首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Herein, we describe the prevalence of bacterial infections in Chinook salmon, Oncorhynchus tshawytscha (Walbaum), returning to spawn in two tributaries within the Lake Michigan watershed. Ten bacterial genera, including Renibacterium, Aeromonas, Carnobacterium, Serratia, Proteus, Pseudomonas, Hafnia, Salmonella, Shewanella and Morganella, were detected in the kidneys of Chinook salmon (n = 480) using culture, serological and molecular analyses. Among these, Aeromonas salmonicida was detected at a prevalence of ~15%. Analyses revealed significant interactions between location/time of collection and gender for these infections, whereby overall infection prevalence increased greatly later in the spawning run and was significantly higher in females. Renibacterium salmoninarum was detected in fish kidneys at an overall prevalence of >25%. Logistic regression analyses revealed that R. salmoninarum prevalence differed significantly by location/time of collection and gender, with a higher likelihood of infection later in the spawning season and in females vs. males. Chi‐square analyses quantifying non‐independence of infection by multiple pathogens revealed a significant association between R. salmoninarum and motile aeromonad infections. Additionally, greater numbers of fish were found to be co‐infected by multiple bacterial species than would be expected by chance alone. The findings of this study suggest a potential synergism between bacteria infecting spawning Chinook salmon.  相似文献   

2.
Rainbow trout, Oncorhynchus mykiss (Walbaum), are able to raise a protective immune response against Aeromonas salmonicida subsp. salmonicida (AS) following injection vaccination with commercial vaccines containing formalin‐killed bacteria, but the protection is often suboptimal under Danish mariculture conditions. We elucidated whether protection can be improved by increasing the concentration of antigen (formalin‐killed bacteria) in the vaccine. Rainbow trout juveniles were vaccinated by intraperitoneal (i.p.) injection with a bacterin of Aeromonas salmonicida subsp. salmonicida strain 090710‐1/23 in combination with Vibrio anguillarum serotypes O1 and O2a supplemented with an oil adjuvant. Three concentrations of AS antigens were applied. Fish were subsequently challenged with the homologous bacterial strain administered by perforation of the tail fin epidermis and 60‐s contact with live A. salmonicida bacteria. The infection method proved to be efficient and could differentiate efficacies of different vaccines. It was shown that protection and antibody production in exposed fish were positively correlated to the AS antigen concentration in the vaccine.  相似文献   

3.
A real‐time PCR assay using a molecular beacon was developed and validated to detect the vapA (surface array protein) gene in the fish pathogen, Aeromonas salmonicida. The assay had 100% analytical specificity and analytical sensitivities of 5 ± 0 fg (DNA), 2.2 × 104 ± 1 × 104 CFU g?1 (without enrichment) and 40 ± 10 CFU g?1 (with enrichment) in kidney tissue. The assay was highly repeatable and proved to be robust following equivalency testing using a different real‐time PCR platform. Following analytical validation, diagnostic specificity was determined using New Zealand farmed Chinook salmon, Oncorhynchus tshawytscha (Walbaum), (n = 750) and pink shubunkin, Carassius auratus (L.) (n = 157). The real‐time PCR was run in parallel with culture and all fish tested were found to be negative by both methods for A. salmonicida, resulting in 100% diagnostic specificity (95% confidence interval). The molecular beacon real‐time PCR system is specific, sensitive and a reproducible method for the detection of A. salmonicida. It can be used for diagnostic testing, health certification and active surveillance programmes.  相似文献   

