study we investigated changes in soil structure and hydraulic properties in a series of plots on volcanic soils in the San Luis Valley, Costa Rica. The plots were current pasture, 15- and 20-year-old regenerating forest, and primary rain forest.
Infiltration rate increased with increasing forest age and the water release characteristic reverted gradually from one with greater water retention at all matric potentials in the pasture plot towards that found in the primary forest. Compaction and low porosity were features of both the current pasture and 15-year-old regenerating forest in comparison to the primary forest.  相似文献   

12.
    
Land degradation induced by water erosion is a worldwide problem for sustainable agriculture. Erosion results in the alteration of soil properties to a varying extent that depends on soil type. However, limited attempts have been made to assess the impact of erosion‐induced land degradation on soil infiltration on a wide range of soil types. Herein, field rainfall simulation experiments were performed on prewetted bare heavy‐textured soils at three erosion degrees (no, moderate, and very severe) for five types of soils (Calcic Luvisol, Ferric Luvisol, Plinthic Alisol, Plinthic Acrisol, and Acric Ferralsol). Soil infiltration rate was determined at two rainfall intensities (45 and 90 mm hr−1) and 3‐min intervals for 60‐min runoff duration on microplots (3 m long × 0.8 m wide, 10° slope). At the low rainfall intensity, the impact of erosion‐induced land degradation on rainfall infiltration increased from Calcic Luvisol to Plinthic Acrisol, and the steady state infiltration rate (fc) was well characterized by bulk density and 1.4‐nm intergrade minerals (Adj‐R2 = 0.79, p < 0.001). At the high rainfall intensity, fc was negatively related with illite solely (Adj‐R2 = 0.25, p < .05) and generally increased with an increase of erosion severity; the impact of erosion‐induced land degradation on fc was magnified for Calcic Luvisol and Acric Ferralsol but lessened for other soil types. Collectively, the impact of erosion‐induced land degradation generally increased with increased soil structural stability at the low rainfall intensity and was determined by the interaction between soil structure and rainfall at the high rainfall intensity.  相似文献   

13.
翻耕与压实对坡地土壤溶质迁移过程的影响   总被引:4,自引:0,他引:4  
采用田间模拟降雨试验方法,研究地表翻耕与压实处理对坡地产流产沙及溶质迁移特征的影响。结果表明:与压实处理比较,翻耕坡地初始产流时间延长近3倍,降雨向土壤水转化率提高10%以上,产沙量增加67%;翻耕处理明显降低溶解态磷(DP)和泥沙浸提态磷(SEP)的流失量,但磷素流失形态(DP与SEP的比值)并未显著变化,始终以颗粒态形式流失为主;翻耕处理显著改变了溴的流失形态,溶解态溴(Br)与泥沙浸提态溴(SBr)流失量比值减少了72%;翻耕处理提高了溴(或硝态氮)的淋失概率,增大污染地下水体的潜在危险。因此,合理配置坡地免耕或翻耕措施,有机结合其他农艺耕作措施,对减少坡地水土及养分流失具有重要实践意义。  相似文献   

14.
15.
         下载免费PDF全文

Despite recent improvements in overall soil health gained through conservation agriculture, which has become a global priority in agricultural systems, soil and water-related externalities (e.g., wind and water erosion) continue to persist or worsen. Using an inductive, systems approach, we tested the hypothesis that such externalities persist due to expansion of cultivation onto areas unsuitable for sustained production. To test this hypothesis, a variety of data sources and analyses were used to uncover the land and water resource dynamics underlying noteworthy cases of soil erosion (either wind or water) and hydrological effects (e.g., flooding, shifting hydrographs) throughout the central United States. Given the evidence, we failed to reject the hypothesis that cultivation expansion is contributing to increased soil and water externalities, since significant increases in cultivation on soils with severe erosion limitations were observed everywhere the externalities were documented. We discuss the case study results in terms of land use incentives (e.g., policy, economic, and biophysical), developing concepts of soil security, and ways to utilize case studies such as those presented to better communicate the value of soil and water resource conservation. Incorporating the tenets of soil potential and soil risk into soil health evaluations and cultivation decision-making is needed to better match the soil resource with land use and help avoid more extreme soil and water-related externalities.View The PDF  相似文献   


16.
    
Cover crops (CC) in vineyards and olive groves provide an alternative to conventional tillage (CT) for land management. Runoff, sediment and nutrient loss from six sites in France, Spain and Portugal were compared over 3–4 yr. In general, runoff loss was not significantly reduced by the CC alternatives: average annual runoff coefficients ranged from 4.9 to 22.8% in CT compared with 1.9–25% in the CC alternatives. However, at two sites, reductions in average annual runoff coefficients were greater for CC: 17.2 and 10.4% in CT, 6.1 and 1.9% in CC. Nutrient loss in runoff followed a similar pattern to runoff, as did pesticide loss on the one site; reductions occurred when runoff losses were significantly reduced by CC. The lack of differences at the other sites is thought to be due to a combination of soil conditions at the surface (compaction and capping) and sub‐surface (low‐permeability horizons close to the surface). In contrast, CC always resulted in reductions in soil erosion loss, plus similar reductions in nutrients and organic matter (OM) associated with sediment. Soil erosion loss ranged from 1.4 to 90 t/ha/yr in CT compared with 0.04–42.7 t/ha/yr in CC. Overall, reductions in runoff and associated nutrient and pesticide loss from vineyards and olives occurred with the introduction of CCs only when soil permeability was sufficiently high to reduce runoff. In contrast, reduction in soil erosion and associated nutrients and OM occurred even when the amount of runoff was not reduced. In the most extreme encountered situations (highly erodible soils in vulnerable landscape positions and subject to highly erosive rainfall), additional conservation measures are needed to prevent unsustainable soil loss.  相似文献   