4.
A comparative bacteriological and virological survey was conducted in two fish farms in the North of Portugal. The fish species examined included cultured rainbow trout, Oncorhynchus mykiss (Walbaum), and brown trout, Salmo trutta L., as well as wild fish captured near both facilities. The microbial load in the internal organs of apparently healthy fish was nonitored over a year, an all the disease problems occurring during this period were investigated. Although both farms presented intermediate levels of infection(30–40% infected fish), farm B showed the poorest microbiological quality since constant but low mortalities were observed throughout the year. Flavobacterium and Psedomonas-Xanthomonas were the predominant bacterial groups, comprising around 40–50% of the isolates from each farm. In farm B, members of the Enterobacteriaceae and mortile Aeromonas also showed significant prevalence (about 20%). The only outbreak of a notifiable disease was an occurrence of furunculosis, caused by Aeromonas salmonicida subsp. salmoncida, in farm A. However, Yersinia ruckeri was isolated not only from diseased fish, but also from asymptomatic fish, usually in mixed infections with motile Aeromonas or infections with motile Aeromonas or infectious pancreatic necrosis virus (IPNV). While Y. ruckeri isolates associated with mortalities belonged to the serotype O1 (subgroup a), those isolated from asymtomatic fish corresponded to serotype O3. Two strains of IPNV (serotype Ab) were isolated in farm B, which represents the first viral agent detected in Portuguese aquaculture. Qualitative and quantitative differences in microbial load were observed between cultured and wild fish. No notifiable bacterial or viral pathogens were detected in any of the feral species studied.  相似文献   

5.
Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is the aetiological agent of furunculosis in marine and freshwater fish. Once A. salmonicida invade the fish host through skin, gut or gills, it spreads and colonizes the head kidney, liver, spleen and brain. A. salmonicida infects leucocytes and exhibits an extracellular phase in the blood of the host; however, it is unknown whether A. salmonicida have an intraerythrocytic phase. Here, we evaluate whether A. salmonicida infects Atlantic salmon (Salmo salar) erythrocytes in vitro and in vivo. A. salmonicida did not kill primary S. salar erythrocytes, even in the presence of high bacterial loads, but A. salmonicida invaded the S. salar erythrocytes in the absence of evident haemolysis. Naïve Atlantic salmon smolts intraperitoneally infected with A. salmonicida showed bacteraemia 5 days post‐infection and the presence of intraerythrocytic A. salmonicida. Our results reveal a novel intraerythrocytic phase during A. salmonicida infection.  相似文献   

6.
7.
Ceratomyxa shasta is a myxozoan parasite of salmonid fish. In natural communities, distinct genotypes of the parasite are associated with different salmonid hosts. To test the hypothesis that genotypes of C. shasta cause differential mortality, the polychaete host was experimentally infected with different parasite genotypes. Genotype I was obtained from Chinook salmon, Oncorhynchus tshawytscha, and genotype II from either coho salmon, O. kisutch, or rainbow trout, O. mykiss, We then challenged four salmonid strains: Chinook and coho salmon that occur in sympatry with the parasite and allopatric Chinook salmon and rainbow trout. Parasite genotype I caused mortality only in Chinook strains, although mortality in the allopatric strain also occurred from exposure to genotype II. A second experiment demonstrated that genotype II could be separated into two biotypes based on differential mortality in rainbow trout and coho salmon. These differential patterns of mortality as a result of infection by certain genotypes of C. shasta support field observations and suggest a co‐evolutionary relationship between these parasites and their hosts.  相似文献   

8.
Due to increasing resistance to chemical therapeutants, the use of ‘cleaner fish’ (primarily wrasse, Labridae, species) has become popular in European salmon farming for biocontrol of the salmon louse, Lepeophtheirus salmonis (Krøyer). While being efficient de‐licers, cleaner fish mortality levels in salmon cages are commonly high, and systemic bacterial infections constitute a major problem. Atypical furunculosis, caused by Aeromonas salmonicida A‐layer types V and VI, is among the most common diagnoses reached in clinical investigations. A previously described real‐time PCR (qPCR), targeting the A. salmonicida A‐layer gene (vapA), was modified and validated for specific and sensitive detection of all presently recognized A‐layer types of this bacterium. Before stocking and during episodes of increased mortality in salmon cages, cleaner fish (primarily wild‐caught wrasse) were sampled and screened for A. salmonicida by qPCR and culture. Culture indicated that systemic bacterial infections are mainly contracted after salmon farm stocking, and qPCR revealed A. salmonicida prevalences of approximately 4% and 68% in pre‐ and post‐stocked cleaner fish, respectively. This underpins A. salmonicida's relevance as a contributing factor to cleaner fish mortality and emphasizes the need for implementation of preventive measures (e.g. vaccination) if current levels of cleaner fish use are to be continued or expanded.  相似文献   

9.
Abstract. Protection against Aeromonas salmonicida was determined by passive immunization and with various bacterin preparations. Rabbit antiserum was prepared against a rough, virulent strain of A. salmonicida (AS-1R), the same strain boiled (AS-1R, boiled), and an avirulent, smooth strain of this same isolate (AS-1S). Cross-absorption, cross-passive protection and analysis by counter immunoelectrophoresis of various extraction methods were studied. It was shown that AS-1R cells contained an additional antigen not present in AS-1R (boiled) and AS-1S cells. Antiserum to the AS-1R antigen passively protected sockeye salmon, Oncorhynchus nerka (Walbaum), against a virulent challenge, and antisera to AS-1R (boiled) and AS-1S were not protective. The antigen was not destroyed by formalin or heat at 5°C for 60 min, but it appeared to be partially inactivated with proteolytic enzymes. The antigen was produced in casein yeast beef (CYB) broth up to 32 h but not thereafter, and low yields were obtained in tryptic soy or brain heart infusion (BHI) broth. It was extracted from cells with ethylenediamine tetraacetic acid (EDTA) and especially alkaline hydrolysis, but not with proteolytic enzymes or detergents. The detergents appeared to destroy the antigen. We concluded that the antigen was protein and is most likely the external A-protein (AP) reported for rough, virulent strains of A, salmonicida. Various methods of preparing A. salmonicida bacterins were evaluated by determining the level of protective immunity induced in intraperitoneally (i.p.) vaccinated fish. Growth of cells in CYB or BHI broth resulted in production of only rough (autoagglutinated in saline) variants of A. salmonicida. Although only rough variants were associated with protective immunity, one strain was not protective, it was avirulent by bath challenge. Bacterins prepared in CYB were more efficacious than those grown in BHI, but inactivation with formalin, iodine, or glutaraldehyde worked equally well. However, boiling the bacterin or filtering the cells from the bacterin removed its efficacy. Methods of releasing the AP were evaluated by sonification, pH-lysis, disaggregation and treatment with EDTA, and all treatments worked equally well. Also, precipitation on to aluminium or use of Freund's complete adjuvant did not significantly improve the protection. In parenterally vaccinated fish, protection was demonstrated by challenging the fish at various levels by bath, injection or cohabitation with infected fish. The best protection was demonstrated using the cohabitation challenge method. The potency and field efficacy of an A. salmonicida bacterin prepared in CYB broth and extracted with 5 mM EDTA was evaluated. Fish were vaccinated by i.p, injection and potency was determined in the laboratory by experimental challenge and in the field by natural challenge. Chinook salmon, O.ishawytschu (Walbaum), developed immunity within seven days at 10°C. The bacterin could be diluted up to 1:2000 without loss of potency. The field tests results were equivocal; however, (he prevalence of infection was lower in vaccinated fish.  相似文献   

10.
We report the first isolation, identification and characterization of a group of Chilean strains of atypical Aeromonas salmonicida isolated from freshwater farmed Atlantic salmon, Salmo salar. Affected fish showed superficial ulcers and pale liver with or without petechial haemorrhages. Outbreaks of the disease occurred in two farms in the south of Chile about 2200 km apart. Five strains were isolated in pure culture and identified by serological assays and immunofluorescence tests as belonging to Aeromonas salmonicida. Although the bacterial isolates were phenotypically homogeneous, minor differences with the reference strain A. salmonicida subsp. salmonicida ATCC 33658 were noted. Three specific primer sets and partial 16S rRNA gene sequencing allowed the identification of the Chilean isolates as atypical A. salmonicida, with A. salmonicida subsp. achromogenes and A. salmonicida subsp. masoucida as their closest relatives (100% sequence similarity). Molecular typing indicated that the atypical isolates belong to two genetic groups that were associated with the geographical origin.  相似文献   