17.
土壤是耕地的重要组成部分,也是农田生态系统的基础,健康的农田土壤对抵抗自然营力如风力、水力、风力等导致的土壤侵蚀至关重要。但随着近些年来农业机械的普及发展,农田土壤也遭受更严重的机械压实。机械作业过程中农田土壤遭受的压实对农田土壤理化性质及土壤生物产生不良影响,机械压实也使农田土壤抵抗侵蚀的能力受到影响,这种影响主要通过机械压实对土壤物理性质的影响间接实现。为明确农田机械压实的研究现状及压实对土壤侵蚀的影响机理,该研究概述了农田土壤机械压实的起因,阐述了机械压实对土壤性质的影响及其作用机理,讨论了机械压实间接影响土壤侵蚀的因素。总结发现,目前研究主要集中在机械压实对土壤性质的影响、土壤性质对土壤侵蚀的影响方面,鲜有研究机械压实对土壤侵蚀的影响机制。最后针对目前机械压实研究的不足提出了未来研究的方向,并探讨了农田土壤机械压实与土壤侵蚀之间的联系,以期将现有机械压实研究理论更好应用到实践,趋利避害,为国内农田土壤侵蚀防治提供参考。  相似文献   

18.
    
Subsoil compaction due to conventional tillage techniques and its relation to subsurface flow and runoff was investigated on a sloped field. The presence of a plow sole was confirmed by significantly higher penetration resistances between 20 and 40 cm depth, a significantly higher soil bulk density and a 14% decrease in drainage pore space compared to the top layer. Ring infiltrometer measurements also confirmed a significant reduction of the saturated hydraulic conductivity at 30 cm depth, indicating a limited permeability. With the use of an extensive grid of tensiometers, matric heads were monitored and the occurrence of a temporary water table on top of the plow sole was confirmed in a number of cases. Equipotential lines in the top saturated layer indicated the occurrence of subsurface flow parallel to the slope surface in a downward direction. For the whole measuring period, when a perched water table was observed, 91% of the rainfall events caused runoff and this number increased with increasing rainfall intensity. For low and medium rainfall intensities (<10 mm h−1), 66% and 63% of the runoff events were related to saturation of the top soil. Therefore, it was concluded that over a period of 20 months saturation excess runoff as a result of subsoil compaction was an important contributor to surface runoff and soil loss.  相似文献   

19.
    
Gully erosion is one of the most important forms of land degradation in many regions of the world. Understanding the process of gully erosion therefore is important for better management of the watersheds prone to gully erosion. However, many different aspects of gully erosion, like hydrological behavior, are still not fully understood. The present study investigates the spatial distribution of soil moisture content (SMC), as one of the hydrological factors, at different depths and points across the cross section in the vicinity of the headcut of three gullies located in the Kalat County, Khorasan Razavi Province, Iran. SMCs were measured at depths of 10, 20, 30, 50, 70 and 100 cm at each seven points across the study cross sections one to three days after occurrence of three rain events. Two sampling points were symmetrically located at a distance of 50 cm outside the gully banks, two at the vertex of the sidewalls, two in the middle of the sidewalls and one at the center of gully cross section. SMCs were measured using a weighted method. Results of the study revealed a broad range of changes in SMCs at various depths and points. The minimum and maximum SMCs were found to be about 2% and 38%, respectively, for the study period and gullies under consideration. The coefficient of variation (CV) had drastic changes for various gullies and storm events from 2 to 107%. Results further indicated that SMC moved from the sidewalls towards the floor of the cross section. Accordingly, the maximum SMC for storm events was associated with the point located in the center of gullies, which indicated the role of gully system in draining soil moisture. The findings of this study will help watershed managers understand the important role of gully facies in changing water content of the soil that affects other ecohydrological processes.  相似文献   

20.
地表粗糙度对黄土坡面产流机制的影响   总被引:5,自引:3,他引:5       下载免费PDF全文
为探明地表粗糙度对坡面产流机制的影响,该研究通过室内与室外径流小区模拟降雨试验相结合,分析在3种雨强(60、90、120 mm/h)下粗糙坡面与平整坡面(坡度5°、10°、15°、20°)产流点位空间分布和坡面产流时间特征,阐明地表粗糙度对坡面产流机制的影响。结果表明:粗糙坡面与平整坡面产流点位沿径流方向的变异系数分别为34.4%~52.9%、15.5%~31.1%,即粗糙坡面产流点位较平整坡面更为分散。相较于平整坡面,地表粗糙度具有推迟坡面产流效应,且推迟效应随坡度、雨强增大而逐渐减弱。表明地表粗糙度在小坡度、小雨强条件下具有较强延迟坡面产流能力。地表粗糙度影响坡面产流一方面通过地表填洼的直接作用;另一方面通过增加降水入渗水头,增强坡面入渗能力的间接作用。通过坡面地表填洼量预测的初始产流时间与实测坡面产流时间比值范围为2.2%~36.2%,表明地表粗糙度间接作用为延迟坡面产流的主导作用。因此,该研究结果阐明了粗糙坡面的点状产流与坡面产流特征,进一步为粗糙坡面产流机制的揭示及地表粗糙度对坡面土壤侵蚀机理的影响提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号