11.
Pacific salmon and trout (Oncorhynchus spp., Salmonidae) of the Puget Sound region of Washington State, USA, have experienced recent and longer‐term (multidecadal) variability in abundance while supporting robust fisheries. As part of the post‐season salmon management process, population‐specific estimates of total adult abundance to Puget Sound (Strait of Juan de Fuca) for pink (O. gorbuscha), chum (O. keta), coho (O. kisutch), sockeye (O. nerka), and Chinook (O. tshawytscha) salmon and steelhead trout (O. mykiss) are calculated annually. We compiled annual estimates of body mass, abundance and survival of hatchery‐ and naturally produced salmon from 1970 to 2015 to compare spatial and temporal patterns across species. Average weights of adult salmon and steelhead returning to Puget Sound, with the exception of coho salmon, have decreased since the 1970s. Temporal trends in abundance, survival and productivity varied by species and origin (hatchery vs. naturally produced). Generally, abundance and survival rates of natural‐origin species decreased whereas those of hatchery‐produced species did not, which is in contrast with other studies' general conclusions of decreasing survival among Puget Sound salmonids. Species diversity has decreased in recent years, with salmonids that rely on a short freshwater rearing phase in the natural environment (hatchery‐produced fish and naturally produced pink and chum) representing >90% of total returns in most years. This new information reveals patterns of body size, abundance, survival and productivity across species, life history and rearing type over the past 45 years and, in doing so, demonstrates the strength in multidecadal, multifactor time series to critically evaluate salmonid species.  相似文献   

12.
A bacteria–parasite challenge model was used to study the role of sea lice, Lepeophtheirus salmonis (Copepoda), as a vector of Aeromonas salmonicida subsp. salmonicida. Three hypotheses were tested: (i) L. salmonis can acquire A. salmonicida subsp. salmonicida via water bath exposure; (ii) L. salmonis can acquire the bacteria via parasitizing infected Atlantic salmon, Salmo salar; and (iii) L. salmonis can transmit the bacteria to naïve Atlantic salmon via parasitism. Adult L. salmonis exposed to varying A. salmonicida subsp. salmonicida suspensions (101–107 cells mL?1) for 1.0, 3.0 or 6.0 h acquired the bacteria externally (12.5–100%) and internally (10.0–100%), with higher prevalences associated with the highest concentrations and exposures. After exposure to 107 cells mL?1, viable A. salmonicida subsp. salmonicida could be isolated from the external carapace of L. salmonis for 120 h. Lepeophtheirus salmonis also acquired the bacteria externally and internally from parasitizing infected fish. Bacterial transmission was observed only when L. salmonis had acquired the pathogen internally via feeding on ‘donor fish’ and then by parasitizing smaller (<50 g) ‘naive’ fish. Under specific experimental conditions, L. salmonis can transfer A. salmonicida subsp. salmonicida via parasitism; however, its role as a mechanical or biological vector was not defined.  相似文献   

13.
14.
Chinook salmon, Oncorhynchus tshawytscha (Walbaum), is an important biological and cultural resource in Alaska, but knowledge about Chinook salmon ecology is limited in many regions. From 2009 to 2012, spawning distribution and abundance of a northern Chinook salmon population on the Togiak River in south‐west Alaska were assessed. Chinook salmon preferred deeper mainstem channel spawning habitat, with 12% (14 of 118 tags in 2009) to 21% (22 of 106 tags in 2012) of radio‐tagged fish spawning in smaller order tributaries. Tributary spawners tended to have earlier run timing than mainstem spawners. Chinook salmon exhibited extended holding and backout (entering freshwater but returning to saltwater before completing anadromous migration) behaviours near the mouth of Togiak River, potentially prolonging their exposure to fishery harvest. Mark–recapture total annual run estimates (2010–2012) ranged from 11 240 (2011) to 18 299 (2012) fish. Exploitation of Chinook salmon ranged from 36% (2012) to 55% (2011) during the study period, with incidental fishery catches near the mouth of the river comprising the largest source of harvest.  相似文献   

15.
Furunculosis, a septicaemic infection caused by the bacterium Aeromonas salmonicida subsp. salmonicida, currently causes problems in Danish seawater rainbow trout production. Detection has mainly been achieved by bacterial culture, but more rapid and sensitive methods are needed. A previously developed real‐time PCR assay targeting the plasmid encoded aopP gene of A. salmonicida was, in parallel with culturing, used for the examination of five organs of 40 fish from Danish freshwater and seawater farms. Real‐time PCR showed overall a higher frequency of positives than culturing (65% of positive fish by real‐time PCR compared to 30% by a culture approach). Also, no real‐time PCR‐negative samples were found positive by culturing. A. salmonicida was detected by real‐time PCR, though not by culturing, in freshwater fish showing no signs of furunculosis, indicating possible presence of carrier fish. In seawater fish examined after an outbreak and antibiotics treatment, real‐time PCR showed the presence of the bacterium in all examined organs (1–482 genomic units mg?1). With a limit of detection of 40 target copies (1–2 genomic units) per reaction, a high reproducibility and an excellent efficiency, the present real‐time PCR assay provides a sensitive tool for the detection of A. salmonicida.  相似文献   

16.
Coldwater Vibrio species isolated from Atlantic salmon, Salmo salar L., during winter ulcer disease outbreaks at saltwater sites in Norway and Iceland were characterized phenotypically, tested for virulence, and used to evaluate the efficacy of multivalent, oil-adjuvanted vaccines. The intraperitoneal (i.p.) injection of rainbow trout, Oncorhynchus mykiss (Walbaum), in fresh water with one bacteria species isolated during winter ulcer outbreaks, V. ‘viscosus’, produced rapid mortality and disease signs which resembled those observed during natural outbreaks [105 colony-forming units (cfu) fish??1]. Another species, V. ‘wodanis’, was not virulent to rainbow trout (103–106 cfu fish??1). Although vaccination of rainbow trout with a mineral-oil-adjuvanted, injectable vaccine containing V. anguillarum (serotypes 01 and 02), V. salmonicida and Aeromonas salmonicida did not provide protection against injection challenge with V. viscosus, vaccines which included V. viscosus produced significant protection in Atlantic salmon and rainbow trout. Atlantic salmon vaccinated with an oil-adjuvanted vaccine containing V. viscosus, V. wodanis and atypical A. salmonicida produced a relative percentage survival (RPS) of 97% when challenged i.p. with V. viscosus, demonstrating cross-protection between strains from Iceland and Norway. Short-term efficacy was demonstrated in rainbow trout by injection challenge at 21 and 43 days post-vaccination with an oil-adjuvanted vaccine containing V. viscosus, V. anguillarum (01/02), V. salmonicida and A. salmonicida, which produced an RPS of 96–99%. Rainbow trout challenged with V. viscosus at 52 and 362 days post-vaccination produced an RPS of 93% and 79%, indicating that vaccination provided long-term protection. In a similar manner, rainbow trout injected i.p. with 0.2 mL of a vaccine containing the five bacteria species and infectious pancreatic necrosis virus produced a 90% RPS when challenged with V. viscosus 66 days later. The high RPS under a severe challenge burden, along with disease signs in experimental freshwater challenges which resembled the saltwater disease condition, indicated that V. viscosus is a contributing factor to winter ulcer and that vaccination will protect against the disease.  相似文献   

17.
Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here, we employ bacterial BLI for examining routes of entry and spread of Aeromonas salmonicida susbp. salmonicida in rainbow trout. A virulent Danish A. salmonicida strain was tagged with pAKgfplux1, a dual‐labelled plasmid vector containing the mutated gfpmut3a gene from Aequorea victoria and the luxCDABE genes from the bacterium Photorhabdus luminescens. The resulting A. salmonicida transformant exhibited growth properties and virulence identical to the wild‐type A. salmonicida, which made it suitable for an experimental infection, mimicking natural conditions. Fish were infected with pAKgfplux1 tagged A. salmonicida via immersion bath. Colonization and subsequent tissue dissemination was followed over a 24‐h period using the IVIS spectrum imaging workstation. Results suggest the pathogen's colonization sites are the dorsal and pectoral fin and the gills, followed by a progression through the internal organs and an ensuing exit via the anal opening. This study provides a tool for visualizing colonization of A. salmonicida and other bacterial pathogens in fish.  相似文献   

18.
We examined 1454 juvenile Chinook salmon, Oncorhynchus tshawytscha (Walbaum), captured in nearshore waters off the coasts of Washington and Oregon (USA) from 1999 to 2004 for infection by Renibacterium salmoninarum, Nanophyetus salmincola Chapin and skin metacercariae. The prevalence and intensities for each of these infections were established for both yearling and subyearling Chinook salmon. Two metrics of salmon growth, weight residuals and plasma levels of insulin-like growth factor-1, were determined for salmon infected with these pathogens/parasites, both individually and in combination, with uninfected fish used for comparison. Yearling Chinook salmon infected with R. salmoninarum had significantly reduced weight residuals. Chinook salmon infected with skin metacercariae alone did not have significantly reduced growth metrics. Dual infections were not associated with significantly more severe effects on the growth metrics than single infections; the number of triple infections was very low and precluded statistical comparison. Overall, these data suggest that infections by these organisms can be associated with reduced juvenile Chinook salmon growth. Because growth in the first year at sea has been linked to survival for some stocks of Chinook salmon, the infections may therefore play a role in regulating these populations in the Northeast Pacific Ocean.  相似文献   

19.
Skin ulcerations rank amongst the most prevalent lesions affecting wild common dab (Limanda limanda) with an increase in prevalence of up to 3.5% in the Belgian part of the North Sea. A complex aetiology of these ulcerations is suspected, and many questions remain on the exact factors contributing to these lesions. To construct the aetiological spectrum of skin ulcerations in flatfish, a one‐day monitoring campaign was undertaken in the North Sea. Fifteen fish presented with one or more ulcerations on the pigmented and/or non‐pigmented side. Pathological features revealed various stages of ulcerations with loss of epidermal and dermal tissue, inflammatory infiltrates and degeneration of the myofibers bordering the ulceration, albeit in varying degrees. Upon bacteriological examination, pure cultures of Vibrio tapetis were retrieved in high numbers from five fish and of Aeromonas salmonicida in one fish. The V. tapetis isolates showed cross‐reactivity with the sera against the representative strain of serotype O2 originating form a carpet‐shell clam (Ruditapes descussatus). Moreover, the A. salmonicida isolates displayed a previously undescribed vapA gene sequence (A‐layer type) with possible specificity towards common dab. Further research is necessary to pinpoint the exact role of these agents in the development of skin ulcerations in common dab.  相似文献   

20.
Abstract. Chinook salmon, Oncorhynchus tshawytscha (Walbaum), and rainbow trout, Salmo gairdneri Richardson, were used to determine if sublethal copper exposure would increase their susceptibility to Vibrio anguillarum infection. Fish were pretreated with copper at fractional levels of the 96 h copper LC50 before exposure to the pathogen. Mortality by vibriosis was greater among fish exposed to 9% of the copper LC50 for 96 h than unexposed fish. Peak susceptibility to vibriosis depended in part on the interaction of exposure time and copper concentration. The higher copper concentrations produced peak susceptibility to infection in shorter time periods. After the peak of susceptibility, sensitivity to infection declined to near control levels in those fish where exposure was continued. Rainbow trout stressed by copper required about 50% fewer pathogens to induce a fatal infection than non-copper exposed fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号